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Abstract
Aim: Cytotoxic T lymphocytes (CTL) examine the major histocompatibility complex (MHC) class I ligands 
on nucleated cells to detect antigens derived from pathogens and cancer cells. Accurate prediction of T-cell 
epitopes is therefore crucial for the development of a wide range of biopharmaceuticals, including vaccines.
Methods: The present study involved the development of position-specific scoring matrices (PSSM) and 
artificial neural networks (ANN) based models for 22 MHC class I molecules, including the integrated 
forecast of CTL epitopes using the EasyPred modeler. Similarity-reduced peptides dataset was used to train 
and evaluate models with performance assessed using the area under the receiver operating characteristic 
curve (Aroc) as the primary metric.
Results: Comparative analysis revealed that the ANN-based predictor achieved superior performance for 
the HLA-A*0202 molecule by achieving the maximum Aroc value of 0.97 as compared to the PSSM 
predictor, having a value of 0.93. Furthermore, most natural MHC binders were identified within the top 
5% with an average relative rank (%) of 2.23 and 3.13 for predictors PSSM and ANN, respectively, on the 
NetCTLpan dataset. Likewise, evaluation on the SARS-CoV-2 dataset of HLA-A*0201 revealed that the PSSM 
predictor (2.46%) performed better than the other contemporary CTL epitope forecast methods like 
naturally eluted ligands (EL) of NetMHCpan 4.0 (2.66%), NetCTLpan 1.1 (2.69%), and binding affinity (BA) 
of NetMHCpan 4.0 (3.33%), respectively.
Conclusions: The application of these predictive models offers a significant reduction of approximately 
97% in the resources typically required for epitope identification, including costs related to materials, 
labor, and time. As such, these models represent a valuable advancement in the rational design of more 
efficient, cost-effective, and innovative biotherapeutics.
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Introduction
In the current trend, epitope-based bio-therapeutic products such as prophylactic vaccines and antibodies 
are critical in health care [1]. Specifically, vaccines based on the T-cell epitope are the most important 
method of triggering cellular immune response and clearing intracellular infections [2]. The responsibility 
of carrying out this task is specifically assigned to cytotoxic T lymphocytes (CTL) [3]. A crucial role of CTL is 
their ability to induce apoptosis of infected/altered cells, facilitated by helper T lymphocytes (HTL) that 
produce cytokines to modulate the activity of immune response cells [4]. The process of antigen processing 
and presentation, which involves the recognition of CTL epitopes, encompasses three essential stages: the 
proteasomal degradation of an antigen, the translocation of the antigenic fragment via the transporters 
associated with antigen processing (TAP) transport system, and the binding of the fragment to major 
histocompatibility complex (MHC) class I molecules [5]. The proteasome is responsible for producing the C-
terminus of peptides [6]. A portion of these peptides is capable of being transported into the endoplasmic 
reticulum (ER) via the TAP, where subsequent N-terminal trimming takes place [7, 8], resulting in peptides 
of suitable length (approximately 8 to 10 residues) which can eventually bind to MHC class I molecules [9]. 
The resulting MHC class I-peptide complexes are subsequently translocated to the cell surface, which can be 
recognized by epitope-specific CTL receptors [10]. The immunodominance of a peptide is largely influenced 
by its capability to interact with an MHC class I molecule [11]. Therefore, the development of an assay to 
evaluate peptides binding to MHC class I molecules is essential for accurately identifying CTL epitopes [12]. 
However, CTL epitope mapping for the prominent proteome pathogen, for instance, Plasmodium falciparum 
(~5,300 proteins), is expensive and arduous [13]. Consequently, researchers are presently employing 
contemporary computational models to forecast effective epitopes that can trigger specific immune 
responses [14, 15].

Formerly, numerous in silico tools and methods have been developed for predicting binding peptides 
to MHC class I and/or CTL epitopes based upon data retrieved from several immunological databases such 
as IEDB [16–18] and other repositories [19, 20]. Several research groups have created systematic and 
quantitative benchmarks to assess the forecasting performance of binding peptides to MHC class I 
molecules [21, 22]. Despite many available computational methods, forecasting CTL epitopes remains 
challenging to date [23]. Given that the majority of existing methods rely on training data, we can anticipate 
remarkable models solely by acquiring exceptional and current general data [24]. Therefore, a crucial step 
in creating a more precise and dependable forecasting model is the collection of experimentally reliable 
training and validation datasets.

