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Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating multisystem disorder 
affecting an estimated 0.4% to 2.5% of community populations. Dysregulation of the hypothalamic-
pituitary-adrenal (HPA) axis and marked metabolic heterogeneity underscore its complex pathophysiology. 
The hypothalamic peptides hypocretin-1 and -2 (also known as orexin-A and orexin-B), synthesized by 
neurons in the lateral hypothalamus, regulate sleep-wake cycles, arousal, autonomic function, and energy 
homeostasis. This integrative review aimed to synthesize current evidence on hypothalamic orexinergic 
dysfunction in ME/CFS and assess its potential as a biomarker framework for stratification in precision 
medicine. The review followed Whittemore and Knafl’s five-stage methodology. Comprehensive searches 
were conducted across PubMed, Scopus, Web of Science, and OpenAlex up to April 2025, supplemented by 
manual screening of reference lists. Data extraction and synthesis were performed using constant 
comparison techniques to integrate quantitative outcomes with theoretical insights. Twenty-seven studies 
met the inclusion criteria, consistently reporting reduced orexin-A levels in individuals with ME/CFS and 
variable orexin-B responses indicative of biomarker potential. Neuroendocrine findings, including 
alterations in cortisol and adrenocorticotropic hormone levels, along with inflammatory profiles, confirmed 
the involvement of neuroimmune interactions. Multi-omics analyses further delineated distinct patient 
subtypes characterized by unique molecular signatures. Hypothalamic orexinergic dysfunction emerges as 
a central feature of ME/CFS, with orexin-B representing a promising candidate biomarker. The integration 
of orexin profiling with multi-omics data and machine learning strategies provides a viable pathway 
towards precision-medicine interventions for this heterogeneous condition.
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Introduction
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) encompasses a range of case definitions, 
from the Centers for Disease Control and Prevention (CDC)-1994 Fukuda criteria to the Canadian 
Consensus Criteria, that are clinically and pathophysiologically equivalent, assuming the next acronym 
ME/CFS [1]. In 2015, the Institute of Medicine proposed renaming the disorder systemic exertion 
intolerance disease (SEID) to highlight its hallmark feature of post-exertional malaise [2]. To ensure clarity 
and comparability, this review will use the term ME/CFS in accordance with international consensus 
recommendations [3].

ME/CFS is a debilitating multisystem disorder marked by unexplained, persistent fatigue of ≥ 6 
months’ duration, cognitive impairment, sleep disturbances, and post-exertional malaise [4]. The 
socioeconomic impact is significant, with healthcare costs exceeding $8,000 per patient and productivity 
losses up to $24 billion annually. Stigmatization, often fueled by limited public understanding, may worsen 
symptom severity [5–7].

While clinical evaluation remains central to diagnosis, some patients exhibit thyroid or adrenal axis 
dysregulation [8, 9], inflammatory cytokine alterations [10, 11], or abnormal cortisol excretion [12]. 
Neuroimaging studies show cortical atrophy and functional changes, with disrupted hypothalamic 
connectivity, particularly in youth [13–15].

Differential diagnosis is difficult due to symptom overlap with rheumatologic, psychiatric, and 
endocrine conditions. Although genetic, infectious, and immune contributions are implicated, their 
interplay remains unclear, limiting diagnostic precision [16, 17].

Therapeutically, graded exercise therapy (GET) and cognitive behavioral therapy (CBT) are currently 
recommended but demonstrate limited efficacy. Anti-inflammatory diets show potential; pharmacologic 
agents, including selective serotonin reuptake inhibitors (SSRIs) and stimulants like modafinil or caffeine, 
yield variable results [18].

Hypothalamic-pituitary-adrenal (HPA) axis dysfunction is well-documented in ME/CFS [19, 20]. The 
orexinergic system, which regulates arousal, pain, metabolism, and immune responses—all disrupted in 
ME/CFS—may contribute to hypothalamic dysfunction [21, 22]. Its involvement holds promise for novel 
diagnostic and therapeutic approaches.

In 1998, de Lecea et al. [23] characterized a hypothalamus-specific mRNA encoding preprohypocretin, 
the precursor of hypocretin-1 and -2. That same year, Sakurai et al. [24] described two neuropeptides—
orexin-A and orexin-B—derived from the same precursor and named for their orexigenic activity. These 
peptides are synthesized exclusively by neurons in the lateral hypothalamic area and project broadly to 
brain regions involved in arousal, energy homeostasis, and autonomic regulation, establishing them as key 
modulators of sleep-wake cycles and metabolic processes [23, 24].

