Avidity of immunoglobulin G (IgG) is defined as its binding strength to its target antigen. As a consequence of affinity maturation of the IgG response, avidity is maturing as well. Therefore, acute infections are characterized by low-avidity IgG, whereas past infections are usually associated with high-avidity IgG. Avidity maturation is also observed as a consequence of optimal vaccination. Avidity has been shown to play a significant role in protective humoral immunity in many microbial systems. After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation is different compared to other viral infections, as the moderate degree of avidity reached in most cases of infection is similar to that reached after only one vaccination step. In contrast, two vaccination steps lead to a much higher avidity of IgG directed towards viral spike protein S1 (S1) in the majority of vaccinated individuals. Therefore, it seems that two vaccination steps allow for a more extended affinity/avidity maturation than natural infection. The degree of avidity maturation after two vaccination steps is heterogeneous. It can be further enhanced by a third vaccination step. Complete avidity maturation seems to depend on sustained availability of antigen during the maturation process. Variants of concern seem to increase the affinity of their receptor-binding domain (RBD) to angiotensin-converting enzyme-2 (ACE2) and/or to decrease the susceptibility for neutralizing antibodies. Classical neutralization tests do not necessarily reflect the avidity of neutralizing IgG, as they operationally dissect the binding reaction between S1 and IgG from the binding of the S1 to ACE2. This approach fades out critical competition reactions between IgG and ACE for RBD of the S1. Quantitative avidity determination might be an essential tool to define individuals that only possess suboptimal protective immunity after vaccination and therefore might benefit from an additional booster immunization.
Read less.Allogeneic stem cell transplantation is currently the only curative approach for a variety of malignant and non-malignant diseases. In the early transplant era, the intent of this treatment was to apply an intensive myeloablative regimen to eliminate residual malignant cells followed by the hematopoietic rescue of the patients with donor hematopoietic stem cells. However, the focus has shifted over time and allogeneic transplantation is nowadays seen as a cellular therapy in which the donor-derived immune system mounts an anti-infectious and especially an anti-tumor effect in the posttransplant phase. In order to further augment the anti-tumor effect, various approaches have been developed, including the manipulation of the donor-derived immune system in vivo or the adoptive transfer of ex vivo-expanded donor-derived effector cells. Based on their lack of alloreactivity, γδ+ T cells are shifting into the spotlight of research in the context of allogeneic transplantation. Their exploitation with regard to their anti-infectious and anti-tumor properties and their in vivo and ex vivo manipulation will lead to new therapeutic approaches to improve the outcome of patients after allogeneic stem cell transplantation. In this review, the important role of γδ+ T cells in allogeneic matched and mismatched transplantation is summarized and an outlook is discussed on how to best make use of this unique cell population.
Read less.Gamma delta lymphocytes (γδ T) sit at the interface between innate and adaptive immunity. They have the capacity to recognize cancer cells by interaction of their surface receptors with an array of cancer cell surface target antigens. Interactions include the binding of γδ T cell receptors, the ligands for which are diverse and do not involve classical major histocompatibility complex (MHC) molecules. Moreover, a variety of natural killer-like and fragment crystallizable gamma (Fcγ) receptors confer additional cancer reactivity. Given this innate capacity to recognize and kill cancer cells, there appears less rationale for redirecting specific to cancer cell surface antigens through chimeric antigen receptor (CAR) expression. Several groups have however reported research findings that expression of CARs in γδ T cells can confer additional specificity or functionality. Though limited in number, these studies collectively identify the potential of CAR-T engineering to augment and fine tune anti-cancer responses. Together with the lack of graft versus host disease induced by allogeneic γδ T cells, these insights should encourage researchers to explore additional γδ T-CAR refinements for the development of off-the-shelf anti-cancer cell therapies.
Read less.Although a large number of preventative human immunodeficiency virus (HIV) vaccine trials have been carried out during the last 30 years, it is remarkable that an effective HIV vaccine has not yet been developed. Research paradigms correspond to theoretical assumptions and particular strategies that scientists use when they try to solve a particular problem. Many paradigms used successfully in vaccinology were ineffective with HIV. For instance: 1) The structure-based reverse vaccinology approach failed because investigators tried to generate a vaccine starting with the antigenic structure of HIV-envelope (Env) epitopes bound to neutralizing monoclonal antibodies (mAbs) derived from HIV-infected individuals. They assumed that this antigenic structure would also possess the immunogenic capacity of inducing in vaccinees a polyclonal antibody (Ab) response with the same neutralizing capacity as the mAb. 2) The structures observed in epitope-paratope crystallographic complexes result from mutually induced fit between the two partners and do not correspond to the structures present in the free molecules before they had interacted. 3) The affinity-matured neutralizing mAbs obtained from chronically infected individuals did not recognize the germline predecessors of these Abs present in vaccinees. 4) The HIV p17 matrix protein that lines the inner surface of the viral membrane is one of the most disordered proteins identified on our planet and this prevents the induced Abs from binding to the glycosylated HIV gp120 protein. 5) Vaccinologists need to solve so-called inverse problems, for instance, guessing what are the multiple causes that produced an earlier wanted beneficial effect such as the absence of deleterious HIV infection in elite controllers. Since the immune system consists of numerous subsystems that have not yet been elucidated, it is impossible to solve the inverse problems posed by each subsystem. 6) Vaccinology is an empirical science that only sometimes succeeds because we do not understand the complex mechanisms that lead to protective immune responses.
Read less.The aim of this article is to characterize in detail the γδ T lymphocytes from an adult patient with primary cutaneous T-cell lymphoma of γδ subtype (γδ CTCL).
Here this article reports trajectory mapping on high-resolution differentiation trajectories of γδ T lymphocytes digitally extracted from a scRNAseq dataset.
In the patch-to-plaque progression of CTCL, the TCRVγnon9 subset of γδ T cells differentiated from naive T cells (Tn) and central memory T cells (Tcm) to abundant effector memory T cells (Tem) while other cutaneous γδ T and CD8 T cells remained unchanged.
This transcriptomic switch underlies the emergence of a CTCL-like progression of the TCRVγnon9 γδ T subtype and suggests new routes for treating these diseases.
Thymosin alpha 1 (Tα1) is a promising treatment for the improvement of sepsis patients. Until now, its function in reducing acute organ damage of sepsis patients is still unclear. The aim of this study was to determine whether Tα1 can alleviate organ dysfunction in sepsis patients.
This study retrospectively enrolled sepsis patients from a multicenter randomized controlled trial [efficacy of Tα1 for severe sepsis (ETASS)]. The sequential organ failure assessment (SOFA) score on day 0 (initial), day 3, and day 7 was collected. Absolute SOFAday07 was defined as initial SOFA score minus SOFA score on day 7 (initial SOFA–SOFA day7). Delta SOFA score (ΔSOFAday07) was provided by the formula: (initial SOFA–SOFA day7) × 100/initial SOFA, and it was expressed as a percentage. After propensity score matching (1:1 ratio), baseline characteristics were well-balanced between the Tα1 group and placebo group. The primary outcome was evaluated with a comparison of ΔSOFAday07 decline between patients treated with or without Tα1 therapy.
Among 288 enrolled patients, 149 patients received both Tα1 and standard therapy (Tα1 group), and 139 patients received both placebo and standard therapy (placebo group). Compared with the placebo group, the Tα1 group had significantly lower Absolute SOFAday07 [95% confidence interval (CI) 0.8 (0–1.7), P = 0.049]. Among 111 pairs of patients matched by propensity score, the Tα1 group still had lower Absolute SOFAday07 [95% CI 1.0 (0.1–1.9), P = 0.029]. Meanwhile, Tα1 treatment could significantly improve ΔSOFAday07. When the amplitude of ΔSOFAday07 was graded, one third of patients in the Tα1 group had an increase of more than 60%, compared with 22% in the placebo group. Subgroup analysis found that the ΔSOFAday07 improved significantly after Tα1 therapy in sepsis patients with no immunoparalysis at baseline, no complications, and early intervention.
