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Abstract
Polyunsaturated fatty acids (PUFAs) are critical for human health, serving as key components of cellular 
membranes and regulators of various physiological functions. Since the body can endogenously synthesize 
only a small amount of these fatty acids from precursors, adequate dietary intake is essential. This article 
discusses the vital role of omega-3 fatty acids, particularly docosahexaenoic acid (DHA), in fetal brain 
development, with maternal omega-3 intake during pregnancy linked to improved neurodevelopment and 
long-term cognitive outcomes. However, variability in study findings highlights the need for further 
research to clarify DHA’s mechanisms of action. This article explores recent findings indicating that 
insufficient omega-3 levels during pregnancy disrupt key neurodevelopmental processes, particularly 
microglial function, potentially elevating the risk of cognitive impairments and neurodevelopmental 
disorders, highlighting the need for further research to confirm these effects and elucidate underlying 
mechanisms and long-term consequences. Ensuring adequate maternal omega-3 intake is vital for 
supporting healthy brain development and reducing these risks. Additionally, DHA and eicosapentaenoic 
acid (EPA) show promise in treating pediatric depression by modulating the gut-brain axis, reducing 
neuroinflammation, and restoring autonomic nervous system function—mechanisms implicated in 
depression. While omega-3 supplementation holds potential as an adjunctive treatment for pediatric major 
depressive disorder (MDD), further research is necessary to refine dosing strategies and explore underlying 
mechanisms, ultimately advancing neuropsychiatric care.
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Introduction
Fatty acids are essential components of complex lipids, playing crucial roles in metabolism, gene regulation, 
and cellular signaling. Although the human body can endogenously synthesize most fatty acids, it lacks the 
necessary enzymes for the de novo production of omega-3 and omega-6 polyunsaturated fatty acids 
(PUFAs). Therefore, it relies on dietary intake of their essential precursors, α-linolenic acid and linoleic acid, 
which are subsequently metabolized through elongation and desaturation pathways. These PUFAs are 
primarily obtained from sources such as fatty fish and plant oils [1, 2]. Their biosynthesis and metabolism 
are tightly regulated by specific enzymes. Genetic variations in these enzymes can lead to significant 
interindividual and interpopulation differences in PUFA processing, further underscoring the importance of 
adequate dietary intake [3, 4].

PUFAs are structurally integral to cell membranes and are functionally critical for maintaining cellular 
homeostasis. They are classified into two main families based on their precursor molecules: omega-6 
PUFAs, which are derived from cis-linoleic acid (LA, 18:2 omega-6), and omega-3 PUFAs, which originate 
from alpha-linolenic acid (ALA, 18:3 omega-3) [5, 6]. These precursors undergo enzymatic transformations 
to produce bioactive metabolites with diverse physiological roles. For instance, LA is converted into 
gamma-linolenic acid (GLA, 18:3 omega-6) and subsequently metabolized into dihomo-GLA (DGLA, 20:3 
omega-6), which can be further converted into arachidonic acid (AA, 20:4 omega-6), a key precursor of pro-
inflammatory prostaglandins. In contrast, ALA is converted into eicosapentaenoic acid (EPA, 20:5 omega-3) 
and docosahexaenoic acid (DHA, 22:6 omega-3). These metabolites have well-established anti-
inflammatory properties and play a significant role in cardiovascular, metabolic, and neurological health 
[7–9].

Recent studies underscore the therapeutic potential of omega-3 fatty acids, particularly EPA and DHA, 
in treating a wide range of nervous system disorders, including depression, neuropsychiatric conditions, 
and neurodegenerative diseases. These findings highlight the critical importance of dietary intake, 
bioavailability, and the mechanisms of action of these fatty acids in promoting neuronal health [10].

Among the physiological processes influenced by PUFAs, pregnancy represents a particularly critical 
period. Maternal nutrition during gestation plays a pivotal role in fetal growth and development, with long-
lasting implications for the health of both mother and child [11, 12]. Omega-3 fatty acids, especially DHA, 
are particularly important during this time due to their essential role in fetal brain development and 
neurogenesis [13, 14].

The importance of maternal nutrition extends beyond pregnancy into the first three years of life, a 
critical period that encompasses conception through a child’s second birthday [15]. This phase is marked 
by rapid brain growth and structural organization, during which the developing nervous system is highly 
sensitive to external influences, particularly maternal dietary intake [16]. Omega-3 fatty acids, particularly 
DHA, emerge as cornerstone nutrients during this foundational period, underscoring their vital role in 
shaping neurodevelopmental outcomes [17, 18].

This article examines the multifaceted role of omega-3 fatty acids in prenatal development, with a 
particular focus on DHA’s impact on fetal brain growth, long-term cognitive outcomes, and behavioral 
trajectories. It explores the essential functions of PUFAs in human health, highlighting their roles in cellular 
function, inflammation regulation, and neurological development. DHA, a key omega-3 fatty acid, is crucial 
for fetal brain maturation, with maternal intake associated with improved neurodevelopmental outcomes. 
The article underscores the need for further research to optimize DHA supplementation during pregnancy 
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and investigate its therapeutic potential in pediatric neurodevelopmental disorders, including depression. 
Additionally, it emphasizes the importance of personalized nutrition strategies and the role of PUFAs in 
shaping lifelong cognitive and mental health.

Role of omega-3 fatty acids in fetal neurodevelopment
Optimizing maternal and fetal health: the critical role of EPA and DHA monitoring and personalized 
supplementation

EPA and DHA, long-chain omega-3 fatty acids, play pivotal roles in maternal and fetal health during 
pregnancy. These essential fatty acids are crucial for fetal development, maternal well-being, and 
minimizing the risks of adverse pregnancy outcomes, such as preterm birth [19]. Scientific research 
indicates that blood concentrations of EPA and DHA are more accurate indicators of health outcomes than 
dietary intake alone [20], emphasizing the need for precise monitoring techniques.

Factors like bioavailability, dietary interactions, and metabolic variability underscore the necessity of 
personalized supplementation strategies to achieve optimal omega-3 levels in pregnant women [19, 21]. 
Analysis of the works reveals that while dietary intake data is widely available, it does not adequately 
capture interindividual variability in omega-3 absorption, metabolism, and functional impact, making 
blood-based measurements superior metric. Moreover, metabolic differences in fatty acid elongation and 
desaturation enzymes (e.g., FADS1 and FADS2 polymorphisms) significantly affect DHA synthesis from ALA, 
leading to considerable variability in omega-3 status across populations.

These individualized approaches are essential for improving maternal and fetal health outcomes, 
particularly for women facing challenges in meeting the recommended omega-3 intake, such as vegetarians 
and vegans.

The literature highlights key aspects of omega-3 research during pregnancy, including their 
physiological significance and the benefits of blood-based assessments over dietary intake data. It also 
addresses the challenges involved in supplementation and intervention trials (Table 1). Notably, blood-
based measurements such as the Omega-3 Index and HS-Omega-3 Index® demonstrate a strong inverse 
correlation with preterm birth risk, whereas dietary intake data alone exhibits weaker or negligible 
associations [22, 23]. Furthermore, recent meta-analyses suggest that achieving an Omega-3 Index above 
5% could reduce the risk of early preterm birth by nearly 50%, underscoring the need for more targeted 
intervention strategies [24, 25]. The growing body of evidence stresses the importance of refining research 
methodologies and enhancing individualized interventions. For example, bioavailability varies up to 13-fold 
among individuals due to dietary interactions and metabolic differences, necessitating personalized 
supplementation to optimize maternal and fetal health [26, 27]. Additionally, the source of omega-3 intake 
plays a critical role. Phospholipid-bound DHA from krill oil has been shown to have superior absorption 
compared to triglyceride-bound DHA from fish oil, suggesting that formulation choice may be a crucial 
determinant of efficacy. Standardizing measurement techniques and adopting blood-based monitoring will 
facilitate the effective optimization of maternal and fetal health.

Additionally, the significant depletion of maternal DHA stores during pregnancy, particularly in longer 
gestations where fetal erythrocyte DHA levels reach 8–9%. This underscores the importance of ensuring 
adequate maternal DHA intake to support fetal neurodevelopment [31, 32]. Furthermore, vegetarians and 
vegans exhibit lower plasma EPA and DHA levels, demonstrating the critical need for tailored 
supplementation strategies in these populations [36, 37]. Epidemiological studies indicate that low 
maternal DHA levels are associated with increased risks of neurodevelopmental disorders in offspring, such 
as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). This reinforces 
the necessity of sufficient prenatal DHA intake.

Intervention trials face ethical and methodological challenges, particularly due to the necessity of 
maintaining a minimum Omega-3 Index (~2%) for survival [29]. This highlights the difficulty in designing 
placebo-controlled trials, which may explain inconsistencies in omega-3 supplementation research. 
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Table 1. Key insights and considerations in omega-3 supplementation for maternal and fetal health

Section Key insights Evidence/Examples Implications References

Role in 
pregnancy

EPA and DHA levels 
critically influence 
maternal and fetal 
health.

Low blood levels associated with 
preterm births (especially < 34 
weeks).