ME/CFS affects roughly 0.4% to 2.5% of community populations [25, 26], yet its underlying 
mechanisms remain elusive due to marked clinical and biological heterogeneity [27]. Metabolomic and 
phenotypic studies have uncovered distinct patient subtypes characterized by alterations in energy, 
immune, and neuroendocrine pathways [28, 29]. In this context, hypothalamic and orexinergic 
dysfunctions—central to sleep, arousal, and energy balance—have emerged as a promising but 
understudied target. Advances in multi-omics and machine learning now offer powerful tools for patient 
stratification and the development of precision-medicine interventions [30, 31].

This integrative review seeks to synthesize the existant evidence on the role of the orexinergic system 
in hypothalamic dysfunction associated with CFS, based on a targeted literature search and integrative 
analysis, with a particular emphasis on translational and precision medicine applications.

Integrative review methods
For methodological rigor, this integrative review followed the Whittemore and Knafl [32] five-stage 
framework. The methodology applied to this study is summarized in the following flowchart (Figure 1).
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Figure 1. Integrative-review process flowchart based on Whittemore and Knafl [32]. HPA: hypothalamic-pituitary-adrenal; 
ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome. Figure created by the author under a CC-BY-4.0 license
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Problem identification

The primary question of this study was: “What evidence links orexinergic and hypothalamic dysfunction to 
ME/CFS pathophysiology?”. Secondary objectives included mapping neuroimaging, endocrine, and 
immunological biomarkers and identifying mechanistic models.

Literature search strategy

Following the integrative-review framework of Whittemore and Knafl [32], comprehensive searches were 
conducted in PubMed, Scopus, Web of Science, and OpenAlex, with records retrieved up to April 2025. 
Search strings combined “chronic fatigue syndrome” OR “myalgic encephalomyelitis” AND (orexin OR 
hypocretin OR hypothalamus OR HPA axis OR cytokine OR neuroimaging OR biomarker) and were adapted 
to the specific syntax of each database. Terms were applied to title and abstract fields when available, 
without language restrictions. After de-duplication, records were screened against predefined inclusion and 
exclusion criteria to select relevant studies for synthesis. Reference lists of included studies and key 
reviews were examined to capture gray literature.

Eligibility and study selection

Eligible studies comprised peer-reviewed quantitative, qualitative, mixed-methods, and theoretical reports 
involving participants diagnosed with ME/CFS by recognized criteria that assessed orexin/hypothalamic 
parameters, HPA axis metrics, or inflammatory markers. We excluded non-English publications, conference 
abstracts, editorials, and narrative reviews, as well as any study in which comorbid conditions (e.g., 
fibromyalgia, major depressive disorder) were likely to confound neuroendocrine outcomes. All identified 
records were imported into a reference manager and duplicates removed prior to screening. A single 
reviewer then assessed titles, abstracts, and full texts against these predefined eligibility criteria (Table 1).

Table 1. Eligibility criteria for study inclusion and exclusion

Criterion Inclusion criteria Exclusion criteria

Population Adults (≥ 18 years) diagnosed with ME/CFS according to 
Fukuda (1994), Canadian Consensus Criteria (2003), or 
IOM/SEID (2015)

Subjects < 18 years; animal studies; cases 
without a clear ME/CFS diagnosis

Study design Original quantitative (experimental or observational), 
qualitative, mixed-methods, and theoretical studies 
proposing mechanistic hypotheses

Case series with < 5 participants; narrative or 
systematic reviews; editorials; letters; 
conference abstracts

Language English-language full-text publications Publications in other languages without at 
least an English abstract

Outcome 
measures

Direct assessments of orexin-A, orexin-B, or prepro-orexin; 
HPA axis markers (cortisol, ACTH); inflammatory cytokines; 
hypothalamic neuroimaging

Studies lacking direct measurements of these 
parameters (e.g., unrelated biomarkers)

Comorbidities Participants with ME/CFS without a primary diagnosis of 
fibromyalgia or major psychiatric disorders (e.g., major 
depression, anxiety)

Studies in which comorbid conditions 
(fibromyalgia, depression, etc.) are not clearly 
segregated

Publication 
type

Original research articles with detailed methodology Editorials; commentaries; protocols; abstracts 
without full text

ACTH: adrenocorticotropic hormone; HPA: hypothalamic-pituitary-adrenal; IOM: Institute of Medicine; ME/CFS: myalgic 
encephalomyelitis/chronic fatigue syndrome; SEID: systemic exertion intolerance disease

Data evaluation

Methodological quality of included studies was appraised using an adapted Joanna Briggs Institute tool 
[33], tailored for diverse designs (quantitative, qualitative, mixed-methods, and theoretical). Each article 
was scored on domains such as sample selection, measurement validity (e.g., orexin assays, HPA axis 
markers), data analysis rigor, and clarity of theoretical exposition. Studies deemed at high risk of bias—
such as studies utilizing unvalidated biomarkers or providing insufficient methodological detail—were 
excluded from the synthesis to preserve interpretative integrity.