For sepsis patients, Tα1 treatment can alleviate organ dysfunction, and ΔSOFAday07 can be used as an indicator of its therapeutic effect (ClinicalTrials.gov identifier: NCT00711620).
Until now, despite 30 years of intensive work, the RV144 human immunodeficiency virus (HIV) vaccine trial initiated in 2003 remains so far the most protective vaccine prototype of all those tested (32% reduction in the infection rate three years after the vaccination) and the HIV epidemic is still spreading worldwide. In addition, antiretroviral therapy (ART) for people living with HIV is given for life as no other pharmacological intervention has allowed to maintain an undetectable viral load after ART withdrawal. Pr Andrieu and colleagues discovered tolerogenic CD8+T-cells that suppress simian immunodeficiency virus (SIV) specific activation, ensuing SIV reverse transcription suppression and viral replication-defective in Chinese macaques vaccinated by intragastric route with inactivated SIV particles + Lactobacillus rhamnosus. Moreover, in HIV-infected elite controllers with specific genetic features (HLA-1-Bw4-80i and KIR3DL1 genes), Pr Andrieu found out that similar tolerogenic CD8+T-cells suppress in the same manner HIV-specific activation, HIV reverse transcription, and HIV replication. These data justify the development of a tolerogenic vaccine composed of inactivated HIV particles + Lactobacillus rhamnosus that could be used as a preventive or therapeutic vaccine.
Read less.Recent anti-cancer strategies are based on the stimulation of anti-tumor immune reaction, exploiting distinct lymphocyte subsets. Among them, γδ T cells represent optimal anti-cancer candidates, especially in those tissues where they are highly localized, such as the respiratory or gastrointestinal tract. One important challenge has been the identification of stimulating drugs able to induce and maintain γδ T cell-mediated anti-cancer immune response. Amino-bisphosphonates (N-BPs) have been largely employed in anti-cancer clinical trials due to their ability to upregulate the accumulation of pyrophosphates that promote the activation of Vγ9Vδ2 T cells. This activation depends on the butyrophilin A family, which is crucial in contributing to Vγ9Vδ2 T cells stimulation but is not equally expressed in all cancer tissues. Thus, the clinical outcome of such treatments is still a challenge. In this viewpoint, a critical picture of γδ T cells as effective anti-cancer effectors is designed, with a specific focus on the best immune-stimulating therapeutic schemes involving this lymphocyte subset and the tools available to measure their efficacy and presence in tumor tissues. Some pre-clinical models, useful to measure γδ T cell anti-cancer potential and their response to stimulating drugs, therapeutic monoclonal antibodies, or bispecific antibodies are described. Computerized imaging and digital pathology are also proposed as a help in the identification of co-stimulatory molecules and localization of γδ T cell effectors. Finally, two types of novel drug preparation are proposed: nanoparticles loaded with N-BPs and pro-drug formulations that enhance the effectiveness of γδ T lymphocyte stimulation.
Read less.Alzheimer’s disease (AD) is a common neurological disease in the elderly, and the major manifestations are cognitive dysfunction, neuronal loss, and neuropathic lesions in the brain. In the process of AD pathogenesis, the inflammatory response plays an indispensable role. The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome containing NOD, leucine-rich repeat (LRR), and pyran domains is a multi-molecular complex that can detect dangerous signals related to neurological diseases. The assembly of NLRP3 inflammasome promotes the maturation of interleukin-1beta (IL-1β) and IL-18 mediated by caspase-1 in microglia, which leads to neuroinflammation and finally contributes to the occurrence and development of AD. This review aimed to clarify the structure and activating mechanism of NLRP3 inflammasome and its key role in the pathogenesis of AD, summarize the latest findings on the suppression of NLRP3 inflammasome activation for the treatment of AD, as well as indicate that targeting regulation of NLRP3 inflammasome assembly may be a potential strategy for the treatment of AD, providing a theoretical basis for the research of AD.
Read less.The crown-like shaped viruses known as coronaviruses which were first reported in the 1960’s have caused three epidemics in the past two decades namely, coronavirus disease-19 (COVID-19), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). SARS coronavirus 2 (SARS-CoV-2) was first reported in the latter half of December in Wuhan, a city of China, with people affected by deadly pneumonia with unknown etiology. Since then, the world has experienced two phases of virus spread with different symptoms and disease severity. This review embarks on the journey to investigate candidate molecules of this virus which can and are being investigated for various vaccine formulations and to discuss immunity developed against this virus.
Read less.Self-replicating RNA viruses have been commonly used for preventive and therapeutic interventions in the fields of infectious diseases and cancers. Both RNA viruses with single-stranded RNA genomes of positive and negative polarity have been utilized. Expression of viral surface proteins from self-replicating RNA virus vectors has elicited strong immune responses and provided protection against challenges with lethal doses of pathogens in various animal models using recombinant viral particles, RNA replicons, or plasmid-based replicon vectors. Similarly, immunization with self-replicating RNA virus vectors expressing tumor antigens has induced tumor-specific antibody (Ab) responses, inhibited tumor growth, eradicated tumors, and protected immunized animals against tumor challenges. Clinical trials have demonstrated good safety and tolerance of self-replicating RNA viruses. Although the number of clinical trials is low, robust immune responses and protection against challenges with pathogens and tumor cells have been achieved. The Ervebo vaccine against Ebola virus disease has been approved by both the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA).
Read less.Treatment of sepsis currently relies on eliminating the causal pathogen and supportive care, whereas almost no approaches to interfere with the defining event of a “dysregulated host response” are available. This review points to the striking correlation of two phenotypes of sepsis etiopathology with the concept of bipartite response patterns of higher organisms to microbial attacks. According to this concept, the phenotypes of sepsis can be interpreted as either resistance or tolerance responses to infection that got out of hand. This concept might allow focusing sepsis research and related patient studies on key conundrums of current sepsis research: how do resistance responses result in immunopathology and how can tolerance lead to systemic immunosuppression or even immunoparalysis? The heuristic vigor of these questions might inspire experimental efforts and clinical studies and ultimately advance the therapeutic armamentarium for sepsis care.
Read less.Lower respiratory tract infections caused over 4 million deaths per year worldwide, especially in low-income countries. Viral respiratory infections often occur as rapidly spreading seasonal endemic or epidemic, and sometimes due to new respiratory viruses including corona viruses. The first level of host defense against viral infection is based on the innate immune system and intracellular killing mechanisms. The latter is activated by the release of viral DNA or RNA into the cytosol of the infected cells during the initial phase of virus replication. Viral DNA and RNA are recognized by the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon (IFN) genes (STING) sensing pathway, leading to the activation of type-I and -III IFN synthesis, with the aim to limit viral replication. However, the efficacy of the cGAS-STING sensing mechanism seems to vary with different viruses, and therefore, so is the efficacy of the host defense mechanism. Viral DNA can be sensed by different proteins including DNA-dependent activator of IFN regulating factor (DAI), cGAS, and toll-like receptor-9 (TLR-9). Viral RNA is recognized by retinoid acid-inducible gene 1 (RIG-1), TLR-7 and TLR-8. The question if cGAS also recognizes viral RNA remains unclear. The activation of IFN synthesis by cGAS is initiated by the recognition of purines and pyrimidines and their enzymatic conversion into cGMP and cyclic AMP (cAMP), followed by the activation of STING. In addition, it is indicated that several viruses can evade the cGAS-STING signaling and escape the host defense. This review aims to summarize the role of cGAS-STING as a host defense mechanism against viral respiratory tract infections.
Read less.Obesity has become a worldwide scourge, affecting more than 10% of adults worldwide. While widely recognized to be associated with increased incidence of medical conditions such as diabetes mellitus and atherosclerosis, obesity also accounts for 9% of the cancer burden in some populations. This is due in part to perturbation of protective immune mechanisms involving natural killer cells, macrophages, and neutrophils. Recent studies indicate that γδ T cells play a prominent protective role against cancer, but in some circumstances are detrimental and pro tumorogenic. In this review, the current scientific literature was explored to determine whether and how obesity affects the anti- and pro-tumoral functions of γδ T cells. Considerable perturbations of γδ T cells by obesity were revealed, suggesting that the “obesity-γδ T cell axis” may profoundly impact the increased incidence of cancer in obese individuals and is worthy of further study.