The present study involved an extensive collection of MHC class I binding and non-binding peptides 
available at the Repository for Epitope Datasets (RED) and subsequent generation of position-specific 
scoring matrices (PSSM) [25, 26] and artificial neural networks (ANN) [27] models for predicting MHC class 
I binding peptides. Subsequently, a conclusive model for integrated prediction of CTL epitopes was 
developed utilizing experimentally validated weight matrices for TAP binding affinity (BA) and/or forecasts 
of constitutive and immuno-proteasomal cleavage as a filter [28]. The CTL epitopes forecasted by the 
present model are likely to have a C-terminus cleavage generated by the proteasome (constitutive and 
immunoproteasome), a moderate BA for TAP, and a high BA for a specific MHC class I molecule, which can 
be used in designing a universal vaccine that ultimately regulates the efficient HLA cross-presentation [29, 
30].

Materials and methods
Data retrieval of MHC class I binding and nonbinding peptides

A dataset of MHC class I binding and nonbinding peptides, with reduced similarity, was compiled for 22 
molecules from the supplementary data provided by the MHCIPREDS web server, which is accessible at 
RED (https://web.archive.org/web/20130828192234/http://ailab.cs.iastate.edu/red/). The log-
transformed MHC BA (LTMBA) values between 0 (no affinity) and 1 (very high affinity) were obtained 
using the relation, 1 – log (aff)/log (50,000), where aff is the experimentally measured BA in terms of half-

https://web.archive.org/web/20130828192234/http://ailab.cs.iastate.edu/red/
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maximal inhibitory concentration (IC50) with nM (nmol/L) unit. An LTMBA threshold value of 0.426, 
equivalent to an IC50 value of 500 nM, was used to classify binders and non-binders, which means peptides 
with LTMBA values ≥ 0.426 (IC50 ≤ 500 nM) were classified as binders (Table 1).

Table 1. MHC class I binding and nonbinding peptide dataset used in the study for training and evaluation of 
algorithms.

Training set Evaluation setS. No. MHC molecule 

Total no. of data No. of binding data# Total no. of data No. of binding data# No. of nonbinding data

1 HLA-A*0201 2,280 1,155 560 280 280
2 HLA-A*0203 1,080 555 283 141 142
3 HLA-A*0206 976 478 244 122 122
4 HLA-A*2902 266 134 66 33 33
5 HLA-A*6801 919 458 229 114 115
6 HLA-A*6802 678 334 168 84 84
7 HLA-A*3301 324 162 81 40 41
8 HLA-A*0101 258 128 65 32 33
9 HLA-A*0202 1,082 550 281 140 141
10 HLA-A*3002 232 115 58 29 29
11 HLA-A*3101 811 405 203 101 102
12 HLA-A*0301 1,006 503 250 125 125
13 HLA-A*1101 1,293 643 324 162 162
14 HLA-A*2402 317 157 80 40 40
15 HLA-B*0702 368 182 92 46 46
16 HLA-B*1501 296 148 72 36 36
17 HLA-B*3501 351 176 87 43 44
18 HLA-B*4002 111 56 28 14 14
19 HLA-B*4501 108 55 26 13 13
20 HLA-B*5101 161 78 40 20 20
21 HLA-B*5301 174 87 42 21 21
22 HLA-B*5401 147 73 36 18 18
MHC: major histocompatibility complex; #: no. of peptides with an IC50 ≤ 500 nM.

Similar peptides were removed to generate a similarity-reduced cross-validation dataset for each MHC 
allele, and the data were randomly partitioned. The present study used a 5-fold cross-validation approach, 
i.e., the dataset was split into five subsets. Initially, the dataset was scanned for equal binders and non-
binders based on LTMBA value ≥ 0.426 for each 22 MHC class I allele. Then, four out of five (4/5) of each 
dataset were used for the training, and 1/5 data points (peptides) were used for the blind evaluation 
(because none of the peptides in the evaluation set were included in the training set at any stage) as 
described by Nielsen et al. [31] (Supplementary file 1 in https://data.mendeley.com/datasets/dxz3dk3tcm/
1).