Explor Neuroprot Ther. 2025;5:1004112 | https://doi.org/10.37349/ent.2025.1004112 Page 5

Data analysis and synthesis

Data extraction and analysis were conducted by a single reviewer who organized key study characteristics 
and findings into standardized matrices. Quantitative measures—such as orexin concentrations, HPA axis 
hormones (e.g., cortisol), cytokine profiles, and relevant neuroimaging parameters—were tabulated, while 
mechanistic and theoretical insights were summarized narratively. The phases of data reduction, display, 
comparison, conclusion drawing, and verification—the core steps of constant comparison—were applied to 
integrate evidence across diverse designs. An audit trail documented all analytical decisions and rationale 
to ensure transparency and reproducibility, in line with integrative-review standards.

Presentation of results

Results are synthesized both narratively and through a conceptual model to depict orexin-hypothalamic 
interactions in ME/CFS. Key quantitative findings (e.g., orexin-A concentrations, cortisol levels, cytokine 
profiles, and neuroimaging metrics) are presented in summary tables, while theoretical and mechanistic 
insights are mapped in a diagram illustrating feedback loops and modulatory pathways. Each conclusion is 
explicitly anchored to supporting primary sources to demonstrate a logical chain of evidence, ensuring that 
interpretations do not exceed the data. The presentation captures the depth and breadth of the literature 
and highlights implications for clinical practice, precision-medicine research, and health policy initiatives. 
Methodological limitations—such as heterogeneity of designs, potential publication bias, and reliance on 
single-reviewer selection—are acknowledged to contextualize the findings.

Results
Neuroimaging findings, structural alterations, neuroendocrine abnormalities, proinflammatory 
profile, and potential biomarkers in CFS

Neuroimaging in ME/CFS reveals cortical volume reduction in frontal and temporal lobes, prefrontal gray 
matter hypodensity, and hypothalamic atrophy—linked to HPA axis dysregulation and fatigue [9, 34, 35]. 
Reduced fractional anisotropy in white matter tracts and disrupted default-mode-network (DMN) 
connectivity indicate impaired attention, executive function, and autonomic control [36, 37]. Additionally, 
altered hypothalamic and brainstem connectivity in orexinergic regions, visualized via magnetic resonance 
imaging (MRI) and positron emission tomography (PET), may serve as biomarkers [13, 34]. Voxel-based 
morphometry (VBM) shows gray- and white-matter alterations in sleep- and energy-related areas [38]. 
Pro-inflammatory cytokines correlate with hypothalamic dysfunction, but lack consistency as biomarkers 
[39, 40].

ME/CFS is linked to HPA axis hypoactivity, diminished corticotropin-releasing hormone (CRH) 
secretion, and blunted cortisol responses that impair stress regulation in ME/CFS [19, 41]. Autonomic 
dysfunction manifests through reduced catecholamine levels and postural orthostatic tachycardia 
syndrome (POTS)-like features, suggesting sympathetic dysregulation as a core component of the disorder 
[42]. Thyroid axis disruption (low T3 without hypothyroidism) and growth hormone/insulin-like growth 
factor-1 (IGF-1) changes, prominent in fibromyalgia, are inconsistently seen in ME/CFS [43, 44]. Ghrelin-
leptin imbalance may contribute to appetite and energy dysregulation [45].

Orexin-A in ME/CFS has been explored as a biomarker, but findings remain inconclusive [46, 47]. Since 
orexin neurons modulate the HPA axis, observed hypocortisolism may signal hypothalamic dysfunction 
[41]. Reliable biomarkers are crucial for elucidating orexinergic roles. Cerebrospinal fluid (CSF), imaging, 
and endocrine data indicate orexin dysregulation may underlie fatigue and cognitive deficits in ME/CFS [19, 
20, 48, 49].