Read less.Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Read less.Humans are afflicted by a wide spectrum of autoimmune disorders, ranging from those affecting just one or a few organs to those associated with more systemic effects. In most instances, the etiology of such disorders remains unknown; a consequence of this lack of knowledge is a lack of specific treatment options. Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder; pathology is believed to be antibody-mediated, and multiple organs are targeted. Periods of disease “flares” are often followed by long periods of remission. The fact that SLE is more commonly observed in females, and also that it more particularly manifests in females in the reproductive age group, has quite naturally drawn attention to the potential roles that hormones play in disease onset and progression. This review attempts to shed light on the influences that key hormones might have on disease indicators and pathology. Databases (Google Scholar, PubMed) were searched for the following keywords (sometimes in certain combinations), in conjunction with the term “lupus” or “SLE”: autoantibodies, recurrent abortion, polycystic ovarian syndrome (PCOS), preeclampsia, pre-term delivery, estrogens, progesterone, androgens, prolactin, leptin, human chorionic gonadotropin (hCG). Cited publications included both research articles and reviews.
Read less.Among decidual immune cells, regulatory T cells (Tregs) have been unanimously recognized as central contributors to tolerance and maintenance of healthy pregnancy. Numerical and functional downregulation of Tregs or disturbed interaction of Tregs with trophoblasts and other immune cells have been linked to early pregnancy loss such as idiopathic infertility and miscarriage and later-onset adverse pregnancy outcomes including preeclampsia. This review focuses on the mechanisms for regulating the generation, expansion, and function of Tregs, the roles of Tregs in maintaining maternal immune tolerance through crosstalk with trophoblasts and other decidual regulatory immune cells, and how Tregs may play foes to pregnancy and contribute to the programming of pregnancy-related complications. Therapeutic options for implantation failure and adverse pregnancy outcomes are now part of the emerging significance of Tregs in pregnancy tolerance and maintenance.
Read less.Conventional immunohistochemistry methods though once fundamental for the individual staining of cell markers, have now been superseded by multispectral immunohistochemistry (mIHC). mIHC enables simultaneous detection of multiple cell markers in situ using single formalin-fixed paraffin-embedded (FFPE) tissue sections. In addition to conserving patient tissue specimens, the ability to visualise more than one marker on individual cells allows for further refining of cell phenotypes, and provides insight into cell-to-cell interactions and spatial arrangements across single tissue sections. Here, a comprehensive protocol is described for the in situ interrogation of γδ T cells and phosphoantigen-presenting butyrophilin (BTN) molecules (BTN2A1 and BTN3A1) in human FFPE tissue using Opal™ tyramide signal amplification (TSA)-based mIHC. It is demonstrated that an effectively optimised Opal™-TSA 7-marker [CD3, Pan-γδ T cell receptor (TCR), granzyme B, BTN2A1, BTN3A1, tumour marker, 4’,6-diamidino-2-phenylindole (DAPI)] mIHC panel can be used to define the presence, localisation, and activation status of γδ T cells and the BTN2A1 and BTN3A1 ligands.
Read less.Polycystic ovary syndrome (PCOS) is one of the most frequently observed endocrinopathies among women of reproductive age that redound to subfertility. The specific etiology of this heterogenic syndrome remains ambiguous. Metabolic complications, hormonal imbalance, deregulation in the immune system and their interrelationship make PCOS more complex. Hyperandrogenism and chronic low-grade inflammation modulate each other and enhance the self-perpetuation of PCOS. Even though there are many literature studies on PCOS and immune deregulation, this review focuses on the endocrine-immune nexus and how the altered endocrine system is embroiled in the immunopathology of PCOS.
Read less.“There is many a slip twist the cup and the lip” is a proverb that dates back to the 3rd century. This proverb comes to mind while writing a review on pregnancy loss; so many complications can occur between fertilization and development of the embryo through the long period of gestation until successful delivery of the baby. These include failure of implantation of the embryo, spontaneous miscarriage in the first trimester, pre-eclampsia in the second trimester, premature rupture of fetal membranes, pre-term labour, and pre-term delivery. The maternal immune system which does a phenomenal job of protecting the host from a daunting variety of infections, sometimes also mounts adverse reactions that complicate pregnancy and endanger the fetus. Maternal immune reactions that can adversely affect pregnancy have been shown to be mediated by lymphocytes, macrophages and natural killer cells, and by cytokines secreted by these cellular effectors. This review summarizes the deleterious effects of cytokines leading to recurrent spontaneous miscarriage, pre-eclampsia and pre-term delivery, which are the major complications of pregnancy. It then goes on to discuss the potential use of progesterone and dydrogesterone, an orally-administered progestogen, as immunomodulatory molecules that can be considered for the prevention and/or treatment of these complications.
Read less.Avidity of immunoglobulin G (IgG) is defined as its binding strength to its target antigen. As a consequence of affinity maturation of the IgG response, avidity is maturing as well. Therefore, acute infections are characterized by low-avidity IgG, whereas past infections are usually associated with high-avidity IgG. Avidity maturation is also observed as a consequence of optimal vaccination. Avidity has been shown to play a significant role in protective humoral immunity in many microbial systems. After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation is different compared to other viral infections, as the moderate degree of avidity reached in most cases of infection is similar to that reached after only one vaccination step. In contrast, two vaccination steps lead to a much higher avidity of IgG directed towards viral spike protein S1 (S1) in the majority of vaccinated individuals. Therefore, it seems that two vaccination steps allow for a more extended affinity/avidity maturation than natural infection. The degree of avidity maturation after two vaccination steps is heterogeneous. It can be further enhanced by a third vaccination step. Complete avidity maturation seems to depend on sustained availability of antigen during the maturation process. Variants of concern seem to increase the affinity of their receptor-binding domain (RBD) to angiotensin-converting enzyme-2 (ACE2) and/or to decrease the susceptibility for neutralizing antibodies. Classical neutralization tests do not necessarily reflect the avidity of neutralizing IgG, as they operationally dissect the binding reaction between S1 and IgG from the binding of the S1 to ACE2. This approach fades out critical competition reactions between IgG and ACE for RBD of the S1. Quantitative avidity determination might be an essential tool to define individuals that only possess suboptimal protective immunity after vaccination and therefore might benefit from an additional booster immunization.
Avidity of immunoglobulin G (IgG) is defined as its binding strength to its target antigen. As a consequence of affinity maturation of the IgG response, avidity is maturing as well. Therefore, acute infections are characterized by low-avidity IgG, whereas past infections are usually associated with high-avidity IgG. Avidity maturation is also observed as a consequence of optimal vaccination. Avidity has been shown to play a significant role in protective humoral immunity in many microbial systems. After severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, the situation is different compared to other viral infections, as the moderate degree of avidity reached in most cases of infection is similar to that reached after only one vaccination step. In contrast, two vaccination steps lead to a much higher avidity of IgG directed towards viral spike protein S1 (S1) in the majority of vaccinated individuals. Therefore, it seems that two vaccination steps allow for a more extended affinity/avidity maturation than natural infection. The degree of avidity maturation after two vaccination steps is heterogeneous. It can be further enhanced by a third vaccination step. Complete avidity maturation seems to depend on sustained availability of antigen during the maturation process. Variants of concern seem to increase the affinity of their receptor-binding domain (RBD) to angiotensin-converting enzyme-2 (ACE2) and/or to decrease the susceptibility for neutralizing antibodies. Classical neutralization tests do not necessarily reflect the avidity of neutralizing IgG, as they operationally dissect the binding reaction between S1 and IgG from the binding of the S1 to ACE2. This approach fades out critical competition reactions between IgG and ACE for RBD of the S1. Quantitative avidity determination might be an essential tool to define individuals that only possess suboptimal protective immunity after vaccination and therefore might benefit from an additional booster immunization.