•

Blood-based measurements (e.g., 
erythrocytes, whole blood, 
plasma) show strong inverse 
correlation with preterm birth risk.

•

Dietary data shows weaker or 
negligible associations.

•

Monitoring blood EPA and 
DHA levels is essential for 
reducing adverse pregnancy 
outcomes.

[22, 23]

Dietary intake vs. 
blood levels

Blood levels are better 
predictors of outcomes 
than dietary intake.

Dietary intake may not reflect 
bioavailability due to variability 
(e.g., fat content of meals 
enhances absorption up to 13-
fold).

•

Obesity further reduces the 
response to omega-3 
supplementation.

•

Blood measurements offer a 
more accurate guide for 
clinical decisions and 
intervention strategies.

[24, 25]

Bioavailability 
factors

Bioavailability varies 
greatly among 
individuals.

Interindividual variation in omega-
3 uptake (up to 13-fold).

•

Dietary interactions can alter 
bioavailability by up to 10-fold.

•

Tailored supplementation is 
required to address individual 
differences in omega-3 
uptake.

[26, 27]

Measurement 
methods

Accurate evaluation of 
omega-3 status relies on 
blood assessments.

Omega-3 Index: Reliable long-
term marker with low biological 
variability.

•

HS-Omega-3 Index®: 
Standardized and validated as the 
gold standard.

•

Short-term indicators (e.g., 
plasma) reflect recent dietary 
changes but show high biological 
variability.

•

Regular blood testing 
provides precise data for 
monitoring and optimizing 
omega-3 status.

[28–30]

Maternal-fetal 
transfer

DHA transfer via the 
placenta supports fetal 
development.

Fetal erythrocyte membranes 
reach DHA levels of 8–9%, 
depleting maternal stores.

•

Longer pregnancies correlate with 
higher fetal DHA levels.

•

Ensuring adequate maternal 
DHA levels is crucial for fetal 
health and development.

[31, 32]

Breast milk 
composition

Maternal DHA status 
directly impacts breast 
milk composition.

Optimal Omega-3 Index (8%) 
corresponds to ~1% EPA and 
DHA in breast milk.

•

Many women fail to meet 
recommended levels (e.g., 
German pregnant women: 
average Omega-3 Index = 6.23).

•

Targeted supplementation 
improves maternal DHA 
status and breast milk 
quality, benefitting infants.

[33–35]

Challenges in 
vegetarian and 
vegan diets

Plasma EPA and DHA 
levels are lower in 
vegetarians and vegans.

These groups face greater 
challenges in meeting 
recommended omega-3 levels.

• Supplementation and 
monitoring are vital for these 
populations.

[36, 37]

Intervention trials 
and challenges

Omega-3 studies face 
unique ethical and 
methodological 
challenges.

Cannot ethically deprive 
participants of omega-3 (minimum 
Omega-3 Index ~2% necessary 
for survival).

•

Baseline variability and 
bioavailability differences 
complicate trial outcomes.

•

Standardized methods and 
tailored interventions 
enhance trial effectiveness 
and clinical relevance.

[29]

Future research 
directions

Addressing 
methodological gaps 
can unlock the full 
potential of EPA and 
DHA.

Studies with standardized blood 
measurements show more 
consistent results.

•

Personalized supplementation 
strategies offer promise, 
especially for vulnerable 
populations like pregnant women.

•

Improved methodologies can 
maximize the health benefits 
of EPA and DHA 
supplementation.

[38, 39]

EPA: eicosapentaenoic acid; DHA: docosahexaenoic acid
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Analysis also reveals that obesity reduces the effectiveness of omega-3 supplementation, further 
emphasizing the importance of blood-based monitoring over dietary intake data to guide clinical decisions. 
Specifically, increased adiposity leads to greater sequestration of DHA in fat tissue, thereby reducing its 
bioavailability for fetal development. Moreover, individuals with metabolic syndrome may exhibit impaired 
omega-3 incorporation into cell membranes, further complicating supplementation strategies.

Impact of PUFA supplementation during pregnancy on perinatal outcomes and cognitive 
development

DHA supplementation during pregnancy has garnered considerable attention due to its potential impact on 
fetal neurodevelopment [33]. As a primary structural component of neural membranes, DHA plays a critical 
role during periods of rapid brain growth, particularly in the third trimester. Numerous studies, including 
randomized controlled trials (RCTs), meta-analyses, and observational research, have investigated DHA’s 
effects on pregnancy outcomes and cognitive development (Table 2) [31, 40, 41]. However, despite the 
extensive research, the evidence on DHA’s influence on cognitive outcomes remains inconclusive, reflecting 
the complexity of its effects. An analysis of the studies presented in Table 2 highlights the nuanced and 
often contradictory findings concerning DHA supplementation during pregnancy, particularly regarding its 
effects on cognitive development.

Table 2. Efficacy of DHA and EPA supplementation during pregnancy: insights from clinical trials, meta-analyses, and 
observational studies

Study/Analysis 
type

Key findings Participants DHA 
dosage

Outcomes Limitations References

DOMINO trial 
(RCT)

Investigated DHA 
(800 mg) + EPA 
(100 mg) 
supplementation. 
Significant reductions in 
preterm births, low birth 
weight, and perinatal 
deaths. Cognitive 
benefits were observed 
in offspring, but no 
reduction in postpartum 
depression.

2,399 
pregnant 
women

800 mg 
DHA + 
100 mg 
EPA

51% reduction in 
preterm births < 34 
weeks, 35% reduction 
in low birth weight, 
mean birth weight 
increased by 68 grams, 
3 perinatal deaths in 
supplementation group 
vs. 12 in placebo, no 
increase in bleeding 
complications.

Primary endpoint 
(postpartum 
depression) not 
met; mixed results 
in cognitive 
development.

[42]

Cochrane 
meta-analysis 
(RCTs)

Analyzed 70 RCTs 
(19,927 participants). 
Found modest effects on 
preterm births and low 
birth weight. No 
significant improvement 
in cognitive development 
or perinatal mortality.

19,927 
participants

Varies 42% reduction in 
preterm births < 34 
weeks, minor reductions 
in low birth weight, and 
neonatal care needs. 
No significant effects on 
perinatal mortality or 
cognitive development.

Limited evidence 
for cognitive 
development 
benefits; variability 
in trial designs 
and results.

[23]

Meta-analyses 
(RCTs)

Reported stronger 
effects, particularly dose-
dependent benefits. 
Stronger reduction in 
preterm births and 
perinatal mortality.

Various 
participants

Varies Stronger reduction in 
preterm births and 
perinatal mortality with 
higher doses of DHA 
and EPA.

Inconsistent 
findings between 
studies; 
insufficient for 
definitive 
conclusions on 
cognitive effects.

[43, 44]

Observational 
studies

Maternal DHA intake 
(especially from fatty 
fish) is linked to 
improved psychomotor 
and cognitive outcomes 
in offspring.

Varies by 
study

Natural 
dietary 
DHA 
sources

Higher DHA levels in 
maternal serum are 
associated with better 
cognitive and 
psychomotor 
development in infants.

Variability in study 
design, timing, 
and confounding 
variables 
(socioeconomic 
status, diet).

[18, 45, 46]

RCT: randomized controlled trial; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid

The DOMINO trial, a large-scale RCT, investigated the effects of DHA (800 mg) + EPA (100 mg) 
supplementation during pregnancy, involving 2,399 pregnant women. This study found significant 
reductions in preterm births (51% reduction), low birth weight (35% reduction), and perinatal deaths, 
alongside a slight increase in mean birth weight (68 grams). However, cognitive benefits in offspring were 
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not consistently observed, and the primary endpoint—reduction in postpartum depression—was not met 
[42]. The findings from the DOMINO trial provide evidence for DHA’s potential to improve pregnancy 
outcomes such as preterm birth and low birth weight. However, the lack of consistent cognitive benefits 
underscores the complexity of the relationship between DHA supplementation and neurodevelopment. This 
highlights that other factors may play a role in influencing cognitive outcomes. Additionally, the trial did not 
observe any significant increase in bleeding complications, suggesting that DHA supplementation at the 
dosages tested is safe with respect to maternal health.

The Cochrane meta-analysis, which synthesized data from 70 RCTs involving 19,927 participants, 
found modest effects of DHA supplementation on preterm births and low birth weight. Specifically, it 
reported a 42% reduction in preterm births before 34 weeks and minor reductions in low birth weight and 
neonatal care needs. However, it noted no significant effects on perinatal mortality or cognitive 
development [23]. This meta-analysis underscores the variability in the outcomes associated with DHA 
supplementation. While the reductions in preterm births and low birth weight are noteworthy, the lack of 
improvement in cognitive development suggests that DHA’s impact may be more prominent in addressing 
pregnancy complications. This indicates that DHA may be more effective in mitigating prenatal risks than in 
enhancing neurodevelopment.