Construction of MHC class I binding motifs (PSSM)

Initially, based on a training dataset of fixed length (9-mer) MHC class I binding peptide sequences 
(positive) and using a statistical model of sequence weighting methods available at EasyPred modeler 
(https://services.healthtech.dtu.dk/services/EasyPred-1.0/), 22 PSSM (9 × 20) were constructed, which 
represents the frequencies of residues observed for a position in a multiple sequence alignment (MSA) 
assuming no correlations exist between the different peptide positions [32]. The score S of a peptide to a 
motif is usually calculated as the sum of the log-odds ratio.

S = logk ⁡(∏p
Ppa
qa ) = ∑plogk ⁡(Ppaqa ) (1)

https://data.mendeley.com/datasets/dxz3dk3tcm/1
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Where ppa is the probability of finding amino acid a (a can be any of the 20 amino acids) at position p (p 
can be 1 to 9) in the motif, and qa is the background frequency of amino acid a, logk is the logarithm with 
base k. The scores are often normalized to half-bit by multiplying all scores by 2/logk (equation 2). In half-
bit units, the log-odds score S is calculated as:

S = 2∑Plog2⁡(Ppaqa ) (2)

The three sequence weighting methods, namely Henikoff & Henikoff 1/nr [26], Hobohm [25] clustering 
at 62% identity, and no clustering, were used to compensate for the over-representation among MSA, along 
with four different weights on pseudo counts (50, 100, 150, and 200) [33–35]. In the Henikoff & Henikoff 
1/nr method [26], an amino acid a on position p in sequence k contributes a weight wkp = 1/nr, where n is 
the number of different amino acids at a given position (column) in the alignment and r is the number of 
occurrences of amino acid a in that column. The weight of a sequence is then assigned as the sum of the 
weights over all positions in the alignment. However, in the Hobohm 62% clustering method [25], each 
peptide k in a cluster is assigned a weight wk = 1/nc, where nc is the number of sequences in the cluster 
containing peptide k. When the amino acid frequencies are calculated, each amino acid in sequence k is 
weighted by wk. The Henikoff & Henikoff method is as fast as the computation time increases linearly with 
the number of sequences. In contrast, in the Hobohm clustering algorithm, computation time increases as 
the square of the number of sequences. Additionally, the binding potential (score) of any peptide sequence 
(query) to a specific MHC allele was determined by aligning the corresponding PSSM with the peptide 
sequence and summing the scores that correspond to the residue type and position in the PSSM. To narrow 
down the probable binders from the list of scored and ranked peptides, a binding cut-off score was 
established that encompasses 85% of the peptide sequences in the training dataset (positive data) [28, 36].

Training of ANN for the forecast of MHC class I binding peptides

An ANN is a computer simulation of a system of interconnected processing units that can be trained to 
extract and remember a pattern present within a data set. It can subsequently recognize that pattern when 
presented with new data. In binding a peptide to the MHC molecule, the amino acids might compete for the 
space available in the binding groove. Therefore, the mutual information in the binding motif will allow the 
identification of higher-order sequence correlations. Neural networks with hidden layers are used to 
describe sequence patterns with such higher-order correlations (https://teaching.healthtech.dtu.dk/
mpmbioinformatics/22801_04.pdf). Thus, the ANN simulations were performed for all 22 MHC class I 
molecules using the neural network options available in the EasyPred modeler [27]. Based on the other 
studies of MHC-binding peptides forecast, two ANN architectures, namely 180-1-1 and 180-2-1, were 
considered in the current study, which represent respective numbers of neurons in the input, hidden, and 
output layers, respectively [37, 38]. In these architectures, the input 9-mer peptide sequences were 
presented with 180 values (where individual amino acid was encoded as a binary string of length 20 with 
an exclusive position set to 0.9 and other positions set to 0.05). At the same time, the output from each 
neuron was transformed using the standard sigmoid function [39]. The training algorithm employed to 
generate the final network was the steepest descent method that learns from a training set of input-output 
pairs by modifying the network weight parameters such that the network generates a numerical value for 
each input close to the desired target output. Throughout the training process, the LTMBA value of a 
peptide served as a target value and was deliberated as a strong binder and a potent epitope for MHC class I 
alleles [40]. Nevertheless, the learning process utilized was error backpropagation [41]. In addition, the 
following parameters were used for ANN simulations: i) The top 80% of the training set was used to train 
the neural network, and the bottom 20% was used to stop the training to avoid fitting; ii) The learning rate 
was 0.005; iii) The maximum number of iterations was set to 300.