Allogeneic stem cell transplantation is currently the only curative approach for a variety of malignant and non-malignant diseases. In the early transplant era, the intent of this treatment was to apply an intensive myeloablative regimen to eliminate residual malignant cells followed by the hematopoietic rescue of the patients with donor hematopoietic stem cells. However, the focus has shifted over time and allogeneic transplantation is nowadays seen as a cellular therapy in which the donor-derived immune system mounts an anti-infectious and especially an anti-tumor effect in the posttransplant phase. In order to further augment the anti-tumor effect, various approaches have been developed, including the manipulation of the donor-derived immune system in vivo or the adoptive transfer of ex vivo-expanded donor-derived effector cells. Based on their lack of alloreactivity, γδ+ T cells are shifting into the spotlight of research in the context of allogeneic transplantation. Their exploitation with regard to their anti-infectious and anti-tumor properties and their in vivo and ex vivo manipulation will lead to new therapeutic approaches to improve the outcome of patients after allogeneic stem cell transplantation. In this review, the important role of γδ+ T cells in allogeneic matched and mismatched transplantation is summarized and an outlook is discussed on how to best make use of this unique cell population.
Allogeneic stem cell transplantation is currently the only curative approach for a variety of malignant and non-malignant diseases. In the early transplant era, the intent of this treatment was to apply an intensive myeloablative regimen to eliminate residual malignant cells followed by the hematopoietic rescue of the patients with donor hematopoietic stem cells. However, the focus has shifted over time and allogeneic transplantation is nowadays seen as a cellular therapy in which the donor-derived immune system mounts an anti-infectious and especially an anti-tumor effect in the posttransplant phase. In order to further augment the anti-tumor effect, various approaches have been developed, including the manipulation of the donor-derived immune system in vivo or the adoptive transfer of ex vivo-expanded donor-derived effector cells. Based on their lack of alloreactivity, γδ+ T cells are shifting into the spotlight of research in the context of allogeneic transplantation. Their exploitation with regard to their anti-infectious and anti-tumor properties and their in vivo and ex vivo manipulation will lead to new therapeutic approaches to improve the outcome of patients after allogeneic stem cell transplantation. In this review, the important role of γδ+ T cells in allogeneic matched and mismatched transplantation is summarized and an outlook is discussed on how to best make use of this unique cell population.
Gamma delta lymphocytes (γδ T) sit at the interface between innate and adaptive immunity. They have the capacity to recognize cancer cells by interaction of their surface receptors with an array of cancer cell surface target antigens. Interactions include the binding of γδ T cell receptors, the ligands for which are diverse and do not involve classical major histocompatibility complex (MHC) molecules. Moreover, a variety of natural killer-like and fragment crystallizable gamma (Fcγ) receptors confer additional cancer reactivity. Given this innate capacity to recognize and kill cancer cells, there appears less rationale for redirecting specific to cancer cell surface antigens through chimeric antigen receptor (CAR) expression. Several groups have however reported research findings that expression of CARs in γδ T cells can confer additional specificity or functionality. Though limited in number, these studies collectively identify the potential of CAR-T engineering to augment and fine tune anti-cancer responses. Together with the lack of graft versus host disease induced by allogeneic γδ T cells, these insights should encourage researchers to explore additional γδ T-CAR refinements for the development of off-the-shelf anti-cancer cell therapies.
Gamma delta lymphocytes (γδ T) sit at the interface between innate and adaptive immunity. They have the capacity to recognize cancer cells by interaction of their surface receptors with an array of cancer cell surface target antigens. Interactions include the binding of γδ T cell receptors, the ligands for which are diverse and do not involve classical major histocompatibility complex (MHC) molecules. Moreover, a variety of natural killer-like and fragment crystallizable gamma (Fcγ) receptors confer additional cancer reactivity. Given this innate capacity to recognize and kill cancer cells, there appears less rationale for redirecting specific to cancer cell surface antigens through chimeric antigen receptor (CAR) expression. Several groups have however reported research findings that expression of CARs in γδ T cells can confer additional specificity or functionality. Though limited in number, these studies collectively identify the potential of CAR-T engineering to augment and fine tune anti-cancer responses. Together with the lack of graft versus host disease induced by allogeneic γδ T cells, these insights should encourage researchers to explore additional γδ T-CAR refinements for the development of off-the-shelf anti-cancer cell therapies.
Although a large number of preventative human immunodeficiency virus (HIV) vaccine trials have been carried out during the last 30 years, it is remarkable that an effective HIV vaccine has not yet been developed. Research paradigms correspond to theoretical assumptions and particular strategies that scientists use when they try to solve a particular problem. Many paradigms used successfully in vaccinology were ineffective with HIV. For instance: 1) The structure-based reverse vaccinology approach failed because investigators tried to generate a vaccine starting with the antigenic structure of HIV-envelope (Env) epitopes bound to neutralizing monoclonal antibodies (mAbs) derived from HIV-infected individuals. They assumed that this antigenic structure would also possess the immunogenic capacity of inducing in vaccinees a polyclonal antibody (Ab) response with the same neutralizing capacity as the mAb. 2) The structures observed in epitope-paratope crystallographic complexes result from mutually induced fit between the two partners and do not correspond to the structures present in the free molecules before they had interacted. 3) The affinity-matured neutralizing mAbs obtained from chronically infected individuals did not recognize the germline predecessors of these Abs present in vaccinees. 4) The HIV p17 matrix protein that lines the inner surface of the viral membrane is one of the most disordered proteins identified on our planet and this prevents the induced Abs from binding to the glycosylated HIV gp120 protein. 5) Vaccinologists need to solve so-called inverse problems, for instance, guessing what are the multiple causes that produced an earlier wanted beneficial effect such as the absence of deleterious HIV infection in elite controllers. Since the immune system consists of numerous subsystems that have not yet been elucidated, it is impossible to solve the inverse problems posed by each subsystem. 6) Vaccinology is an empirical science that only sometimes succeeds because we do not understand the complex mechanisms that lead to protective immune responses.
Although a large number of preventative human immunodeficiency virus (HIV) vaccine trials have been carried out during the last 30 years, it is remarkable that an effective HIV vaccine has not yet been developed. Research paradigms correspond to theoretical assumptions and particular strategies that scientists use when they try to solve a particular problem. Many paradigms used successfully in vaccinology were ineffective with HIV. For instance: 1) The structure-based reverse vaccinology approach failed because investigators tried to generate a vaccine starting with the antigenic structure of HIV-envelope (Env) epitopes bound to neutralizing monoclonal antibodies (mAbs) derived from HIV-infected individuals. They assumed that this antigenic structure would also possess the immunogenic capacity of inducing in vaccinees a polyclonal antibody (Ab) response with the same neutralizing capacity as the mAb. 2) The structures observed in epitope-paratope crystallographic complexes result from mutually induced fit between the two partners and do not correspond to the structures present in the free molecules before they had interacted. 3) The affinity-matured neutralizing mAbs obtained from chronically infected individuals did not recognize the germline predecessors of these Abs present in vaccinees. 4) The HIV p17 matrix protein that lines the inner surface of the viral membrane is one of the most disordered proteins identified on our planet and this prevents the induced Abs from binding to the glycosylated HIV gp120 protein. 5) Vaccinologists need to solve so-called inverse problems, for instance, guessing what are the multiple causes that produced an earlier wanted beneficial effect such as the absence of deleterious HIV infection in elite controllers. Since the immune system consists of numerous subsystems that have not yet been elucidated, it is impossible to solve the inverse problems posed by each subsystem. 6) Vaccinology is an empirical science that only sometimes succeeds because we do not understand the complex mechanisms that lead to protective immune responses.
The aim of this article is to characterize in detail the γδ T lymphocytes from an adult patient with primary cutaneous T-cell lymphoma of γδ subtype (γδ CTCL).