Other meta-analyses indicated dose-dependent benefits, with stronger reductions in preterm births 
and perinatal mortality observed at higher doses of DHA and EPA. However, these studies emphasized the 
inconsistency of findings across different trials, making it difficult to draw definitive conclusions about the 
cognitive benefits of DHA supplementation [43, 44]. This variability further complicates our understanding 
of DHA supplementation’s role in pregnancy outcomes. While higher dosages may lead to more pronounced 
effects on certain outcomes, the cognitive benefits remain unclear, suggesting that the relationship between 
DHA and cognitive development may not be straightforward. The inconsistencies across studies may be 
attributed to differences in study design, sample populations, and the timing of supplementation, all of 
which warrant further exploration.

Observational studies have focused on maternal DHA intake from natural dietary sources, such as fatty 
fish, and have linked higher maternal DHA levels to improved psychomotor and cognitive outcomes in 
offspring. Specifically, higher DHA levels in maternal serum were associated with better cognitive and 
psychomotor development in infants [18, 45, 46]. However, these studies are limited by confounding 
variables such as socioeconomic status, maternal diet, and other lifestyle factors, which complicate the 
interpretation of results. While observational studies provide valuable insights into the potential long-term 
benefits of DHA, they cannot definitively establish causality due to the inherent limitations of their design. 
The relationship between maternal DHA levels and cognitive development is likely influenced by a complex 
array of factors, underscoring the need for more controlled experimental studies.

A thorough and systematic analysis of the studies presented in Table 2 reveals the complexity of DHA 
supplementation’s effects on pregnancy and neurodevelopment. While several studies demonstrate a 
positive impact on pregnancy outcomes, particularly in reducing preterm births and low birth weight, the 
effects on cognitive development are less clear. The inconsistency of findings across trials indicates that 
DHA supplementation may not uniformly benefit all pregnant women or all offspring, particularly in terms 
of cognitive outcomes. Several factors contribute to this variability, including differences in study designs, 
participant characteristics, and the timing and dosage of supplementation.

Clarifying the specific conditions under which different outcomes occur, the practical implications of 
the research conclusions are somewhat limited. While DHA supplementation appears to have a more 
significant impact on certain pregnancy outcomes, such as reducing preterm birth and improving birth 
weight, the evidence for its influence on cognitive development is weaker. This discrepancy suggests that 
the benefits of DHA supplementation may be more pronounced in the context of improving pregnancy 
health rather than neurodevelopment, highlighting the need for more targeted research. Furthermore, the 
effectiveness of DHA supplementation may be influenced by maternal DHA levels at baseline, with women 
who have lower DHA levels potentially benefiting more than those with higher levels.
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The benefits of DHA supplementation for perinatal outcomes are well-established, including reductions 
in the risks of preterm birth, low birth weight, and perinatal mortality (Table 3) [47, 48]. These findings 
underscore DHA’s essential role in supporting both maternal and fetal health. However, its impact on 
cognitive development remains less definitive. Differences in study design, such as variations in DHA 
dosage, supplementation timing, maternal nutritional status, and measurement methods for cognitive 
outcomes, contribute to inconsistent findings [40, 49]. These discrepancies complicate efforts to fully 
understand DHA’s role in neurodevelopment and highlight the need for more nuanced and targeted 
research.

Table 3. Key insights and research directions on DHA supplementation: mechanisms, implications, and future 
perspectives

Topic Key insights Mechanisms Implications Challenges and 
considerations

References

Nonlinear effects 
of DHA

The relationship 
between maternal 
omega-3 LC-PUFA 
levels and fetal 
neurodevelopment 
may follow a 
nonlinear pattern.

Lower DHA may 
support fetal brain 
development while 
excessive DHA may 
lead to oxidative 
stress.

Excessive DHA intake 
can impair neuronal 
function by generating 
ROS.

Animal studies 
show that high DHA 
levels result in 
oxidative damage, 
affecting cellular 
function.

[12, 33, 50]

Tailored strategies 
for maternal intake

Tailored DHA intake 
strategies are critical 
to optimize maternal 
and fetal health.

DHA levels need to be 
adjusted based on 
baseline maternal 
DHA and specific 
needs for preterm 
infants.

Ensures adequate 
DHA intake while 
preventing over-
supplementation, 
avoiding risks 
associated with 
excessive intake.

Customizing DHA 
intake reduces 
risks, but high-dose 
supplementation for 
women with 
sufficient omega-3 
intake could be 
unnecessary and 
risky.

[43, 44, 51, 
52]

Optimizing DHA 
supplementation: 
timing, dosage, 
and population 
considerations

Understanding the 
timing, dosage, and 
population-specific 
needs of DHA during 
pregnancy is 
essential.

Maternal-fetal nutrient 
exchange varies due 
to genetic, nutritional, 
and metabolic factors.

Identifying optimal 
DHA and EPA 
concentrations at 
different gestational 
stages is key for 
neurodevelopment.

Variability in needs 
across populations 
makes it difficult to 
recommend one-
size-fits-all 
supplementation.

[33, 53, 54]

Safety and 
tolerability

Omega-3 
supplementation up 
to 5 g/day of EPA 
and DHA is 
considered safe for 
pregnant and 
lactating women.

Clinical trials show 
doses up to 2.7 g/day 
of DHA are well 
tolerated with minimal 
adverse effects.

High doses may 
increase bleeding 
risks, but these are 
rare and typically not 
clinically significant.

Despite potential 
bleeding risks, 
higher doses of 
DHA during 
pregnancy may 
have limited clinical 
significance.

[22, 43, 55, 
56]

Limited evidence 
on lactation

Research on DHA 
supplementation 
during lactation is 
limited. Effects on 
child cognitive 
outcomes remain 
inconclusive.

Evidence linking DHA 
supplementation 
during lactation to 
improved 
neurodevelopmental 
outcomes is scarce.

The role of DHA 
supplementation 
during lactation is 
unclear and needs 
more research.

Variability in study 
design, sample 
sizes, and 
outcomes makes it 
difficult to assess 
the impact of DHA 
during lactation.

[18, 57, 58]

Population-
specific 
interventions

DHA 
supplementation 
benefits vary based 
on baseline omega-3 
status. Populations 
with low DHA levels 
may benefit more.

Lower doses of DHA 
(300–400 mg/day) 
may be as effective as 
higher doses (e.g., 
1,440 mg/day) in 
supporting 
neurodevelopment.

Personalized 
nutritional strategies 
based on baseline 
omega-3 levels could 
optimize 
neurodevelopmental 
outcomes.

Individual 
responses to DHA 
supplementation 
may vary 
significantly, 
requiring 
personalized 
approaches to 
intervention.

[40, 59, 60]

Cognitive and 
behavioral 
outcomes

DHA 
supplementation may 
have lasting cognitive 
and behavioral 
effects, such as 
attention regulation 
and academic 
performance in 
childhood.

DHA supports brain 
development, 
influencing attention, 
academic 
performance, and 
social behavior.

Long-term studies are 
necessary to fully 
understand DHA’s 
impact on cognitive 
and behavioral 
outcomes.

Findings on long-
term cognitive 
effects of DHA 
supplementation 
are inconsistent, 
and further studies 
are needed to 
clarify these effects.

[40, 61–63]
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Table 3. Key insights and research directions on DHA supplementation: mechanisms, implications, and future 
perspectives (continued)

Topic Key insights Mechanisms Implications Challenges and 
considerations

References

Neural plasticity 
and lifelong 
development

DHA supports neural 
plasticity, 
neurogenesis, and 
synaptic plasticity, 
suggesting long-term 
benefits for brain 
health and cognitive 
development.

DHA enhances neural 
circuits, supporting 
lifelong cognitive and 
behavioral 
development.

Supplementation 
during critical brain 
development periods 
may influence 
cognitive and 
behavioral trajectories.

The full extent of 
DHA’s impact on 
long-term brain 
development 
remains 
understudied, and 
more research is 
needed.

[33, 64–66]

DHA: docosahexaenoic acid; LC-PUFA: long-chain polyunsaturated fatty acids; ROS: reactive oxygen species; EPA: 
eicosapentaenoic acid

The relationship between maternal omega-3 long-chain PUFAs (LC-PUFAs) levels and fetal 
neurodevelopment may follow a nonlinear pattern. While insufficient DHA levels impair fetal brain 
development, excessive DHA intake may generate oxidative stress and impair neuronal function through 
the overproduction of reactive oxygen species (ROS). Animal studies suggest that high DHA levels can lead 
to oxidative damage, thereby affecting cellular function. Recent studies have indicated that excessive DHA 
intake may also influence epigenetic modifications, altering gene expression related to neurodevelopment 
[12, 33, 50].

Tailored DHA intake strategies are essential for optimizing maternal and fetal health. Current evidence 
suggests that DHA levels should be adjusted based on baseline maternal DHA status and the specific needs 
of preterm infants. While ensuring adequate DHA intake is critical, excessive supplementation in women 
with sufficient omega-3 intake may be unnecessary and could pose potential risks. Customizing DHA intake 
can mitigate such risks, but further research is needed to define personalized supplementation guidelines 
based on maternal baseline levels and risk factors to establish safe upper intake limits for different 
populations [43, 44, 51, 52].