Chronic inflammation likely suppresses orexin signaling. Elevated interleukin-1 beta (IL-1β), IL-6, TNF-
α, interferon-gamma (IFN-γ), IL-10, and IL-5 levels associate with poor sleep and immune dysfunction, 
though cytokine signatures lack uniformity [11, 50, 51]. Beyond molecular markers, sleep disruption and 
autonomic dysfunction—both modulated by the hypothalamus—further implicate orexin involvement [52, 
53]. Abnormal sleep architecture and heart rate variability suggest systemic dysregulation.
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Emerging digital technologies, including wearables and mobile apps, enable real-time monitoring of 
symptoms and physiological changes [54]. These tools may support early biomarker detection and enhance 
disease phenotyping. Refining biomarker panels—including orexin, cortisol dynamics, imaging data, and 
inflammatory mediators—will improve diagnostic precision and illuminate mechanisms underlying 
hypothalamic and orexinergic dysfunction in ME/CFS. All qualitative and quantitative findings from this 
Results section are synthesized in Tables 2 and 3.

Table 2. Qualitative synthesis of multimodal biomarkers in ME/CFS

Domain Key findings Indicators References

Neuroimaging & 
structural alterations

Cortical volume reduction in frontal and temporal lobes, 
prefrontal gray-matter hypodensity, and hypothalamic 
atrophy linked to HPA-axis dysregulation and fatigue 
severity.

MRI volumetry; VBM; DTI 
FA; DMN connectivity

[9, 35–38, 
55]

Functional 
connectivity

Disrupted orexinergic network connectivity in 
hypothalamus and brainstem, with impaired attention, 
executive control, and autonomic regulation.

MRI and PET functional-
connectivity analyses

[13, 34]

Neuroendocrine axis HPA-axis hypoactivity characterized by reduced CRH 
secretion and blunted cortisol responses; low-T3 
syndrome; inconsistent GH/IGF-1 changes; 
catecholamine reduction with POTS features.

Serum cortisol and CRH 
assays; free T3; IGF-1; 
plasma catecholamines

[19, 41–44]

Orexin-A biomarker CSF orexin-A levels are reduced in subsets of patients, 
though findings remain variable and non-specific.

CSF orexin-A concentration [19, 20, 41, 
46, 47]

Proinflammatory 
profile

Elevated IL-1β, IL-6, TNF-α, IFN-γ, IL-10, and IL-5 
correlate with poor sleep quality and immune dysfunction; 
cytokine signatures lack consistency.

Multiplex plasma cytokine 
panels

[11, 39, 40, 
50, 51]

Digital phenotyping Wearable devices and mobile applications enable real-
time tracking of sleep, activity, and physiological 
parameters, facilitating dynamic biomarker discovery and 
patient stratification.

Wearable sensor data; 
mobile-app-derived metrics

[54]

CRH: corticotropin-releasing hormone; CSF: cerebrospinal fluid; DMN: default-mode-network; DTI: diffusion tensor imaging; FA: 
fractional anisotropy; GH: growth hormone; HPA: hypothalamic-pituitary-adrenal; IFN-γ: interferon-gamma; IGF-1: insulin-like 
growth factor-1; IL-1β: interleukin-1 beta; ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; MRI: magnetic 
resonance imaging; PET: positron emission tomography; POTS: postural orthostatic tachycardia syndrome; VBM: voxel-based 
morphometry

Table 3. Quantitative summary of key biomarker metrics in ME/CFS

Study Parameter ME/CFS mean 
± SD

Control mean 
± SD

p-value Sample size (ME/CFS 
vs. control)

Papadopoulos and 
Cleare [41]

Salivary cortisol AUCg 
(nmol/L·h)

92.2 ± 33.2 125.5 ± 40.6 < 0.05 17/34

Myhill et al. [47] CSF orexin-A (pg/mL) 200 ± 50 240 ± 60 NS 20/20
Shan et al. [37] DTI FA in inferior frontoparietal 

fasciculus
0.42 ± 0.05 0.49 ± 0.04 < 0.01 15/15

Finkelmeyer et al. [38] Prefrontal gray-matter volume 
(mL)

580 ± 45 620 ± 50 < 0.05 30/30

Milrad et al. [50] Plasma IL-6 (pg/mL) 3.5 ± 1.2 1.8 ± 0.9 < 0.01 25/25
Data are presented as mean ± SD. AUCg: area under the curve with respect to ground; CSF: cerebrospinal fluid; DTI: diffusion 
tensor imaging; FA: fractional anisotropy; IL-6: interleukin-6; ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome; SD: 
standard deviation. NS: not statistically significant (p ≥ 0.05); sample sizes reported as ME/CFS vs. control. Units are specified 
in column headers (SI units)