Here this article reports trajectory mapping on high-resolution differentiation trajectories of γδ T lymphocytes digitally extracted from a scRNAseq dataset.
In the patch-to-plaque progression of CTCL, the TCRVγnon9 subset of γδ T cells differentiated from naive T cells (Tn) and central memory T cells (Tcm) to abundant effector memory T cells (Tem) while other cutaneous γδ T and CD8 T cells remained unchanged.
This transcriptomic switch underlies the emergence of a CTCL-like progression of the TCRVγnon9 γδ T subtype and suggests new routes for treating these diseases.
The aim of this article is to characterize in detail the γδ T lymphocytes from an adult patient with primary cutaneous T-cell lymphoma of γδ subtype (γδ CTCL).
Here this article reports trajectory mapping on high-resolution differentiation trajectories of γδ T lymphocytes digitally extracted from a scRNAseq dataset.
In the patch-to-plaque progression of CTCL, the TCRVγnon9 subset of γδ T cells differentiated from naive T cells (Tn) and central memory T cells (Tcm) to abundant effector memory T cells (Tem) while other cutaneous γδ T and CD8 T cells remained unchanged.
This transcriptomic switch underlies the emergence of a CTCL-like progression of the TCRVγnon9 γδ T subtype and suggests new routes for treating these diseases.
Thymosin alpha 1 (Tα1) is a promising treatment for the improvement of sepsis patients. Until now, its function in reducing acute organ damage of sepsis patients is still unclear. The aim of this study was to determine whether Tα1 can alleviate organ dysfunction in sepsis patients.
This study retrospectively enrolled sepsis patients from a multicenter randomized controlled trial [efficacy of Tα1 for severe sepsis (ETASS)]. The sequential organ failure assessment (SOFA) score on day 0 (initial), day 3, and day 7 was collected. Absolute SOFAday07 was defined as initial SOFA score minus SOFA score on day 7 (initial SOFA–SOFA day7). Delta SOFA score (ΔSOFAday07) was provided by the formula: (initial SOFA–SOFA day7) × 100/initial SOFA, and it was expressed as a percentage. After propensity score matching (1:1 ratio), baseline characteristics were well-balanced between the Tα1 group and placebo group. The primary outcome was evaluated with a comparison of ΔSOFAday07 decline between patients treated with or without Tα1 therapy.
Among 288 enrolled patients, 149 patients received both Tα1 and standard therapy (Tα1 group), and 139 patients received both placebo and standard therapy (placebo group). Compared with the placebo group, the Tα1 group had significantly lower Absolute SOFAday07 [95% confidence interval (CI) 0.8 (0–1.7), P = 0.049]. Among 111 pairs of patients matched by propensity score, the Tα1 group still had lower Absolute SOFAday07 [95% CI 1.0 (0.1–1.9), P = 0.029]. Meanwhile, Tα1 treatment could significantly improve ΔSOFAday07. When the amplitude of ΔSOFAday07 was graded, one third of patients in the Tα1 group had an increase of more than 60%, compared with 22% in the placebo group. Subgroup analysis found that the ΔSOFAday07 improved significantly after Tα1 therapy in sepsis patients with no immunoparalysis at baseline, no complications, and early intervention.
For sepsis patients, Tα1 treatment can alleviate organ dysfunction, and ΔSOFAday07 can be used as an indicator of its therapeutic effect (ClinicalTrials.gov identifier: NCT00711620).
Thymosin alpha 1 (Tα1) is a promising treatment for the improvement of sepsis patients. Until now, its function in reducing acute organ damage of sepsis patients is still unclear. The aim of this study was to determine whether Tα1 can alleviate organ dysfunction in sepsis patients.
This study retrospectively enrolled sepsis patients from a multicenter randomized controlled trial [efficacy of Tα1 for severe sepsis (ETASS)]. The sequential organ failure assessment (SOFA) score on day 0 (initial), day 3, and day 7 was collected. Absolute SOFAday07 was defined as initial SOFA score minus SOFA score on day 7 (initial SOFA–SOFA day7). Delta SOFA score (ΔSOFAday07) was provided by the formula: (initial SOFA–SOFA day7) × 100/initial SOFA, and it was expressed as a percentage. After propensity score matching (1:1 ratio), baseline characteristics were well-balanced between the Tα1 group and placebo group. The primary outcome was evaluated with a comparison of ΔSOFAday07 decline between patients treated with or without Tα1 therapy.
Among 288 enrolled patients, 149 patients received both Tα1 and standard therapy (Tα1 group), and 139 patients received both placebo and standard therapy (placebo group). Compared with the placebo group, the Tα1 group had significantly lower Absolute SOFAday07 [95% confidence interval (CI) 0.8 (0–1.7), P = 0.049]. Among 111 pairs of patients matched by propensity score, the Tα1 group still had lower Absolute SOFAday07 [95% CI 1.0 (0.1–1.9), P = 0.029]. Meanwhile, Tα1 treatment could significantly improve ΔSOFAday07. When the amplitude of ΔSOFAday07 was graded, one third of patients in the Tα1 group had an increase of more than 60%, compared with 22% in the placebo group. Subgroup analysis found that the ΔSOFAday07 improved significantly after Tα1 therapy in sepsis patients with no immunoparalysis at baseline, no complications, and early intervention.
For sepsis patients, Tα1 treatment can alleviate organ dysfunction, and ΔSOFAday07 can be used as an indicator of its therapeutic effect (ClinicalTrials.gov identifier: NCT00711620).
Until now, despite 30 years of intensive work, the RV144 human immunodeficiency virus (HIV) vaccine trial initiated in 2003 remains so far the most protective vaccine prototype of all those tested (32% reduction in the infection rate three years after the vaccination) and the HIV epidemic is still spreading worldwide. In addition, antiretroviral therapy (ART) for people living with HIV is given for life as no other pharmacological intervention has allowed to maintain an undetectable viral load after ART withdrawal. Pr Andrieu and colleagues discovered tolerogenic CD8+T-cells that suppress simian immunodeficiency virus (SIV) specific activation, ensuing SIV reverse transcription suppression and viral replication-defective in Chinese macaques vaccinated by intragastric route with inactivated SIV particles + Lactobacillus rhamnosus. Moreover, in HIV-infected elite controllers with specific genetic features (HLA-1-Bw4-80i and KIR3DL1 genes), Pr Andrieu found out that similar tolerogenic CD8+T-cells suppress in the same manner HIV-specific activation, HIV reverse transcription, and HIV replication. These data justify the development of a tolerogenic vaccine composed of inactivated HIV particles + Lactobacillus rhamnosus that could be used as a preventive or therapeutic vaccine.
Until now, despite 30 years of intensive work, the RV144 human immunodeficiency virus (HIV) vaccine trial initiated in 2003 remains so far the most protective vaccine prototype of all those tested (32% reduction in the infection rate three years after the vaccination) and the HIV epidemic is still spreading worldwide. In addition, antiretroviral therapy (ART) for people living with HIV is given for life as no other pharmacological intervention has allowed to maintain an undetectable viral load after ART withdrawal. Pr Andrieu and colleagues discovered tolerogenic CD8+T-cells that suppress simian immunodeficiency virus (SIV) specific activation, ensuing SIV reverse transcription suppression and viral replication-defective in Chinese macaques vaccinated by intragastric route with inactivated SIV particles + Lactobacillus rhamnosus. Moreover, in HIV-infected elite controllers with specific genetic features (HLA-1-Bw4-80i and KIR3DL1 genes), Pr Andrieu found out that similar tolerogenic CD8+T-cells suppress in the same manner HIV-specific activation, HIV reverse transcription, and HIV replication. These data justify the development of a tolerogenic vaccine composed of inactivated HIV particles + Lactobacillus rhamnosus that could be used as a preventive or therapeutic vaccine.