The timing, dosage, and population-specific needs of DHA supplementation during pregnancy remain 
critical considerations. Maternal-fetal nutrient exchange is influenced by genetic, nutritional, and metabolic 
factors, making it essential to determine the optimal DHA and EPA concentrations at various gestational 
stages. The heterogeneity in requirements across populations complicates the establishment of universal 
supplementation recommendations. Emerging evidence highlights that genetic polymorphisms affecting 
DHA metabolism may further modulate individual responses to supplementation [33, 53, 54].

Regarding safety, omega-3 supplementation up to 5 g/day of combined EPA and DHA is generally 
considered safe for pregnant and lactating women. Clinical trials indicate that doses up to 2.7 g/day of DHA 
are well tolerated, with minimal adverse effects. Although higher doses may slightly increase bleeding risks, 
these effects are rare and not typically clinically significant. However, recent meta-analyses suggest that 
excessive omega-3 intake might influence immune system development in infants, necessitating further 
investigation [22, 43, 55, 56].

Despite growing interest, research on DHA supplementation during lactation remains limited, and its 
effects on child cognitive outcomes are inconclusive. While it is hypothesized that DHA supplementation 
enhances neurodevelopment via breast milk enrichment, strong evidence supporting this claim is lacking. 
The variability in study design, sample sizes, and cognitive outcome measures further complicates 
interpretation. Some studies suggest that DHA-enriched breast milk may contribute to improved visual 
acuity and early cognitive function, but these findings require validation in larger cohorts [18, 57, 58].

The impact of DHA supplementation appears to be most pronounced in populations with low baseline 
omega-3 levels, where the greatest benefits in neurodevelopment are observed. While higher DHA doses 
(e.g., 1,440 mg/day) have been investigated, lower doses (300–400 mg/day) may be equally effective in 
supporting neurodevelopment. Personalized nutritional strategies based on baseline omega-3 levels could 
optimize neurodevelopmental outcomes. However, individual responses to DHA supplementation vary 
significantly, requiring a tailored approach. Recent research suggests that maternal DHA status during 
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pregnancy might also influence offspring metabolic health, highlighting a potential area for further 
exploration [40, 59, 60].

DHA supplementation may also have lasting cognitive and behavioral effects, including improved 
attention regulation and academic performance in childhood. Through its role in neural circuit formation, 
DHA supports cognitive functions such as attention, memory, and social behavior. However, evidence 
regarding the long-term cognitive effects of DHA supplementation remains inconsistent. Recent findings 
suggest that early DHA exposure may influence stress reactivity and emotional regulation later in life [40, 
61–63].

DHA plays a crucial role in neural plasticity, neurogenesis, and synaptic remodeling, suggesting 
potential lifelong benefits for brain health. By enhancing synaptic connectivity and neuronal function, DHA 
may influence cognitive and behavioral development beyond infancy. However, the long-term impact of 
DHA supplementation during critical neurodevelopmental windows remains insufficiently studied. Recent 
advancements in neuroimaging have provided preliminary evidence linking prenatal DHA exposure to 
structural and functional changes in brain connectivity [33, 64–66].

To clarify these inconsistencies, it is crucial to investigate the mechanisms and implications of DHA 
supplementation during pregnancy. Important areas of exploration include identifying optimal dosing 
strategies, customizing intake recommendations based on maternal health profiles, and evaluating the long-
term safety of DHA supplementation. Research should also focus on filling critical gaps, such as 
understanding the effects of sustained DHA use beyond the perinatal period. These insights are essential for 
refining research methodologies and clinical guidelines.

Beyond neurodevelopment, clinical evidence highlights the therapeutic potential of DHA and EPA 
supplementation in managing neuropsychiatric conditions [67]. Deficiencies in DHA have been closely 
linked to impaired synaptic signaling and mood dysregulation, which are characteristic features of 
disorders such as depression [68, 69]. Supplementation studies have shown significant cognitive and 
emotional benefits, including enhanced memory and executive function in individuals with mild cognitive 
impairment and dementia, as well as improved mood stability in those with depression.

These findings emphasize the dual role of omega-3 fatty acids in both the prevention and treatment of 
neuropsychiatric conditions, reinforcing their importance as essential dietary components for mental 
health [70]. The exploration of these benefits and their underlying mechanisms is addressed in subsequent 
sections.

Despite these promising findings, several challenges remain in establishing definitive 
recommendations for DHA supplementation during pregnancy. A major limitation is the lack of 
standardized methods for measuring omega-3 plasma levels across studies. This inconsistency affects the 
ability to assess adherence to supplementation protocols and evaluate the efficacy of different dosages. 
Additionally, variability in trial outcomes highlights the need for further investigation into maternal 
factors—such as diet, genetics, and environmental influences—that may modulate DHA’s effects.

In addition, understanding the molecular and cellular mechanisms by which DHA supports fetal brain 
development remains a critical area of research. Key neurodevelopmental processes, including 
neurogenesis, synaptogenesis, and myelination, depend on adequate DHA levels, and exploring these 
pathways will provide a solid scientific foundation for DHA supplementation strategies [71, 72]. 
Longitudinal studies are essential for evaluating the lasting effects of prenatal DHA intake on cognitive and 
behavioral outcomes, particularly in areas such as executive function, attention, and sleep patterns. These 
studies will help determine whether the benefits of early DHA supplementation extend into later life stages, 
offering valuable insights into the long-term impacts of maternal DHA intake.

Increasing the representation of diverse populations in research is vital for ensuring the broader 
applicability of findings. Including individuals from varied genetic, socioeconomic, and dietary backgrounds 
will help establish more inclusive dietary recommendations that are relevant across different 
demographics. Another important focus is the development of personalized dietary guidelines. Tailored 
recommendations that consider individual maternal and fetal health factors—such as genetics, pre-existing 
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conditions, and dietary habits—can maximize the benefits of DHA supplementation while minimizing 
potential risks.

Role of omega-3 fatty acids in fetal CNS development during pregnancy

Omega-3 fatty acids, particularly DHA, are crucial for the healthy development of the fetal central nervous 
system (CNS) during pregnancy. DHA is mobilized from maternal adipose tissue and transported across the 
placenta, accumulating in the fetal brain [73]. This accumulation supports brain structure formation and 
function, with significant increases in maternal plasma DHA concentrations occurring throughout 
pregnancy, especially during the second trimester—a critical period of neurodevelopment [32, 33, 73]. 
Given the essential role of DHA in this phase, ensuring adequate maternal DHA levels is vital for optimal 
CNS development.

Research into DHA supplementation during pregnancy has examined its effects on visual, cognitive, 
and motor development in offspring. However, findings remain inconsistent. While some studies suggest 
positive developmental outcomes, others report no significant improvements, indicating that factors such 
as maternal diet, genetics, and environmental influences may modify the effects of DHA supplementation 
[17, 48, 63, 74]. These inconsistencies highlight the need for further research to better understand the role 
of omega-3 fatty acids, particularly DHA, in prenatal development.

During pregnancy, maternal levels of DHA and AA decline as these and other essential fatty acids are 
preferentially transferred to the fetus via the placenta to support fetal neurodevelopment, particularly the 
growth and maturation of the CNS [75]. Maternal-infant DHA equilibrium is thought to be achieved when 
DHA transfer from maternal stores adequately meets fetal neurodevelopmental demands, reflecting an 
optimal DHA status for both mother and newborn [76]. Maintaining higher maternal DHA levels at delivery 
may further support DHA transfer during lactation, which remains critical for postnatal brain development 
[77]. This pattern suggests that fetal brain DHA levels rise rapidly during pregnancy and continue 
accumulating throughout the first year of life, emphasizing the importance of sufficient maternal omega-3 
intake for promoting optimal neurodevelopment and cognitive outcomes in offspring [33, 78, 79]. Prenatal 
DHA supplementation can further influence these outcomes by optimizing maternal omega-3 status and 
enhancing the child’s capacity to convert precursor fatty acids into LC-PUFAs, which are essential for CNS 
development [33, 80–82]. However, many studies fail to account for baseline maternal omega-3 status, 
excluding participants who already take DHA-containing supplements. Health organizations recommend 
regular consumption of DHA-rich foods, such as fish, to ensure sufficient intake. For example, the American 
Academy of Pediatrics advises consuming 1–2 servings of DHA-rich fish per week, and the 2020 Dietary 
Guidelines for Americans recommend 8–12 ounces of seafood weekly, providing 250–400 mg of omega-3 
fatty acids [83, 84].

DHA and EPA are essential for maintaining neuronal membrane integrity, facilitating neurotransmitter 
signaling, and promoting neurodevelopment. Deficiencies in omega-3 fatty acids are associated with 
impaired synaptic function, disrupted neurotransmitter systems, and hindered neurodevelopment, all of 
which are linked to neurodevelopmental and neuropsychiatric conditions, such as depression, and 
dementia [40, 85–88]. Omega-3 fatty acids are especially important during early neurodevelopment, as 
DHA and EPA contribute to the structural and functional integrity of neuronal membranes, promote 
synaptic connectivity, and enhance neurotransmitter efficiency [21, 88, 89].