Evaluation parameters

The nonparametric performance measure, the area under the receiver operating characteristic curve (Aroc) 
and correlation coefficient (CC) values, was used to evaluate the predictive performance of the EasyPred 
modeler-based PSSM and ANN predictors. The receiver operator characteristic (ROC) curve is a plot of the 

https://teaching.healthtech.dtu.dk/mpmbioinformatics/22801_04.pdf
https://teaching.healthtech.dtu.dk/mpmbioinformatics/22801_04.pdf
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true positive rate [TP/(TP + FN)] on the Y-axis versus the false positive rate [FP/(TN + FP)] on the X-axis 
for the entire range of the decision thresholds where, true positive (TP) is an experimentally proven 
binding peptide forecasted as a binder, false positive (FP) is an experimentally proven nonbinding peptide 
forecasted as a binder, true negative (TN) is an experimentally proven nonbinding peptide forecasted as a 
non-binder and false negative (FN) is an experimentally proven binding peptide forecasted as nonbinder 
[42, 43]. An Aroc value can be interpreted as the probability of distinguishing a true positive from a false 
positive. For the calculation of Aroc, peptides were classified into binders and non-binders at a cutoff value 
of 500 nM. This affinity threshold is associated with the most well-known T-cell epitopes. The values Aroc ≥ 
0.90 indicate excellent, 0.90 > Aroc ≥ 0.80 good, 0.80 > Aroc ≥ 0.70 marginal, and Aroc < 0.70 poor 
predictions [42]. The CC is another widely used measure of the association between pairs of values 
(predicted versus experimental). It is calculated as:

CC =
∑i(ai − a−)(pi − p−)

∑i(ai − a−)2 ∑i(pi − p−)2 (3)

where the value pi is found using a prediction method of choice, and the ai is the known corresponding 
target value. However, the overlined letters denote average values. The value of 1 corresponds to a perfect 
correlation and –1 to a perfect anti-correlation, and 0 value corresponds to a random prediction [42].

Generalization test and Epstein-Barr virus case study

The generalizability test was used to assess the ability of the PSSM and ANN models, trained for the allele 
HLA-A*0201, to generalize to the other 21 alleles. Training was performed on the same dataset, followed by 
testing on evaluation datasets of all 22 alleles. In addition to the above, the performance of the PSSM and 
ANN predictors was validated through observations revealed in the very recent study conducted by 
Wohlwend et al. [44] called the Epstein-Barr virus (EBV) dataset. This research indicates that the dataset 
comprises 11 distinct immunogenic epitopes that are restricted by 5 HLA class I alleles derived from EBV, 
as identified through IFNγ ELISpot assays. The study employs PSSM and ANN models to effectively identify 
both confirmed and new HLA class I epitopes from EBV, which have been experimentally validated through 
in vitro and ex vivo studies.

Prediction and relative rank measurement of PSSM and ANN predictors on NetCTLpan and SARS-
CoV-2 dataset