Recent anti-cancer strategies are based on the stimulation of anti-tumor immune reaction, exploiting distinct lymphocyte subsets. Among them, γδ T cells represent optimal anti-cancer candidates, especially in those tissues where they are highly localized, such as the respiratory or gastrointestinal tract. One important challenge has been the identification of stimulating drugs able to induce and maintain γδ T cell-mediated anti-cancer immune response. Amino-bisphosphonates (N-BPs) have been largely employed in anti-cancer clinical trials due to their ability to upregulate the accumulation of pyrophosphates that promote the activation of Vγ9Vδ2 T cells. This activation depends on the butyrophilin A family, which is crucial in contributing to Vγ9Vδ2 T cells stimulation but is not equally expressed in all cancer tissues. Thus, the clinical outcome of such treatments is still a challenge. In this viewpoint, a critical picture of γδ T cells as effective anti-cancer effectors is designed, with a specific focus on the best immune-stimulating therapeutic schemes involving this lymphocyte subset and the tools available to measure their efficacy and presence in tumor tissues. Some pre-clinical models, useful to measure γδ T cell anti-cancer potential and their response to stimulating drugs, therapeutic monoclonal antibodies, or bispecific antibodies are described. Computerized imaging and digital pathology are also proposed as a help in the identification of co-stimulatory molecules and localization of γδ T cell effectors. Finally, two types of novel drug preparation are proposed: nanoparticles loaded with N-BPs and pro-drug formulations that enhance the effectiveness of γδ T lymphocyte stimulation.
Recent anti-cancer strategies are based on the stimulation of anti-tumor immune reaction, exploiting distinct lymphocyte subsets. Among them, γδ T cells represent optimal anti-cancer candidates, especially in those tissues where they are highly localized, such as the respiratory or gastrointestinal tract. One important challenge has been the identification of stimulating drugs able to induce and maintain γδ T cell-mediated anti-cancer immune response. Amino-bisphosphonates (N-BPs) have been largely employed in anti-cancer clinical trials due to their ability to upregulate the accumulation of pyrophosphates that promote the activation of Vγ9Vδ2 T cells. This activation depends on the butyrophilin A family, which is crucial in contributing to Vγ9Vδ2 T cells stimulation but is not equally expressed in all cancer tissues. Thus, the clinical outcome of such treatments is still a challenge. In this viewpoint, a critical picture of γδ T cells as effective anti-cancer effectors is designed, with a specific focus on the best immune-stimulating therapeutic schemes involving this lymphocyte subset and the tools available to measure their efficacy and presence in tumor tissues. Some pre-clinical models, useful to measure γδ T cell anti-cancer potential and their response to stimulating drugs, therapeutic monoclonal antibodies, or bispecific antibodies are described. Computerized imaging and digital pathology are also proposed as a help in the identification of co-stimulatory molecules and localization of γδ T cell effectors. Finally, two types of novel drug preparation are proposed: nanoparticles loaded with N-BPs and pro-drug formulations that enhance the effectiveness of γδ T lymphocyte stimulation.
Alzheimer’s disease (AD) is a common neurological disease in the elderly, and the major manifestations are cognitive dysfunction, neuronal loss, and neuropathic lesions in the brain. In the process of AD pathogenesis, the inflammatory response plays an indispensable role. The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome containing NOD, leucine-rich repeat (LRR), and pyran domains is a multi-molecular complex that can detect dangerous signals related to neurological diseases. The assembly of NLRP3 inflammasome promotes the maturation of interleukin-1beta (IL-1β) and IL-18 mediated by caspase-1 in microglia, which leads to neuroinflammation and finally contributes to the occurrence and development of AD. This review aimed to clarify the structure and activating mechanism of NLRP3 inflammasome and its key role in the pathogenesis of AD, summarize the latest findings on the suppression of NLRP3 inflammasome activation for the treatment of AD, as well as indicate that targeting regulation of NLRP3 inflammasome assembly may be a potential strategy for the treatment of AD, providing a theoretical basis for the research of AD.
Alzheimer’s disease (AD) is a common neurological disease in the elderly, and the major manifestations are cognitive dysfunction, neuronal loss, and neuropathic lesions in the brain. In the process of AD pathogenesis, the inflammatory response plays an indispensable role. The nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome containing NOD, leucine-rich repeat (LRR), and pyran domains is a multi-molecular complex that can detect dangerous signals related to neurological diseases. The assembly of NLRP3 inflammasome promotes the maturation of interleukin-1beta (IL-1β) and IL-18 mediated by caspase-1 in microglia, which leads to neuroinflammation and finally contributes to the occurrence and development of AD. This review aimed to clarify the structure and activating mechanism of NLRP3 inflammasome and its key role in the pathogenesis of AD, summarize the latest findings on the suppression of NLRP3 inflammasome activation for the treatment of AD, as well as indicate that targeting regulation of NLRP3 inflammasome assembly may be a potential strategy for the treatment of AD, providing a theoretical basis for the research of AD.
The crown-like shaped viruses known as coronaviruses which were first reported in the 1960’s have caused three epidemics in the past two decades namely, coronavirus disease-19 (COVID-19), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). SARS coronavirus 2 (SARS-CoV-2) was first reported in the latter half of December in Wuhan, a city of China, with people affected by deadly pneumonia with unknown etiology. Since then, the world has experienced two phases of virus spread with different symptoms and disease severity. This review embarks on the journey to investigate candidate molecules of this virus which can and are being investigated for various vaccine formulations and to discuss immunity developed against this virus.
The crown-like shaped viruses known as coronaviruses which were first reported in the 1960’s have caused three epidemics in the past two decades namely, coronavirus disease-19 (COVID-19), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). SARS coronavirus 2 (SARS-CoV-2) was first reported in the latter half of December in Wuhan, a city of China, with people affected by deadly pneumonia with unknown etiology. Since then, the world has experienced two phases of virus spread with different symptoms and disease severity. This review embarks on the journey to investigate candidate molecules of this virus which can and are being investigated for various vaccine formulations and to discuss immunity developed against this virus.
Self-replicating RNA viruses have been commonly used for preventive and therapeutic interventions in the fields of infectious diseases and cancers. Both RNA viruses with single-stranded RNA genomes of positive and negative polarity have been utilized. Expression of viral surface proteins from self-replicating RNA virus vectors has elicited strong immune responses and provided protection against challenges with lethal doses of pathogens in various animal models using recombinant viral particles, RNA replicons, or plasmid-based replicon vectors. Similarly, immunization with self-replicating RNA virus vectors expressing tumor antigens has induced tumor-specific antibody (Ab) responses, inhibited tumor growth, eradicated tumors, and protected immunized animals against tumor challenges. Clinical trials have demonstrated good safety and tolerance of self-replicating RNA viruses. Although the number of clinical trials is low, robust immune responses and protection against challenges with pathogens and tumor cells have been achieved. The Ervebo vaccine against Ebola virus disease has been approved by both the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA).
Self-replicating RNA viruses have been commonly used for preventive and therapeutic interventions in the fields of infectious diseases and cancers. Both RNA viruses with single-stranded RNA genomes of positive and negative polarity have been utilized. Expression of viral surface proteins from self-replicating RNA virus vectors has elicited strong immune responses and provided protection against challenges with lethal doses of pathogens in various animal models using recombinant viral particles, RNA replicons, or plasmid-based replicon vectors. Similarly, immunization with self-replicating RNA virus vectors expressing tumor antigens has induced tumor-specific antibody (Ab) responses, inhibited tumor growth, eradicated tumors, and protected immunized animals against tumor challenges. Clinical trials have demonstrated good safety and tolerance of self-replicating RNA viruses. Although the number of clinical trials is low, robust immune responses and protection against challenges with pathogens and tumor cells have been achieved. The Ervebo vaccine against Ebola virus disease has been approved by both the European Medicines Agency (EMA) and the US Food and Drug Administration (FDA).