Maternal omega-3 intake has a significant impact on offspring neurodevelopment, although clinical 
findings vary due to differences in supplementation timing, dosage, and study populations. Standardized 
research methodologies are needed to clarify the relationship between maternal omega-3 intake and 
offspring neurodevelopment [17, 50, 90, 91]. Omega-3 fatty acids also influence behavioral development, 
including sleep regulation and circadian rhythm establishment. DHA supports the maturation of neural 
pathways necessary for organized sleep patterns in infants, with supplementation during pregnancy 
associated with longer gestational periods and improved neurodevelopmental and behavioral outcomes 
[19, 50, 92–94].
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The placenta plays a vital role in supplying essential nutrients, including PUFAs, which are critical for 
fetal brain development. Emerging evidence suggests that maternal PUFA levels during pregnancy can have 
lasting effects on neonatal and childhood outcomes, including fetal growth, respiratory function, adiposity, 
and neurodevelopment [12, 32, 95–97]. Maternal PUFA status has been linked to cognitive function, 
behavioral health, and other neurodevelopmental markers [73, 98]. Additionally, the omega-3 to omega-6 
PUFA ratio in the maternal diet influences emotional and behavioral outcomes in children [99, 100]. A 
lower omega-3 to omega-6 ratio has been associated with an increased risk of emotional issues and autistic 
traits, while higher maternal omega-3 levels correlate with improved cognitive outcomes, such as higher IQ 
scores and enhanced sequential processing abilities [67, 101–103]. These findings suggest that both the 
quantity and balance of omega-3 and omega-6 PUFAs are crucial for fetal brain health.

Mechanisms of PUFA-mediated neurodevelopment: roles of DHA and EPA in fetal brain growth and 
CNS function during pregnancy

The mechanisms through which PUFAs influence neurodevelopment remain partially understood. 
However, certain fatty acids, including DHA, EPA, AA, and adrenic acid, play essential roles in neuronal 
membrane structure, neurogenesis, and myelination [96, 104]. DHA, in particular, is critical for synaptic 
function, axonal growth, and the establishment of neural networks during pregnancy [33, 105]. The second 
half of gestation is marked by rapid brain growth, involving neurogenesis, axonal elongation, dendritic 
differentiation, and synaptogenesis—all of which depend on the availability of omega-3 PUFAs [96, 106, 
107]. Insufficient omega-3 PUFA intake during pregnancy may disrupt these processes, potentially leading 
to reduced brain volume and impaired neurodevelopment [33, 69].

DHA may also regulate the expression of neurotrophic factors, such as brain-derived neurotrophic 
factor (BDNF) and leukemia inhibitory factor (LIF), which are critical for neurogenesis and brain volume 
[64, 96, 108]. The expression of these factors may be influenced by epigenetic mechanisms, including DNA 
methylation [109, 110]. Low maternal omega-3 PUFA levels could impair neurotrophic factor expression, 
negatively impacting neurogenesis and brain development [111, 112]. Moreover, insufficient omega-3 
PUFA intake may alter metabolic pathways, increasing the risk of childhood obesity and lowering HDL 
cholesterol, further affecting brain development [21, 69].

DHA and AA support synaptic connectivity and help maintain membrane fluidity in the brain’s gray 
matter. While these fatty acids can be synthesized endogenously from dietary precursors like ALA and 
linoleic acid, direct dietary sources, such as fatty fish, fish oil, and algae, provide more bioavailable and 
efficient forms [104, 113, 114]. Modern Western diets, characterized by an excessive linoleic acid to ALA 
ratio, tend to elevate AA levels while reducing the availability of DHA. This imbalance disrupts the essential 
equilibrium between omega-3 and omega-6 fatty acid and has been implicated in the pathophysiology of 
various neurodevelopmental disorders, including depression [1, 69, 115]. The homeostasis between 
omega-6 and omega-3 fatty acids is tightly regulated by shared enzymatic pathways—namely Δ6-
desaturase, Δ5-desaturase, and elongase—which convert linoleic acid and ALA into their bioactive 
metabolites, AA and DHA, respectively [116, 117]. However, the disproportionately high intake of linoleic 
acid in Western dietary patterns shifts this enzymatic competition toward omega-6 metabolism, thereby 
promoting the excessive synthesis of AA and limiting the conversion of ALA into DHA. This metabolic shift 
fosters a pro-inflammatory milieu, as AA-derived eicosanoids—such as prostaglandins and leukotrienes—
exert potent pro-inflammatory effects, whereas DHA and other omega-3 metabolites exert anti-
inflammatory and neuroprotective functions [6]. Consequently, the disrupted fatty acid balance may 
contribute to the onset and progression of neurodevelopmental and neuropsychiatric disorders by altering 
neuronal membrane composition, impairing synaptic plasticity, and exacerbating neuroinflammatory 
responses. Addressing these dietary imbalances is therefore critical for reducing the risk associated with 
omega-3 deficiencies and their neurobiological consequences.

In addition to their structural roles, bioactive mediators derived from DHA and AA, such as the 
oxylipins, play a key role in regulating CNS functions. These mediators are produced through enzymatic 
pathways involving cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, 
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modulating inflammation and immune responses [118–120]. These bioactive lipids underscore the 
physiological importance of dietary fatty acids in maintaining CNS homeostasis and supporting 
neurodevelopmental processes.

Research suggests that maternal PUFA levels during pregnancy influence the morphology of the 
offspring’s brain, including brain volume and white matter integrity. Higher maternal omega-3 PUFA levels, 
particularly DHA, have been linked to larger brain volumes and improved white matter microstructure in 
children. These effects are especially evident in gray matter. However, omega-6 PUFAs, particularly long-
chain omega-6 fatty acids, do not appear to exert similar benefits on brain morphology. In fact, certain 
omega-6 fatty acids, such as linoleic acid, may be inversely associated with white matter volume. Despite 
evidence supporting the role of omega-3 PUFAs in brain development, the relationship between maternal 
PUFA status and brain morphology remains complex and requires further exploration.

Maternal omega-3 PUFAs and offspring brain development: unraveling public health implications

Maternal omega-3 PUFAs are essential for optimal fetal brain development. However, significant gaps 
remain in understanding the specific mechanisms driving these effects. Existing research highlights the 
critical role of omega-3 fatty acids, but further studies involving larger and more diverse populations are 
needed to better understand how prenatal omega-3 exposure influences brain morphology and cognitive 
outcomes. Investigating omega-3 levels during key neurodevelopmental windows is essential for assessing 
their cumulative impact on brain health throughout pregnancy.

Understanding the causal relationship between maternal PUFA levels and fetal brain development has 
important public health implications. This knowledge could inform targeted interventions, such as dietary 
recommendations or supplementation programs, aimed at optimizing maternal and fetal health. Such 
strategies could promote healthy brain development, reduce the risk of neurodevelopmental disorders, and 
address long-term concerns like cognitive impairments and mental health disorders later in life.

Identifying the populations most likely to benefit from omega-3 supplementation remains an area of 
significant research gap, particularly when considering factors such as baseline omega-3 levels and dietary 
habits. For instance, data from the National Health and Nutrition Examination Survey (NHANES) reveal that 
while a considerable number of pregnant and lactating women in the U.S. use dietary supplements, a 
relatively small proportion specifically consume DHA or EPA supplements [84, 121, 122]. Furthermore, 
genetic factors, such as variations in fatty acid desaturase genes, can influence omega-3 metabolism [123, 
124], underscoring the need for personalized nutritional approaches. Addressing these gaps is critical for 
optimizing omega-3 supplementation strategies and ensuring that individuals who are most likely to 
benefit receive adequate intake.

The determination of the optimal timing and form of omega-3 supplementation remains 
underexplored. While most studies have compared omega-3 supplements to placebos, alternative methods, 
such as multivitamins, fortified foods, or natural sources like seafood, merit further investigation. 
Additionally, examining the combined effects of omega-3 supplementation during pregnancy and lactation, 
along with identifying critical supplementation windows, could offer valuable insights. To ensure findings 
are broadly applicable, future studies should include diverse populations, encompassing various ethnicities, 
socioeconomic backgrounds, and geographic locations. These considerations are essential for developing 
tailored guidelines to promote public health and reduce the burden of neurodevelopmental disorders.

Implications of maternal omega-3 PUFA deficiency on microglial function, 
hippocampal dysfunction, and cognitive impairment
Sections Maternal omega-3 deficiency and microglial dysregulation in neurodevelopment and The impact 
of omega-3 PUFA deficiency on hippocampal development and cognitive function examine the impact of 
maternal omega-3 PUFA deficiency on neurodevelopment, with a focus on microglial dysfunction. Microglia 
play a critical role in neural circuit formation, synaptic pruning, and brain homeostasis. Omega-3 PUFA 
deficiency during pregnancy may disrupt microglial function, impair neurodevelopment, and increase the 
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risk of cognitive deficits and neurodevelopmental disorders. Notably, studies investigating the role of 
omega-3 PUFAs in supporting microglial function and synaptic pruning have been primarily conducted in 
animal models, limiting their direct applicability to human neurodevelopment. This discussion also 
explores the broader role of omega-3 PUFAs in brain development, particularly during critical periods, and 
their connection to major depressive disorder (MDD) and the gut-brain axis. While research on omega-3 
supplementation for pediatric neurological disorders remains limited, its anti-inflammatory properties and 
neuroprotective potential offer promising avenues for future investigation.