The additional performance evaluation of the present EasyPred modeler-based PSSM and ANN predictors, 
along with recently published NetMHCpan 4.0 methods [eluted ligands (EL) and BA] (https://services.
healthtech.dtu.dk/services/NetMHCpan-4.0/), was estimated on NetCTLpan and SARS-CoV-2 dataset in 
terms of comparative ranking of the reported ligands among all nonamers included in the source protein as 
described by Larsen et al. [45, 46]. This NetCTLpan dataset was gathered from the supplementary material 
of the NetCTLpan1.0 method (https://services.healthtech.dtu.dk/suppl/immunology/NetCTLpan.php) 
reported as SYFPEITHI 9-mer training and evaluation dataset [47, 48]. The dataset involved 413 sequences 
of naturally processed T cell epitopes restricted by 7 HLA class I molecules that were common between the 
present study and the NetCTLpan1.0 tool (Supplementary file 2 in https://data.mendeley.com/datasets/
dxz3dk3tcm/1). At the time of conducting the present study, initially, no T cell epitope data were available 
for SARS-CoV-2, but there was a significant amount of information available on T cell epitopes for 
betacoronaviruses that cause similar diseases in humans, like SARS-CoV. Thus, we have compiled the SARS-
CoV-2 dataset from the study of Grifoni et al. [49] that contains 11 T cell epitopes (9-mer) derived from 
surface glycoprotein (NCBI ID: QHD43416) and nucleocapsid phosphoprotein (NCBI ID: QHD43423) that 
showed 100% identity with SARS-CoV epitopes. Additionally, evaluation of PSSM and ANN predictors on 
the recent SARS-CoV-2 dataset of Gfeller et al. [50] was performed for prediction and % rank analysis of 
CD8+ T cell epitope in their source protein using allele-specific cutoff score.

https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/services/NetMHCpan-4.0/
https://services.healthtech.dtu.dk/suppl/immunology/NetCTLpan.php
https://services.healthtech.dtu.dk/suppl/immunology/NetCTLpan.php
https://services.healthtech.dtu.dk/suppl/immunology/NetCTLpan.php
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https://data.mendeley.com/datasets/dxz3dk3tcm/1
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Integrated forecast of CTL epitope processing

The CTL epitope processing forecast integrated the three significant forecast steps in the filtering approach, 
including MHC class I BA, TAP transport efficiency, and C-terminal proteasomal cleavage (Figure 1). The 
details are described below:

Figure 1. Flow chart indicating the integrated forecast of cytotoxic T lymphocytes (CTL) epitopes based on the 
EasyPred modeler. MHC: major histocompatibility complex; TAP: transporters associated with antigen processing.

Amino acid sequences of a given target protein were parsed into 9-mer overlapping peptides. 
Peptides were then scored using EasyPred-based PSSM and ANN predictors, and values above the 
defined threshold (Table 2) for each 22 MHC class I allele were forecasted as binders. In the case of 
PSSM predictors, we calculated the threshold scores in terms of predicting peptides that bind with 
85% of all epitopes in the training set because an established threshold associated with 
immunogenicity (i.e., IC50 ≤ 500 nM) covers 80–90% of all immunogenic epitopes [51]. However, in 
the case of ANN predictors, the threshold value of an IC50 less than 500 nM was considered for 
binder forecast.

1.

Forecasted MHC class I binders were again scored by the quantitative weight matrix (9 × 20) for 
TAP BA in terms of –log IC50 (pIC50) described by Peters et al. [52] (Table S1) and/or Doytchinova et 
al. [53] (Table S2).

2.

Peptides with scores less than the selected threshold value (default, pIC50 < 4) were considered as 
TAP binders. The TAP transports peptides into the ER that are potentially N-terminally extended 
from the ligand that ends up in MHC. This means that the peptide that binds to MHC does not 
necessarily need to be a suitable substrate for TAP [52].

3.

Subsequently, the proteasomal (constitutive or immuno) cleavage score of 12-mer overlapping 
peptide fragments generated from the target protein sequence was calculated along with recording 

4.
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of C-terminal position at the cleavage site (i.e., position of the sixth amino acid in the target protein) 
by using a quantitative cleavage weight matrix (12 × 20) published by Toes et al. [54] (Table S3 and 
S4).

The query 12-mer peptide with a score above a chosen threshold value (corresponding to 1–10%) 
was forecasted to be cleaved between the sixth and seventh amino acids [55].

5.

Finally, MHC class I and TAP binding peptides identified through the above steps involving 
proteasomal (constitutive or immuno) cleavage site position at their C-terminal (steps 1–5) were 
considered CTL epitopes.

6.

Table 2. MHC class I allele-specific binding affinity cutoff of PSSM predictor, along with worldwide frequency in the 
human population sourced from IEDB and Paul et al. [64].