Treatment of sepsis currently relies on eliminating the causal pathogen and supportive care, whereas almost no approaches to interfere with the defining event of a “dysregulated host response” are available. This review points to the striking correlation of two phenotypes of sepsis etiopathology with the concept of bipartite response patterns of higher organisms to microbial attacks. According to this concept, the phenotypes of sepsis can be interpreted as either resistance or tolerance responses to infection that got out of hand. This concept might allow focusing sepsis research and related patient studies on key conundrums of current sepsis research: how do resistance responses result in immunopathology and how can tolerance lead to systemic immunosuppression or even immunoparalysis? The heuristic vigor of these questions might inspire experimental efforts and clinical studies and ultimately advance the therapeutic armamentarium for sepsis care.
Treatment of sepsis currently relies on eliminating the causal pathogen and supportive care, whereas almost no approaches to interfere with the defining event of a “dysregulated host response” are available. This review points to the striking correlation of two phenotypes of sepsis etiopathology with the concept of bipartite response patterns of higher organisms to microbial attacks. According to this concept, the phenotypes of sepsis can be interpreted as either resistance or tolerance responses to infection that got out of hand. This concept might allow focusing sepsis research and related patient studies on key conundrums of current sepsis research: how do resistance responses result in immunopathology and how can tolerance lead to systemic immunosuppression or even immunoparalysis? The heuristic vigor of these questions might inspire experimental efforts and clinical studies and ultimately advance the therapeutic armamentarium for sepsis care.
Lower respiratory tract infections caused over 4 million deaths per year worldwide, especially in low-income countries. Viral respiratory infections often occur as rapidly spreading seasonal endemic or epidemic, and sometimes due to new respiratory viruses including corona viruses. The first level of host defense against viral infection is based on the innate immune system and intracellular killing mechanisms. The latter is activated by the release of viral DNA or RNA into the cytosol of the infected cells during the initial phase of virus replication. Viral DNA and RNA are recognized by the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon (IFN) genes (STING) sensing pathway, leading to the activation of type-I and -III IFN synthesis, with the aim to limit viral replication. However, the efficacy of the cGAS-STING sensing mechanism seems to vary with different viruses, and therefore, so is the efficacy of the host defense mechanism. Viral DNA can be sensed by different proteins including DNA-dependent activator of IFN regulating factor (DAI), cGAS, and toll-like receptor-9 (TLR-9). Viral RNA is recognized by retinoid acid-inducible gene 1 (RIG-1), TLR-7 and TLR-8. The question if cGAS also recognizes viral RNA remains unclear. The activation of IFN synthesis by cGAS is initiated by the recognition of purines and pyrimidines and their enzymatic conversion into cGMP and cyclic AMP (cAMP), followed by the activation of STING. In addition, it is indicated that several viruses can evade the cGAS-STING signaling and escape the host defense. This review aims to summarize the role of cGAS-STING as a host defense mechanism against viral respiratory tract infections.
Lower respiratory tract infections caused over 4 million deaths per year worldwide, especially in low-income countries. Viral respiratory infections often occur as rapidly spreading seasonal endemic or epidemic, and sometimes due to new respiratory viruses including corona viruses. The first level of host defense against viral infection is based on the innate immune system and intracellular killing mechanisms. The latter is activated by the release of viral DNA or RNA into the cytosol of the infected cells during the initial phase of virus replication. Viral DNA and RNA are recognized by the cyclic guanosine monophosphate (cGMP)-adenosine monophosphate (AMP) synthase (cGAS)–stimulator of interferon (IFN) genes (STING) sensing pathway, leading to the activation of type-I and -III IFN synthesis, with the aim to limit viral replication. However, the efficacy of the cGAS-STING sensing mechanism seems to vary with different viruses, and therefore, so is the efficacy of the host defense mechanism. Viral DNA can be sensed by different proteins including DNA-dependent activator of IFN regulating factor (DAI), cGAS, and toll-like receptor-9 (TLR-9). Viral RNA is recognized by retinoid acid-inducible gene 1 (RIG-1), TLR-7 and TLR-8. The question if cGAS also recognizes viral RNA remains unclear. The activation of IFN synthesis by cGAS is initiated by the recognition of purines and pyrimidines and their enzymatic conversion into cGMP and cyclic AMP (cAMP), followed by the activation of STING. In addition, it is indicated that several viruses can evade the cGAS-STING signaling and escape the host defense. This review aims to summarize the role of cGAS-STING as a host defense mechanism against viral respiratory tract infections.
Obesity has become a worldwide scourge, affecting more than 10% of adults worldwide. While widely recognized to be associated with increased incidence of medical conditions such as diabetes mellitus and atherosclerosis, obesity also accounts for 9% of the cancer burden in some populations. This is due in part to perturbation of protective immune mechanisms involving natural killer cells, macrophages, and neutrophils. Recent studies indicate that γδ T cells play a prominent protective role against cancer, but in some circumstances are detrimental and pro tumorogenic. In this review, the current scientific literature was explored to determine whether and how obesity affects the anti- and pro-tumoral functions of γδ T cells. Considerable perturbations of γδ T cells by obesity were revealed, suggesting that the “obesity-γδ T cell axis” may profoundly impact the increased incidence of cancer in obese individuals and is worthy of further study.
Obesity has become a worldwide scourge, affecting more than 10% of adults worldwide. While widely recognized to be associated with increased incidence of medical conditions such as diabetes mellitus and atherosclerosis, obesity also accounts for 9% of the cancer burden in some populations. This is due in part to perturbation of protective immune mechanisms involving natural killer cells, macrophages, and neutrophils. Recent studies indicate that γδ T cells play a prominent protective role against cancer, but in some circumstances are detrimental and pro tumorogenic. In this review, the current scientific literature was explored to determine whether and how obesity affects the anti- and pro-tumoral functions of γδ T cells. Considerable perturbations of γδ T cells by obesity were revealed, suggesting that the “obesity-γδ T cell axis” may profoundly impact the increased incidence of cancer in obese individuals and is worthy of further study.
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Cancer immunotherapy, especially T-cell driven targeting, has significantly evolved and improved over the past decade, paving the way to treat previously refractory cancers. Hematologic malignancies, given their direct tumor accessibility and less immunosuppressive microenvironment compared to solid tumors, are better suited to be targeted by cellular immunotherapies. Gamma delta (γδ) T cells, with their unique attributes spanning the entirety of the immune system, make a tantalizing therapeutic platform for cancer immunotherapy. Their inherent anti-tumor properties, ability to act like antigen-presenting cells, and the advantage of having no major histocompatibility complex (MHC) restrictions, allow for greater flexibility in their utility to target tumors, compared to their αβ T cell counterpart. Their MHC-independent anti-tumor activity, coupled with their ability to be easily expanded from peripheral blood, enhance their potential to be used as an allogeneic product. In this review, the potential of utilizing γδ T cells to target hematologic malignancies is described, with a specific focus on their applicability as an allogeneic adoptive cellular therapy product.
Humans are afflicted by a wide spectrum of autoimmune disorders, ranging from those affecting just one or a few organs to those associated with more systemic effects. In most instances, the etiology of such disorders remains unknown; a consequence of this lack of knowledge is a lack of specific treatment options. Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder; pathology is believed to be antibody-mediated, and multiple organs are targeted. Periods of disease “flares” are often followed by long periods of remission. The fact that SLE is more commonly observed in females, and also that it more particularly manifests in females in the reproductive age group, has quite naturally drawn attention to the potential roles that hormones play in disease onset and progression. This review attempts to shed light on the influences that key hormones might have on disease indicators and pathology. Databases (Google Scholar, PubMed) were searched for the following keywords (sometimes in certain combinations), in conjunction with the term “lupus” or “SLE”: autoantibodies, recurrent abortion, polycystic ovarian syndrome (PCOS), preeclampsia, pre-term delivery, estrogens, progesterone, androgens, prolactin, leptin, human chorionic gonadotropin (hCG). Cited publications included both research articles and reviews.