Maternal omega-3 deficiency and microglial dysregulation in neurodevelopment

Neurodevelopment is a complex process orchestrated by cellular and molecular mechanisms that establish 
functional neural circuits, essential for cognitive, behavioral, and motor functions [125, 126]. Microglia play 
a pivotal role in brain homeostasis and neuroinflammation regulation during development [127]. A key 
function of microglia in brain maturation is synaptic pruning—the selective elimination of redundant 
synapses to refine neuronal circuits—which is critical for cognitive and behavioral function maturation 
[128]. Dysregulated synaptic pruning has been linked to neurodevelopmental disorders, including 
depression [129].

Recent research underscores the significant influence of maternal nutrition on offspring 
neurodevelopment, with omega-3 PUFAs, particularly DHA and EPA, being essential for synaptic plasticity, 
neuronal membrane integrity, and anti-inflammatory signaling [87, 89]. Maternal deficiencies in omega-3 
PUFAs during gestation and lactation disrupt neurodevelopment, particularly by impairing microglial 
function. Notably, omega-3 PUFA deficiency is associated with excessive microglial pruning in key brain 
regions such as the hippocampus, a structure critical for learning and memory [73, 130, 131].

Microglia function as both immune sentinels and regulators of neural circuit refinement [132]. During 
neurodevelopment, they facilitate apoptotic cell removal and synaptic pruning, processes crucial for the 
maturation of functional neural circuits [133]. At the cellular level, microglia rely on intricate intracellular 
signaling cascades, such as the PI3K/Akt and MAPK pathways, to modulate phagocytic activity and 
inflammatory responses. These molecular mechanisms are tightly regulated by cytokines, lipid mediators, 
and neurotransmitters, ensuring a balance between synapse elimination and preservation [134, 135]. 
Synaptic pruning is particularly active postnatally, ensuring the precise refinement of brain circuits through 
signaling pathways such as the complement cascade and fractalkine receptor interactions, which selectively 
eliminate redundant synapses while preserving essential neural pathways [136, 137]. Dysregulated 
pruning, whether excessive or insufficient, disrupts neural circuit formation, leading to cognitive deficits 
and behavioral disorders [138].

Maternal omega-3 PUFA deficiency has been shown to drive overactive microglial pruning [130, 131], 
primarily through the 12/15-LOX pathway. This pathway metabolizes AA into bioactive lipid mediators 
such as 12-hydroxyeicosatetraenoic acid (12-HETE), which enhances microglial phagocytosis, resulting in 
excessive synaptic pruning [139, 140]. Omega-3 PUFAs regulate microglial activation through peroxisome 
proliferator-activated receptors (PPARs) and retinoid X receptors, which modulate gene expression related 
to neuroinflammation [141, 142]. These nuclear receptors help ensure that microglia maintain homeostatic 
functions rather than transitioning into a hyperactive state [143]. Furthermore, omega-3 PUFA metabolites 
can counteract the effects of pro-inflammatory lipid mediators derived from AA, thus suppressing excessive 
synaptic pruning [131, 144]. In normal conditions, microglial activity is balanced to maintain synaptic 
connectivity, but omega-3 PUFA deficiency disrupts this balance, shifting toward an overactive pruning 
response [131].

At the molecular level, the upregulation of the LOX pathway alters the lipid microenvironment within 
microglial cells, leading to increased production of pro-inflammatory lipid mediators that exacerbate 
synaptic engulfment [145, 146]. These changes are accompanied by enhanced expression of complement 
proteins, further amplifying the process of synapse elimination. Additionally, maternal omega-3 PUFA 
deficiency disrupts microglial metabolic pathways by altering lipid raft composition in the cell membrane. 
This results in dysfunctional signaling cascades, leading to an overproduction of ROS and increased 
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activation of the NF-κB pathway, which perpetuates neuroinflammation and exacerbates synaptic loss [130, 
147]. Elevated 12-HETE levels promote synaptic spine engulfment, reducing spine density and impairing 
synaptic connectivity and function [131].

The interaction between the 12-HETE pathway and the complement cascade exacerbates excessive 
synaptic pruning. The complement system marks synaptic elements for removal, and its activation 
alongside 12-HETE signaling amplifies microglial pruning activity [138, 148, 149]. On a cellular level, 
microglial engulfment of synaptic elements is driven by upregulated expression of complement receptor 3 
and triggering receptor expressed on myeloid cells 2, both of which become hyperactivated under omega-3 
PUFA-deficient conditions [131, 145, 150]. This heightened activity leads to an imbalance in synaptic 
homeostasis, ultimately compromising neural network stability and connectivity.

This synergistic effect leads to disrupted neural connectivity, highlighting the critical role of maternal 
omega-3 PUFA intake in maintaining microglial function and synaptic integrity during neurodevelopment. 
Ensuring optimal maternal nutrition, particularly sufficient omega-3 PUFA consumption, is essential for 
proper neural circuit development and the prevention of neurodevelopmental disorders.

The impact of omega-3 PUFA deficiency on hippocampal development and cognitive function

The hippocampus, a brain region crucial for learning and memory, is particularly vulnerable to the effects of 
maternal omega-3 PUFA deficiency [151, 152]. Structural impairments, such as reduced dendritic length 
and decreased expression of key synaptic proteins like PSD-95 and cofilin, have been observed in the 
hippocampi of offspring from omega-3 PUFA-deficient mothers [131, 153]. These structural changes are 
accompanied by functional impairments, including deficits in spatial memory and cognitive flexibility, 
which become apparent even at early developmental stages such as weaning. The excessive pruning of 
synaptic elements in the hippocampus contributes to these abnormalities, ultimately leading to long-term 
cognitive deficits [154].

These findings imply maternal omega-3 PUFA deficiency in the pathogenesis of neurodevelopmental 
disorders characterized by hippocampal dysfunction, such as depression [155]. The observed structural 
and functional impairments in the hippocampus highlight the critical importance of maternal nutrition 
during key windows of neurodevelopment, particularly in the context of synaptic remodeling. At a cellular 
level, hippocampal neurons exposed to omega-3 PUFA deficiency exhibit reduced spine density and altered 
expression of synaptic adhesion molecules, impairing synaptic transmission [89, 156]. This results in 
decreased long-term potentiation, the primary mechanism underlying learning and memory. Additionally, 
maternal omega-3 PUFA depletion disrupts hippocampal neurogenesis, leading to reduced neuronal 
proliferation and survival in the dentate gyrus, a crucial region for memory encoding [89, 157].

On a molecular scale, omega-3 PUFA deficiency induces alterations in synaptic protein composition, 
reducing the availability of AMPA and NMDA receptor subunits necessary for excitatory neurotransmission 
[158, 159]. Additionally, deficits in DHA incorporation within neuronal membranes impair membrane 
fluidity, weakening synaptic signal transduction and plasticity [160]. The imbalance between omega-3 and 
omega-6 PUFAs during pregnancy can have lasting effects on offspring brain development, influencing 
cognitive outcomes and increasing the risk of neurodevelopmental disorders [107].

The balance between maternal omega-3 and omega-6 PUFAs is essential for healthy brain 
development, as deficiencies and imbalances can disrupt microglial function, synaptic pruning, and 
hippocampal activity. Addressing these imbalances through targeted nutritional and therapeutic 
interventions holds promise for optimizing neurodevelopment and supporting lifelong brain health.

Maternal omega-3 PUFA deficiency and its impact on neurodevelopment: implications for cognitive 
health and therapeutic strategies

Epidemiological studies have consistently demonstrated a strong link between maternal omega-3 PUFA 
deficiency and impaired neurodevelopment, with lasting cognitive consequences for offspring [69, 80]. 
Reduced levels of DHA and EPA during pregnancy are associated with smaller brain size, altered neural 
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connectivity, and cognitive deficits in the offspring [33]. The omega-3 PUFA index, which measures DHA 
and EPA levels in erythrocytes, has emerged as a promising biomarker for assessing the risk of 
neurodevelopmental impairments. This index could potentially guide public health initiatives aimed at 
improving maternal nutrition and reducing the risk of neurodevelopmental disorders [21, 38, 161].

Supplementing maternal diets with DHA and EPA during pregnancy and lactation holds considerable 
potential for mitigating the effects of omega-3 PUFA deficiency. Such dietary interventions are critical in 
preserving synaptic connectivity and preventing the cognitive impairment associated with excessive 
microglial pruning [60, 105, 162]. Therapeutic approaches targeting neuroinflammatory pathways, such as 
pharmacological inhibitors of the 12/15-LOX pathway or dietary interventions aimed at restoring lipid 
homeostasis [163], represent promising strategies for mitigating the adverse effects of omega-3 PUFA 
deficiency. Additionally, modulating maternal gut microbiota composition through probiotics and 
prebiotics may enhance omega-3 PUFA bioavailability [164], further supporting neurodevelopment. 
Targeting early-life nutritional strategies, particularly for at-risk populations, such as pre-term or low-
birth-weight infants, can significantly improve neurodevelopmental outcomes and reduce the risk of 
neurodevelopmental disorders in these vulnerable groups.