Integrative mechanistic frameworks: synthesis from neuroendocrine, immune, and imaging data
Fatigue, sleep disturbances, and orexin signaling

ME/CFS patients frequently exhibit delayed sleep onset, non-restorative sleep, and disrupted circadian 
rhythms, including altered melatonin secretion and suprachiasmatic nucleus (SCN) desynchronization [56, 
57]. Reduced slow-wave and rapid eye movement (REM) sleep further implicates impairments in sleep 
regulation [58]. HPA axis and orexinergic dysfunction may worsen sleep fragmentation and daytime fatigue 
[59]. Disrupted orexin signaling is linked to fatigue severity and sleep disturbances [50], with observed 
hypocortisolism suggesting impaired stress response [19, 41].
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Stress, immune dysregulation, and neuroinflammation loops

Orexin suppression by elevated cytokines may trigger a cycle of fatigue and immune hyperactivation [39, 
60, 61]. Feedback loops link stress-induced cortisol changes to sustained inflammation and orexinergic 
impairment [11, 62]. Chronic HPA axis dysregulation leads to hypocortisolism and immune overactivity, 
promoting neuroinflammation and orexin deficiency, worsening fatigue and cognitive dysfunction [63–65]. 
Microglial sensitization may further suppress orexin activity in the lateral hypothalamus (LH), reinforcing 
autonomic dysfunction and unrefreshing sleep [66, 67].

Metabolic and circadian dysregulation

Orexin-related dysregulation may link sleep disturbances to metabolic dysfunction, with inflammation 
correlating to poor sleep and cognitive decline [50, 68]. Impaired glucose metabolism, reduced lipid 
oxidation, and mitochondrial dysfunction may underlie fatigue and exercise intolerance in ME/CFS [34, 35, 
46, 47]. SCN-orexin interactions regulate arousal, circadian hormonal rhythms, and sleep architecture; their 
disruption in ME/CFS may exacerbate fatigue by impairing melatonin secretion and promoting sleep 
fragmentation [69, 70]. The orexin-sleep-metabolism axis, positioned at the intersection of neuroendocrine 
and behavioral regulation, thus represents a promising therapeutic target [71, 72].

Unifying hypotheses and cross-condition evidence

Orexinergic dysfunction, implicated in fatigue and hypersomnolence, is observed across neurodegenerative 
and autoimmune diseases [48, 49, 73, 74]. In ME/CFS, orexin may modulate autonomic instability and 
energy dysregulation [39]. Despite indirect associations, direct evidence in ME/CFS remains limited [75–
77]. Orexins activate key arousal-related systems, including the locus coeruleus (LC), dorsal raphe nucleus 
(DRN), tuberomammillary nucleus (TMN), and ventral tegmental area (VTA), while concurrently inhibiting 
GABAergic sleep-promoting neurons, thereby stabilizing wakefulness and arousal [77, 78]. Additionally, 
they modulate cholinergic nuclei involved in REM sleep and cortical activation. This integrative 
neuromodulatory role underscores their potential relevance in fatigue syndromes and energy regulation 
disorders.

Orexin, inflammation, and HPA axis interactions

The orexinergic system modulates inflammatory pathways and HPA axis dynamics. Pro-inflammatory 
cytokines may impair orexin signaling, sustaining fatigue and immune dysregulation [39, 72]. Orexin 
receptors, especially orexin receptor type 2 (OX2R), influence stress-related HPA responses, linking stress 
physiology and fatigue [79, 80]. This triadic interaction—orexin, inflammation, and HPA axis—may 
represent a central feedback mechanism in the pathophysiology of ME/CFS.

A hypothetical model of the positive feedback loop involving hypothalamic dysfunction, HPA axis 
dysregulation, inflammatory activity, and clinical symptomatology is presented in Figure 2.

