Neuroinflammation—the role of heteroreceptor complexes
Neuroinflammation is a hallmark of various neurodegenerative and neuropsychiatric disorders, driven by complex interactions between neurotransmitter receptors and immune signaling pathways. Among th
[...] Read more.
Neuroinflammation is a hallmark of various neurodegenerative and neuropsychiatric disorders, driven by complex interactions between neurotransmitter receptors and immune signaling pathways. Among these, heteroreceptor complexes—functional assemblies formed by the physical interaction of different G protein-coupled or ionotropic receptor subtypes within the same membrane microdomain—play a crucial role in modulating synaptic activity, neuroimmune responses, and inflammatory cascades. For example, the A2A-D2 receptor complex modulates dopaminergic signaling in the striatum and has been implicated in Parkinson’s disease pathology. These receptor-receptor interactions influence key signaling pathways involving dopamine, serotonin, glutamate, adenosine, and cannabinoid systems, thereby contributing to the pathophysiology of Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, schizophrenia, and depression. Dysregulation of heteroreceptor complexes disrupts neuronal homeostasis, exacerbates neuroinflammatory responses, and influences microglial and astrocytic activation. Understanding the molecular mechanisms governing these interactions, including allosteric modulation and biased agonism, offers novel therapeutic avenues for targeting neuroinflammation. Pharmacological strategies, such as selective allosteric modulators, biased agonists, and receptor-specific ligands, aim to restore heteroreceptor function and mitigate neuroinflammatory damage. Emerging clinical trials—such as those evaluating A2A receptor antagonists like istradefylline for Parkinson’s disease and 5-HT2A antagonists for schizophrenia—have shown promising neuroprotective and anti-inflammatory effects, although larger-scale, long-term studies are needed to confirm efficacy. This review highlights the pivotal role of heteroreceptor complexes in neuroinflammation, discusses their therapeutic potential, and underscores the need for further research into their functional dynamics to develop effective interventions for neurodegenerative and neuropsychiatric diseases.
Neelakanta Sarvashiva Kiran, Senthilkumar Rajagopal
View:139
Download:8
Times Cited: 0
Neuroinflammation is a hallmark of various neurodegenerative and neuropsychiatric disorders, driven by complex interactions between neurotransmitter receptors and immune signaling pathways. Among these, heteroreceptor complexes—functional assemblies formed by the physical interaction of different G protein-coupled or ionotropic receptor subtypes within the same membrane microdomain—play a crucial role in modulating synaptic activity, neuroimmune responses, and inflammatory cascades. For example, the A2A-D2 receptor complex modulates dopaminergic signaling in the striatum and has been implicated in Parkinson’s disease pathology. These receptor-receptor interactions influence key signaling pathways involving dopamine, serotonin, glutamate, adenosine, and cannabinoid systems, thereby contributing to the pathophysiology of Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, schizophrenia, and depression. Dysregulation of heteroreceptor complexes disrupts neuronal homeostasis, exacerbates neuroinflammatory responses, and influences microglial and astrocytic activation. Understanding the molecular mechanisms governing these interactions, including allosteric modulation and biased agonism, offers novel therapeutic avenues for targeting neuroinflammation. Pharmacological strategies, such as selective allosteric modulators, biased agonists, and receptor-specific ligands, aim to restore heteroreceptor function and mitigate neuroinflammatory damage. Emerging clinical trials—such as those evaluating A2A receptor antagonists like istradefylline for Parkinson’s disease and 5-HT2A antagonists for schizophrenia—have shown promising neuroprotective and anti-inflammatory effects, although larger-scale, long-term studies are needed to confirm efficacy. This review highlights the pivotal role of heteroreceptor complexes in neuroinflammation, discusses their therapeutic potential, and underscores the need for further research into their functional dynamics to develop effective interventions for neurodegenerative and neuropsychiatric diseases.