Omega-3 PUFAs in pediatric depression: early-life deficiency, central 
mechanisms, and therapeutic implications
The early stages of life are critical for brain growth and maturation, characterized by an increased demand 
for omega-3 PUFAs, particularly DHA and EPA. Deficiencies in omega-3 PUFAs during this vulnerable 
period can disrupt these vital processes, resulting in long-lasting cognitive and emotional impairments, 
with an elevated risk of pediatric depression [165, 166].

Maternal omega-3 PUFA deficiency also poses a significant risk, as it is linked to a higher likelihood of 
maternal depression, further exacerbating health challenges for both mother and child [167, 168]. Research 
in animal models suggests that maternal immune activation, combined with an omega-3 PUFA-deficient 
diet, can intensify neuroinflammation and cognitive deficits in offspring. This combination may increase the 
likelihood of neurodevelopmental and psychiatric disorders, including depression [169–171]. 
Epidemiological studies further support this association, showing that low maternal seafood consumption 
correlates with poorer neurodevelopmental outcomes and a heightened risk of neuropsychiatric 
conditions, such as depression [172, 173].

DHA deficiency is consistently linked to structural and functional abnormalities in the brain, 
contributing to enduring learning and memory deficits [33, 174]. These deficits are associated with a 
heightened vulnerability to mood disorders, including depression. Ensuring adequate DHA intake during 
early life is crucial for fostering long-term cognitive and emotional health, thereby mitigating the risk of 
pediatric depression.

The potential role of omega-3 PUFA in managing major depressive disorder in children and 
adolescents

MDD is a leading cause of morbidity among children and adolescents, with prevalence rates ranging from 
5% to 12% [175]. Despite the substantial public health burden, current treatment options for pediatric 
MDD are limited, and traditional pharmacological interventions, such as selective serotonin reuptake 
inhibitors (SSRIs), often demonstrate insufficient efficacy [176]. This has prompted growing interest in 
alternative therapeutic approaches, particularly the potential role of omega-3 PUFAs, such as EPA and DHA, 
in alleviating the pathophysiology of depression. Deficiencies in these fatty acids have been observed in 
individuals with depression, leading to investigations into their therapeutic benefits.

Epidemiological studies consistently suggest that higher dietary intake of omega-3 PUFAs is associated 
with lower rates of depression, highlighting a potential protective role for these fatty acids in mental health 
[177, 178]. Clinical trials have confirmed the antidepressant effects of EPA and DHA, not only in MDD but 
also in other mood disorders, such as bipolar disorder [55]. Interestingly, these fatty acids appear to exert a 
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more pronounced effect during depressive episodes compared to manic phases, emphasizing their selective 
benefit for mood regulation. Various mechanisms have been proposed to explain these effects, including 
their impact on the gut-brain axis, their ability to restore autonomic nervous system (ANS) function, and 
their role in reducing systemic inflammation.

One of the key mechanisms through which omega-3 PUFAs influence depression is by modulating the 
ANS. Depression is often associated with vagal withdrawal, which leads to reduced heart rate variability 
(HRV)—a marker of emotional dysregulation and impaired psychological flexibility [171, 179, 180]. 
Research has shown that HRV is significantly lower in adolescents with depression compared to healthy 
controls. Supplementation with omega-3 PUFAs has been demonstrated to increase HRV, suggesting that 
the restoration of autonomic function may help alleviate depressive symptoms. Additionally, omega-3 
PUFAs help prevent autonomic dysregulation, improving HRV, reducing arrhythmic risks, and lowering the 
risk of sudden death [179, 181]. Early-life supplementation with omega-3 PUFAs may be especially critical 
for promoting healthy autonomic function, which could be pivotal for both the prevention and treatment of 
depression in children and adolescents.

Beyond their structural and functional roles, omega-3 PUFAs possess potent anti-inflammatory 
properties that help mitigate neuroinflammation—a key contributor to the pathophysiology of depression 
[182, 183]. By modulating inflammatory markers such as NF-κB, interleukin-6 (IL-6), interleukin-17A (IL-
17A), and tumor necrosis factor-alpha (TNF-α), omega-3 PUFAs support a balanced immune response, 
creating a favorable environment for neurodevelopment and mental health [184–186]. Specifically, EPA 
counters inflammation by reducing the levels of AA, a pro-inflammatory omega-6 PUFA, and inhibiting the 
synthesis of inflammatory mediators such as prostaglandin E2. Animal studies further highlight the 
protective effects of omega-3 PUFAs, showing that maternal deficiencies in these fatty acids exacerbate 
inflammatory pathways, which lead to cognitive deficits in offspring [144, 187, 188].

Research also suggests that omega-3 PUFAs exert their antidepressant effects, at least in part, by 
reducing systemic inflammation. Genetic variations in enzymes involved in PUFA metabolism, such as 
phospholipase A2 and COX-2, can lead to inflammation-driven depression by lowering the levels of anti-
inflammatory omega-3 PUFAs [165, 189]. This phenomenon is observed not only in individuals with MDD 
but also in patients who develop depression as a result of treatments that induce systemic inflammation, 
such as interferon-α therapy [190]. Therefore, omega-3 PUFAs may play a vital role in managing depression 
and promoting brain health by targeting both inflammation and autonomic function, suggesting their 
potential as a complementary treatment option for pediatric MDD.

Influence of omega-3 PUFAs on the gut-brain axis: a central mechanism in depression

Recent research has highlighted the crucial role of omega-3 PUFAs in modulating the gut-brain axis—a 
bidirectional communication network linking the gut microbiota and the CNS. This emerging understanding 
provides a novel framework for how omega-3 PUFAs exert their neuroprotective and therapeutic effects, 
particularly in mood and neurodevelopmental disorders [191, 192]. By serving as key modulators of this 
intricate system, omega-3 PUFAs influence the interplay between dietary components, microbial 
populations, and CNS function [193].

Diet significantly influences the composition and metabolic activity of the gut microbiome, which is 
integral to host health, immune function, and nutrient metabolism. Additionally, the gut microbiome is 
implicated in the development of mental disorders. Different dietary patterns—such as Western, 
Mediterranean, vegetarian, and ketogenic diets—affect gut microbiota composition and function, with 
potential implications for neuropsychiatric and psychological disorders within the emerging field of 
nutritional psychiatry [194].

Early-life supplementation with EPA and DHA has been shown to restore gut microbiota equilibrium 
by promoting beneficial bacterial populations such as Bifidobacterium and Lactobacillus, while also 
enhancing butyrate-producing bacteria known for their anti-inflammatory properties [164, 191]. This 
microbiota balance correlates with reduced neuroinflammation, improved cognitive performance, and 
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enhanced behavioral outcomes, underscoring the therapeutic potential of omega-3 PUFAs in supporting 
brain health via gut-mediated mechanisms.

The human gut microbiome begins to form in utero and matures during the first 2–3 years of life, 
influenced by factors such as mode of delivery, breastfeeding, antibiotics, chemicals, and maternal stress. 
Recent evidence highlights the gut microbiome’s role in early brain development and its link to 
neurodevelopmental disorders such as autism, ADHD, Tourette syndrome, and cerebral palsy. Disruptions 
in the microbiome during early life may contribute to the onset of these disorders and suggest potential 
avenues for future treatments [195].

Omega-3 PUFAs modulate gene expression through their role as ligands for nuclear receptors, 
particularly PPARs [141]. PPAR-γ activation by omega-3 fatty acids upregulates anti-inflammatory genes 
while downregulating pro-inflammatory cytokines such as TNF-α and IL-6 [196]. Additionally, omega-3 
PUFAs influence the NF-κB signaling pathway, a critical regulator of inflammation, by inhibiting its nuclear 
translocation and subsequent transcription of inflammatory mediators [197]. This suppression reduces 
microglial activation and mitigates neuroinflammatory responses that contribute to mood disorders.

Gut dysbiosis—an imbalance in microbial composition—has been strongly implicated in the 
pathophysiology of depression. Preclinical models demonstrate that antibiotic-induced dysbiosis leads to 
depressive-like behaviors, including anhedonia and social withdrawal, which can be alleviated by probiotic 
interventions such as Lactobacillus casei [198]. Similarly, microbiota transplantation from individuals with 
depression into germ-free rodents induces comparable depressive phenotypes, reinforcing the critical role 
of the gut microbiome in mood regulation [199].

The gut microbiota influences brain function through microbial metabolites, including short-chain fatty 
acids (SCFAs) and neurotransmitter precursors [200]. Omega-3 PUFAs enhance SCFA production by 
supporting the growth of butyrate-producing bacteria [164, 191]. Butyrate, in turn, activates histone 
deacetylase (HDAC) inhibition, leading to epigenetic modifications that regulate neuronal plasticity and 
synaptic function [201]. Moreover, omega-3 fatty acids facilitate serotonin biosynthesis by modulating 
tryptophan metabolism [202, 203], shifting its processing away from neurotoxic quinolinic acid production 
and toward serotonin synthesis, thereby exerting antidepressant effects.