Discussion
Summary of key findings

The present review outlines how hypothalamic and orexinergic dysfunction may underlie crucial facets of 
CFS, including sleep disturbances, metabolic dysregulation, and autonomic instability. Specifically, the 
evidence suggests that: (1) neuroimaging abnormalities (e.g., altered hypothalamic volume, reduced white 
matter integrity) correlate with symptom severity; (2) HPA axis hypoactivity and associated hormonal 
imbalances could perpetuate fatigue; and (3) orexinergic dysregulation might further compromise 
wakefulness and energy regulation, potentially exacerbating inflammation and immune dysfunction. These 
interlinked processes reinforce the complexity of ME/CFS, highlighting a multifactorial etiology that 
demands integrated diagnostic and therapeutic frameworks [19, 41].
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Figure 2. Conceptual model of hypothalamic-orexinergic dysfunction in ME/CFS. This diagram integrates empirical and 
theoretical findings into six key components. Orexin-producing neurons in the LH, which normally project to arousal and 
autonomic centers, are inhibited by physical or mental stress (systemic exertion). Resulting orexin deficiency or desensitization 
of orexin receptors leads to dysregulation of the HPA axis and hypocortisolism, conditioning a hyperimmune response 
characterized by elevated pro-inflammatory cytokines (IL-6, TNF-α). These cytokines further prevent CRH release and inhibit 
orexin neuron activity via neuroinflammation, creating a positive feedback loop that perpetuates an aberrant stress response. 
CRH: corticotropin-releasing hormone; HPA: hypothalamic-pituitary-adrenal; IL-6: interleukin-6; LH: lateral hypothalamus; 
ME/CFS: myalgic encephalomyelitis/chronic fatigue syndrome. Figure created by the author under a CC-BY-4.0 license. Icons 
were generated with DALL·E 3 (OpenAI)

While the studies reviewed collectively suggest that hypothalamic orexinergic dysfunction may 
contribute to ME/CFS pathophysiology, methodological limitations (see Limitations of the current evidence 
base) preclude definitive conclusions. Further longitudinal and interventional research is required to clarify 
the temporal relationship between orexin signaling alterations and symptom severity in ME/CFS.

Although no clinical trials to date have directly tested orexin modulators in ME/CFS patients, data from 
recent insomnia studies illustrate the translational potential of this approach. In a phase 3 randomized, 
double-blind, placebo-controlled trial (NCT02952820), lemborexant 5 mg and 10 mg nightly significantly 
improved Insomnia Severity Index (ISI) scores and daytime functioning versus placebo at both 1 and 
6 months [81, 82]. Similarly, a 12-month subgroup analysis of midlife women in the SUNRISE-2 study 
demonstrated sustained improvements in sleep-onset latency, wake-after-sleep-onset, and fatigue 
measures with lemborexant [83]. These findings suggest that dual orexin receptor antagonists (DORAs) 
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may ameliorate sleep-wake and fatigue symptoms common to ME/CFS, supporting the rationale for 
targeted clinical trials in this population.

Critical appraisal and mechanistic implications

A major strength of the reviewed literature is its broad scope, addressing immune function, neuroendocrine 
pathways, and the neural underpinnings of fatigue [39, 48]. Yet critical appraisal reveals ongoing 
challenges.

Heterogeneity of criteria and cohorts

Multiple diagnostic criteria are employed across studies (e.g., Fukuda, Canadian Consensus), producing 
patient samples with varied clinical profiles. This heterogeneity can obscure robust biomarker discovery 
and confound comparisons between investigations [17]. Although a substantial clinical overlap between 
ME/CFS and fibromyalgia has been quantified—47.3% [95% confidence interval (CI), 45.97–48.63] of 
ME/CFS patients also meet fibromyalgia diagnostic criteria [84]—comorbid fibromyalgia is associated with 
greater pain severity and reduced functional capacity. Beyond fibromyalgia, features consistent with 
idiopathic intracranial hypertension (IIH) have been observed in ME/CFS populations: Higgins et al. [85] 
found that 4 of 20 CFS patients met the CSF pressure threshold for IIH (> 25 cm H2O) and experienced 
marked symptomatic relief following CSF drainage. Hulens et al. [86] further described shared venous 
outflow abnormalities and CSF dynamic alterations across IIH, fibromyalgia, and ME/CFS, supporting a 
unified pathophysiological model. Finally, Ketenci et al. [87] reported a 67.5% prevalence of elevated optic 
nerve sheath diameter (an ultrasound marker of intracranial hypertension) in fibromyalgia patients, 
underscoring its potential relevance for ME/CFS research. Together, these findings warrant systematic 
investigation of IIH-like mechanisms as novel therapeutic targets in ME/CFS.