Humans are afflicted by a wide spectrum of autoimmune disorders, ranging from those affecting just one or a few organs to those associated with more systemic effects. In most instances, the etiology of such disorders remains unknown; a consequence of this lack of knowledge is a lack of specific treatment options. Systemic lupus erythematosus (SLE) is the prototypic systemic autoimmune disorder; pathology is believed to be antibody-mediated, and multiple organs are targeted. Periods of disease “flares” are often followed by long periods of remission. The fact that SLE is more commonly observed in females, and also that it more particularly manifests in females in the reproductive age group, has quite naturally drawn attention to the potential roles that hormones play in disease onset and progression. This review attempts to shed light on the influences that key hormones might have on disease indicators and pathology. Databases (Google Scholar, PubMed) were searched for the following keywords (sometimes in certain combinations), in conjunction with the term “lupus” or “SLE”: autoantibodies, recurrent abortion, polycystic ovarian syndrome (PCOS), preeclampsia, pre-term delivery, estrogens, progesterone, androgens, prolactin, leptin, human chorionic gonadotropin (hCG). Cited publications included both research articles and reviews.
Among decidual immune cells, regulatory T cells (Tregs) have been unanimously recognized as central contributors to tolerance and maintenance of healthy pregnancy. Numerical and functional downregulation of Tregs or disturbed interaction of Tregs with trophoblasts and other immune cells have been linked to early pregnancy loss such as idiopathic infertility and miscarriage and later-onset adverse pregnancy outcomes including preeclampsia. This review focuses on the mechanisms for regulating the generation, expansion, and function of Tregs, the roles of Tregs in maintaining maternal immune tolerance through crosstalk with trophoblasts and other decidual regulatory immune cells, and how Tregs may play foes to pregnancy and contribute to the programming of pregnancy-related complications. Therapeutic options for implantation failure and adverse pregnancy outcomes are now part of the emerging significance of Tregs in pregnancy tolerance and maintenance.
Among decidual immune cells, regulatory T cells (Tregs) have been unanimously recognized as central contributors to tolerance and maintenance of healthy pregnancy. Numerical and functional downregulation of Tregs or disturbed interaction of Tregs with trophoblasts and other immune cells have been linked to early pregnancy loss such as idiopathic infertility and miscarriage and later-onset adverse pregnancy outcomes including preeclampsia. This review focuses on the mechanisms for regulating the generation, expansion, and function of Tregs, the roles of Tregs in maintaining maternal immune tolerance through crosstalk with trophoblasts and other decidual regulatory immune cells, and how Tregs may play foes to pregnancy and contribute to the programming of pregnancy-related complications. Therapeutic options for implantation failure and adverse pregnancy outcomes are now part of the emerging significance of Tregs in pregnancy tolerance and maintenance.
Conventional immunohistochemistry methods though once fundamental for the individual staining of cell markers, have now been superseded by multispectral immunohistochemistry (mIHC). mIHC enables simultaneous detection of multiple cell markers in situ using single formalin-fixed paraffin-embedded (FFPE) tissue sections. In addition to conserving patient tissue specimens, the ability to visualise more than one marker on individual cells allows for further refining of cell phenotypes, and provides insight into cell-to-cell interactions and spatial arrangements across single tissue sections. Here, a comprehensive protocol is described for the in situ interrogation of γδ T cells and phosphoantigen-presenting butyrophilin (BTN) molecules (BTN2A1 and BTN3A1) in human FFPE tissue using Opal™ tyramide signal amplification (TSA)-based mIHC. It is demonstrated that an effectively optimised Opal™-TSA 7-marker [CD3, Pan-γδ T cell receptor (TCR), granzyme B, BTN2A1, BTN3A1, tumour marker, 4’,6-diamidino-2-phenylindole (DAPI)] mIHC panel can be used to define the presence, localisation, and activation status of γδ T cells and the BTN2A1 and BTN3A1 ligands.
Conventional immunohistochemistry methods though once fundamental for the individual staining of cell markers, have now been superseded by multispectral immunohistochemistry (mIHC). mIHC enables simultaneous detection of multiple cell markers in situ using single formalin-fixed paraffin-embedded (FFPE) tissue sections. In addition to conserving patient tissue specimens, the ability to visualise more than one marker on individual cells allows for further refining of cell phenotypes, and provides insight into cell-to-cell interactions and spatial arrangements across single tissue sections. Here, a comprehensive protocol is described for the in situ interrogation of γδ T cells and phosphoantigen-presenting butyrophilin (BTN) molecules (BTN2A1 and BTN3A1) in human FFPE tissue using Opal™ tyramide signal amplification (TSA)-based mIHC. It is demonstrated that an effectively optimised Opal™-TSA 7-marker [CD3, Pan-γδ T cell receptor (TCR), granzyme B, BTN2A1, BTN3A1, tumour marker, 4’,6-diamidino-2-phenylindole (DAPI)] mIHC panel can be used to define the presence, localisation, and activation status of γδ T cells and the BTN2A1 and BTN3A1 ligands.
Polycystic ovary syndrome (PCOS) is one of the most frequently observed endocrinopathies among women of reproductive age that redound to subfertility. The specific etiology of this heterogenic syndrome remains ambiguous. Metabolic complications, hormonal imbalance, deregulation in the immune system and their interrelationship make PCOS more complex. Hyperandrogenism and chronic low-grade inflammation modulate each other and enhance the self-perpetuation of PCOS. Even though there are many literature studies on PCOS and immune deregulation, this review focuses on the endocrine-immune nexus and how the altered endocrine system is embroiled in the immunopathology of PCOS.
Polycystic ovary syndrome (PCOS) is one of the most frequently observed endocrinopathies among women of reproductive age that redound to subfertility. The specific etiology of this heterogenic syndrome remains ambiguous. Metabolic complications, hormonal imbalance, deregulation in the immune system and their interrelationship make PCOS more complex. Hyperandrogenism and chronic low-grade inflammation modulate each other and enhance the self-perpetuation of PCOS. Even though there are many literature studies on PCOS and immune deregulation, this review focuses on the endocrine-immune nexus and how the altered endocrine system is embroiled in the immunopathology of PCOS.
“There is many a slip twist the cup and the lip” is a proverb that dates back to the 3rd century. This proverb comes to mind while writing a review on pregnancy loss; so many complications can occur between fertilization and development of the embryo through the long period of gestation until successful delivery of the baby. These include failure of implantation of the embryo, spontaneous miscarriage in the first trimester, pre-eclampsia in the second trimester, premature rupture of fetal membranes, pre-term labour, and pre-term delivery. The maternal immune system which does a phenomenal job of protecting the host from a daunting variety of infections, sometimes also mounts adverse reactions that complicate pregnancy and endanger the fetus. Maternal immune reactions that can adversely affect pregnancy have been shown to be mediated by lymphocytes, macrophages and natural killer cells, and by cytokines secreted by these cellular effectors. This review summarizes the deleterious effects of cytokines leading to recurrent spontaneous miscarriage, pre-eclampsia and pre-term delivery, which are the major complications of pregnancy. It then goes on to discuss the potential use of progesterone and dydrogesterone, an orally-administered progestogen, as immunomodulatory molecules that can be considered for the prevention and/or treatment of these complications.
“There is many a slip twist the cup and the lip” is a proverb that dates back to the 3rd century. This proverb comes to mind while writing a review on pregnancy loss; so many complications can occur between fertilization and development of the embryo through the long period of gestation until successful delivery of the baby. These include failure of implantation of the embryo, spontaneous miscarriage in the first trimester, pre-eclampsia in the second trimester, premature rupture of fetal membranes, pre-term labour, and pre-term delivery. The maternal immune system which does a phenomenal job of protecting the host from a daunting variety of infections, sometimes also mounts adverse reactions that complicate pregnancy and endanger the fetus. Maternal immune reactions that can adversely affect pregnancy have been shown to be mediated by lymphocytes, macrophages and natural killer cells, and by cytokines secreted by these cellular effectors. This review summarizes the deleterious effects of cytokines leading to recurrent spontaneous miscarriage, pre-eclampsia and pre-term delivery, which are the major complications of pregnancy. It then goes on to discuss the potential use of progesterone and dydrogesterone, an orally-administered progestogen, as immunomodulatory molecules that can be considered for the prevention and/or treatment of these complications.