SCFAs—metabolites produced by gut microbiota through fiber fermentation—are central to this gut-
brain connection. SCFAs such as butyrate, acetate, and propionate exert significant immunomodulatory 
effects, with butyrate and acetate generally reducing neuroinflammation, while propionate has been linked 
to microglial activation and pro-inflammatory responses [200, 204]. This variability underscores the 
importance of individual microbiome composition and inflammatory state in shaping SCFA-mediated 
effects on depression.

Both human and animal studies corroborate the therapeutic potential of omega-3 PUFAs in modulating 
the gut-brain axis. By reshaping gut microbiota composition and fostering anti-inflammatory conditions, 
omega-3 PUFAs offer a promising adjunct therapy for neurodevelopmental and psychiatric disorders, 
including depression. Beyond their direct anti-inflammatory properties, omega-3 PUFAs enhance synaptic 
plasticity through activation of BDNF signaling [205]. By upregulating BDNF expression via the ERK-CREB 
pathway, omega-3 fatty acids support neuronal survival, dendritic growth, and synaptic connectivity [206, 
207], all of which are crucial for mood stabilization and cognitive function. Their multifaceted role extends 
beyond neuroprotection, positioning them as systemic regulators of mental health. Continued research into 
their influence on gut-brain interactions may pave the way for innovative dietary and pharmacological 
interventions, enhancing resilience and improving outcomes in neuropsychiatric care.

Clinical evidence for omega-3 PUFA supplementation in pediatric MDD

Preclinical studies have highlighted the potential therapeutic role of omega-3 PUFAs in depression; 
however, clinical evidence specifically addressing pediatric MDD remains sparse (Table 4). The following 
studies offer insight into the efficacy of omega-3 PUFA supplementation in this population, with varying 
results influenced by dosage, population characteristics, and study design.
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Table 4. Impact of omega-3 PUFA supplementation on depression in youth: population, dosage, and efficacy insights

Study Population Intervention Duration Key findings References

Pilot study on 
first-time 
DD/MADD

Children/adolescents 
(7–18 years)

Omega-3 PUFAs 
(1,000 mg EPA + 750 mg 
DHA) vs. n-6 PUFAs

Not 
specified

Significant reduction in 
depressive symptoms with 
omega-3 PUFAs; greater 
improvement in DD group vs. 
MADD group.

[171, 208]

Low-dose PUFA 
study in children

Children (6–12 years) Omega-3 PUFAs 
(380–400 mg/day EPA + 
180–200 mg/day DHA) 
vs. placebo

16 weeks Greater improvement in 
depressive symptoms in the 
omega-3 PUFA group 
compared to placebo.

[171, 209, 
210]

Dose-response 
study in 
adolescents

Adolescents with 
treatment-resistant 
MDD

High-dose (16.2 g) vs. 
low-dose (2.4 g) omega-3 
PUFA supplementation

10 weeks 100% remission in high-dose 
group; 40% remission in low-
dose group.

[211–213]

Larger trial in 
medication-free 
adolescents

Adolescents 
(12–19 years)

Omega-3 PUFA 
supplementation vs. 
placebo

Not 
specified

No significant differences: 
authors attributed findings to 
lack of baseline inflammatory 
markers.

[209, 211, 
214, 215]

DD: depressive disorder; MADD: mixed anxiety and depressive disorder; EPA: eicosapentaenoic acid; DHA: docosahexaenoic 
acid; PUFAs: polyunsaturated fatty acids; MDD: major depressive disorder

Evidence consistently indicates that omega-3 PUFA supplementation is effective in reducing depressive 
symptoms, particularly in younger children and adolescents experiencing their first depressive episodes or 
those with treatment-resistant MDD [165, 166, 209, 213, 216, 217]. These findings highlight the therapeutic 
potential of omega-3 PUFAs, with higher doses demonstrating a greater capacity to achieve symptom 
remission compared to lower doses. Such dose-dependent efficacy emphasizes the need for optimal dosing 
to maximize therapeutic outcomes.

Baseline inflammatory profiles may significantly influence treatment response. Adolescents without 
signs of inflammation appear to benefit less from omega-3 PUFA supplementation, suggesting that 
inflammatory biomarkers could play a critical role in identifying patients most likely to respond. 
Incorporating these biomarkers into future studies may enable more personalized and effective treatment 
approaches.

Treatment efficacy varies depending on factors such as age, baseline symptom severity, and the 
presence of comorbid conditions, including mixed anxiety-depressive disorder. Tailored interventions that 
address these individual differences are essential to overcome the heterogeneity within study populations 
and ensure consistent therapeutic success.

Although current evidence supports the potential of omega-3 PUFAs as an adjunctive treatment for 
pediatric MDD, further research is necessary. Large-scale, stratified studies are needed to confirm these 
findings, refine dosing strategies, and explore interactions among omega-3 PUFA metabolism, genetic 
factors, and gut microbiota.

Omega-3 PUFAs hold promise as a complementary treatment for pediatric MDD, particularly for 
subgroups with treatment-resistant conditions or specific inflammatory profiles. However, further in-depth 
exploration is required to optimize supplementation protocols, determine effective dosages, and clarify the 
mechanisms underlying their therapeutic effects to advance pediatric mental health interventions.

Conclusions
The reliability and generalizability of omega-3 fatty acid research are often constrained by small sample 
sizes, which reduce statistical power and increase bias, thereby weakening the strength of conclusions. 
Additionally, methodological inconsistencies in measuring omega-3 levels introduce variability across 
studies, complicating direct comparisons and compromising result reproducibility. The absence of 
standardized measurement protocols further hinders data interpretation, necessitating the adoption of 
uniform analytical techniques and large-scale, well-controlled studies to enhance validity and 
comparability.
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Despite substantial research highlighting the critical role of omega-3 fatty acids in early brain 
development, behavior, and cognitive function, significant knowledge gaps remain. One major limitation 
lies in the incomplete understanding of the biochemical mechanisms governing omega-3 and omega-6 
mobilization in brain tissue, particularly the enzymatic activity of phospholipase A2 (PLA2) isoforms. These 
enzymes, including cytosolic PLA2 (cPLA2), secretory PLA2 (sPLA2), and calcium-independent PLA2 
(iPLA2), play pivotal roles in hydrolyzing membrane phospholipids to release PUFAs, such as AA and DHA. 
Dysregulation of these enzymes has been implicated in neurodevelopmental and neurodegenerative 
disorders, underscoring the need for further research into their regulatory pathways and interactions 
within the brain.

Future research should prioritize standardized intervention methodologies and individualized 
supplementation strategies, particularly for high-risk populations such as pregnant women, individuals 
with metabolic disorders, and those following restrictive diets. Advances in lipidomics and machine 
learning-based predictive modeling may facilitate the precise identification of individuals who would 
benefit most from omega-3 interventions, paving the way for precision nutrition in maternal and fetal 
health. Furthermore, accounting for confounding factors—such as maternal health, lifestyle, and diet—is 
essential, as these variables significantly influence DHA’s neurodevelopmental effects. Longitudinal studies 
tracking maternal nutrient levels and fetal development are critical for elucidating DHA’s full impact. 
However, variability in neurodevelopmental assessments and the underrepresentation of diverse 
populations limit the generalizability of findings. Addressing these challenges through multi-ethnic cohort 
studies and integrating machine learning approaches for neurodevelopmental assessment will enhance the 
reliability of future research [16, 218–220].

A key limitation of existing studies on PUFA supplementation, particularly DHA, is the heterogeneity in 
study designs, sample populations, and assessment methodologies. Genetic variations influencing PUFA 
metabolism, interindividual differences in dietary absorption, and the potential confounding effects of 
broader dietary patterns, socioeconomic disparities, and environmental influences further complicate the 
ability to establish definitive conclusions. Additionally, while observational and epidemiological studies 
provide valuable insights, they cannot establish causality. To strengthen the evidence base for DHA 
supplementation, future research should prioritize RCTs with standardized dosing regimens and long-term 
follow-ups. Moreover, while the therapeutic potential of omega-3 fatty acids is widely recognized, the 
potential risks associated with excessive supplementation warrant further investigation to refine dietary 
recommendations and develop personalized nutrition strategies.

PUFAs, particularly omega-3 and omega-6 fatty acids, are essential components of cellular membranes 
and play crucial roles in neurodevelopment, inflammation, and cardiovascular function. DHA is particularly 
vital during pregnancy and early development, supporting synaptic connectivity, myelination, and 
hippocampal function, all of which influence cognitive and behavioral outcomes. However, omega-3 
deficiencies during critical developmental periods can increase the risk of neurodevelopmental disorders 
and depression. Emerging evidence suggests that omega-3 fatty acids modulate neuroinflammatory 
pathways and the gut-brain axis, highlighting their potential therapeutic role in pediatric depression and 
overall brain health.

Despite their promise, significant gaps remain in our understanding of PUFAs, particularly regarding 
standardization of assessment methodologies and the influence of genetic, dietary, and environmental 
factors. Addressing these challenges requires collaborative, multidisciplinary research efforts integrating 
advanced technologies such as metabolomics and genomics. By refining study methodologies, increasing 
study inclusivity, and establishing evidence-based supplementation guidelines, future research can better 
elucidate the mechanisms underlying PUFA function and optimize their application in neurodevelopmental 
health.
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