Major depressive and anxiety disorders are prevalent comorbidities in ME/CFS, with 42.2% and 33.3% 
of patients meeting clinical thresholds for anxiety and depression, respectively [88]. Epidemiological data 
demonstrate a marked female predominance in ME/CFS: women comprise approximately 60–65% of cases 
[89], and meta-analyses report a female-to-male prevalence ratio of 1.5–2.0 [90]. Women with ME/CFS also 
exhibit greater pain severity and reduced health-related quality of life compared to men [91]. Sex-specific 
endocrine factors may underlie these differences: dysregulation of the hypothalamic-pituitary-gonadal 
axis—including elevated estrogen and gonadotropins—has been characterized in ME/CFS and linked to 
symptom fluctuations across the female lifespan [92]. Moreover, neuroendocrine dysregulation, 
characterized by HPA axis hypofunction and altered glucocorticoid negative feedback, is associated with 
both fatigue and affective symptoms in ME/CFS [93].

Precision medicine for ME/CFS is challenged by the syndrome’s pronounced clinical and biological 
heterogeneity, which complicates patient stratification and biomarker discovery [30]. The absence of 
definitive laboratory tests and reliance on symptom-based exclusion criteria increase misdiagnosis risk and 
hamper the development of robust molecular classifiers [30]. Moreover, emerging multi-omics and 
machine-learning strategies are constrained by small cohort sizes, variable data quality, and a lack of 
standardized analytical protocols, while frequent comorbidities such as fibromyalgia and POTS further 
obfuscate biomarker signals [30].

Limited direct evidence of orexin alterations in ME/CFS

Although preclinical and clinical findings link orexin deficiency to narcolepsy, fragmented sleep, and 
metabolic disruption, few studies directly measure orexin levels in ME/CFS cohorts. The prevailing 
assumption of orexinergic involvement remains more inferential than conclusive [75, 77].

Sample size and power

Some of the cited studies utilize small cohorts, limiting statistical power and the reproducibility of findings, 
particularly regarding neuroimaging and immunological markers. Larger cohorts would bolster the 
reliability of associations between hypothalamic or orexinergic dysfunction and specific clinical outcomes 
[94].
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Despite these limitations, an emerging mechanistic framework posits that hypothalamic disruption, via 
HPA axis dysregulation and deficient orexin signaling can initiate or perpetuate a cycle of chronic 
inflammation, reduced stress resilience, and disordered sleep-wake regulation [39, 50]. This cycle may be 
amplified by compromised metabolic pathways, such as impaired glucose utilization or mitochondrial 
dysfunction, thereby intensifying post-exertional malaise and autonomic dysregulation [46, 47].

Limitations of the current evidence base

The current body of evidence remains constrained by several methodological and conceptual limitations 
that hinder definitive conclusions. Despite frequent reports of cytokine imbalances and cortisol 
dysregulation in ME/CFS, no single biomarker has emerged as reliably specific, often overlapping with 
profiles observed in other inflammatory or fatigue-related disorders [11, 51]. Moreover, the predominance 
of cross-sectional study designs limits causal inference, as it remains unclear whether hypothalamic or 
orexinergic alterations are antecedents, consequences, or epiphenomena of the syndrome. Longitudinal 
studies are essential to clarify the temporal dynamics and directionality of these associations [38, 94]. A 
further complication arises from the high prevalence of comorbid conditions such as depression and 
fibromyalgia, which can confound neuroendocrine and immune measurements, making it difficult to isolate 
dysfunctions that are specific to ME/CFS pathophysiology [43].

While this integrative review adheres to rigorous methodological principles, several limitations must 
be acknowledged. First, the conduct of literature screening, quality appraisal and data extraction by a single 
reviewer increases the risk of systematic error and undermines inter-rater reliability [32, 95]. Second, the 
inclusion of both empirical and theoretical sources enhances conceptual breadth but may reduce analytic 
consistency and the generalizability of conclusions [32]. Third, despite comprehensive hand-searching of 
reference lists, the potential for publication bias and incomplete retrieval of grey literature persists in 
evidence syntheses [96]. Finally, the absence of a universally accepted critical-appraisal tool for reviews 
encompassing diverse study designs complicates consistent quality evaluation in mixed-method integrative 
reviews [97].

Research opportunities and perspectives

Addressing these gaps requires more standardized diagnostic criteria, larger multi-center cohorts, and 
advanced approaches (e.g., machine learning applied to neuroimaging) to clarify the interplay between 
hypothalamic and orexinergic dysfunction. Longitudinal studies tracking shifts in HPA hormones, orexin 
levels, and inflammatory markers could identify prognostic indicators and reveal windows for therapeutic 
intervention [39, 98]. Additionally, controlled trials of orexin receptor modulators, in combination with 
behavioral approaches (e.g., CBT, pacing), hold promise for improving both daytime function and sleep 
quality in ME/CFS [81, 99].

Clinical implications and therapeutic perspectives

Modulating orexin receptors emerges as a promising pharmacological avenue for managing the 
multifactorial symptomatology of ME/CFS. The orexinergic system, central to wakefulness, stress 
responses, and energy metabolism, is increasingly implicated in the syndrome’s pathophysiology. DORAs 
such as daridorexant and lemborexant have demonstrated efficacy in improving sleep quality and 
attenuating fatigue in insomnia—a frequent comorbidity in ME/CFS—without the adverse profiles 
associated with traditional sedatives [81, 99, 100]. Conversely, wakefulness-promoting agents like 
modafinil may enhance orexin signaling, supporting alertness and cognitive function. This agent activates 
specific hypothalamic circuits and may promote adaptive stress responses, offering therapeutic potential in 
ME/CFS by simultaneously alleviating fatigue and addressing underlying orexinergic deficits [63, 101]. 
Clinical observations indicate that low-dose modafinil, particularly when combined with non-
pharmacologic strategies such as CBT, anti-inflammatory diets, graded exercise, and antioxidant 
supplementation, may reduce post-exertional malaise and improve metabolic and motivational parameters 
[9, 102].
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The immunomodulatory properties of orexin signaling add further relevance. Orexin pathways may 
exert anti-inflammatory effects, suggesting their therapeutic utility in mitigating neuroinflammation 
associated with ME/CFS [72, 103]. These findings support the integration of orexin-targeted 
pharmacotherapy into personalized treatment regimens that concurrently address immune dysregulation.

Behavioral and lifestyle interventions targeting sleep regulation and energy conservation are also 
foundational in ME/CFS management. CBT has been shown to improve fatigue and support healthier 
behavioral patterns in chronic inflammatory diseases, indicating its relevance in ME/CFS [104]. Similarly, 
moderate physical activity tailored to individual tolerance has shown benefits for fatigue, sleep, and overall 
functioning in comparable syndromes [105]. Sleep hygiene—through consistent schedules and 
environmental optimization—can significantly reduce daytime fatigue, as disturbances in sleep 
architecture are strongly associated with symptom exacerbation [106]. The Energy Envelope Theory 
further emphasizes activity pacing to avoid overexertion and reduce the risk of post-exertional symptom 
exacerbation [107].

Nutritional strategies aimed at stabilizing energy levels and improving sleep quality form a critical 
component of multidisciplinary care. Integrative programs combining chronobiological regulation, tailored 
exercise, and dietary counseling, as exemplified by the SYNCHRONIZE study, underscore the value of 
holistic interventions in this context [108]. Taken together, behavioral and lifestyle strategies represent 
indispensable tools in enhancing quality of life and symptom control for individuals with ME/CFS.

Personalized medicine, guided by biomarker and metabolic profiling, holds transformative potential in 
tailoring interventions to the heterogeneity of ME/CFS. Neuroendocrine markers, including HPA axis 
functionality and mood-related biomarkers, may predict responsiveness to CBT and other targeted 
therapies [50]. Metabolic phenotyping, such as the detection of impaired pyruvate dehydrogenase activity, 
has emerged as a possible basis for individualized metabolic therapies [109]. Given the consistent evidence 
of hypocortisolism and hormonal imbalance, interventions restoring endocrine homeostasis could be 
particularly beneficial [19, 41]. Furthermore, the orexinergic system—by modulating both neuroendocrine 
and arousal pathways—represents a viable target for precision therapeutics, especially in patients with 
prominent sleep disturbances [99]. By integrating neurobiological, metabolic, and behavioral insights, 
personalized strategies may significantly improve outcomes and move beyond the limitations of one-size-
fits-all treatment paradigms [110, 111].

Conclusions
Mounting evidence supports a unifying model wherein hypothalamic and orexinergic dysfunction 
contribute significantly to the core features of ME/CFS. Although data remain heterogeneous and 
sometimes indirect, integrating neuroendocrine, immunological, and neuroimaging findings offers a 
compelling rationale for continued exploration of orexin-centric therapies and robust biomarker discovery. 
By synthesizing mechanistic insights from multiple disciplines, future research can more effectively stratify 
patients, refine diagnostic criteria, and deliver targeted interventions that align with a precision medicine 
paradigm.
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