S. No. MHC class I allele Worldwide population frequency of allele (%) PSSM predictor binding cutoff score

1 HLA-A*0201 25.2 –0.007
2 HLA-A*0203 3.3 1.379
3 HLA-A*0206 4.9 1.625
4 HLA-A*2902 2.9 3.839
5 HLA-A*6801 4.6 3.362
6 HLA-A*6802 3.3 2.305
7 HLA-A*3301 3.2 4.660
8 HLA-A*0101 16.2 3.933
9 HLA-A*0202 0.28 3.984
10 HLA-A*3002 5.0 4.77
11 HLA-A*3101 4.7 2.651
12 HLA-A*0301 15.4 3.800
13 HLA-A*1101 12.9 2.832
14 HLA-A*2402 16.8 2.465
15 HLA-B*0702 13.3 2.835
16 HLA-B*1501 5.2 1.829
17 HLA-B*3501 6.5 2.363
18 HLA-B*4002 3.5 5.415
19 HLA-B*4501 0.63 5.736
20 HLA-B*5101 5.5 8.074
21 HLA-B*5301 5.4 7.923
22 HLA-B*5401 0.56 7.050
MHC: major histocompatibility complex; PSSM: position-specific scoring matrices.

Results
Construction and evaluation of PSSM and ANN predictors

Sequence weighting methods have been employed in creating a PSSM from frequencies of residues 
surveyed for a position in an MSA of MHC binders [32]. The present study utilizes three sequence weighting 
methods (Henikoff & Henikoff 1/nr, clustering at 62% identity, and no clustering) available at the EasyPred 
modeler (https://services.healthtech.dtu.dk/services/EasyPred-1.0/) for the construction of MHC allele-
specific PSSM, including four corrections for low counts (weight on pseudo counts) 50, 100, 150, and 200 
[34, 35]. As peptides in the evaluation dataset are not included in the training dataset, it is equivalent to a 
blind test [27]. For each MHC class I allele, only those PSSM were selected as predictors that gave maximum 
predictive performance evaluated in terms of Aroc and CC values (Table S5). The Aroc value operates 
independently of the anticipated scale, as it assesses the ranking of predictors and remains unaffected by 
the dataset’s composition, including varying ratios of binders and non-binders. The Aroc value provides a 
crucial metric for evaluating forecast quality, with a score of 0.5 indicating random forecasts and 1.0 
representing perfect forecasts. Conversely, the CC value of one corresponds to perfect correlation, a value of 
zero indicates a random estimate, and a value of minus one signifies perfect anti-correlation. The Aroc value 

https://services.healthtech.dtu.dk/services/EasyPred-1.0/
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principally captures the probability that, given two peptides, one a binder and the other a non-binder, the 
forecasted score will be higher for the binder than the non-binder [43]. Furthermore, the MSA of each HLA 
class I allele binding motif was visualized by using the graphical depiction (sequence logo) method [56], 
where the height of a column of letters represents the information content (I) at that position. The height of 
each letter within a column is proportional to the frequency of the corresponding amino acid at that 
position and colored according to their physicochemical properties, such as acidic (DE)-red, basic (HKR)-
blue, hydrophobic (ACFILMPVW)-black, and neutral (GNQSTY)-green (Figure S1). The similarity in peptide 
binding preferences is observed when comparing the MHC class I binding motif logo developed in the 
presented study with the logo stored in the MHC motif viewer. In the MHC motif viewer database, pairwise 
assessments of MHC binding motifs facilitate immediate analysis of epitope selection data in patient cohorts 
with HLA diversity [57]. For example, when comparing the binding motif of human (HLA-A*2402) to the 
chimpanzee (Patr-A*0701) allele, an unmistakable resemblance between the binding motifs of the two 
alleles was spotted, as noted by Sidney et al. [58]. A similar conserved motif for MHC class I peptide binding 
has also been shown between humans and rhesus macaques, as demonstrated by Dzuris et al. [59]. 
Consequently, the ability to differentiate various MHC binding specificities (motifs) has applications that 
range from the design of experiments for peptide binding assays to personalized medicine for a significant 
population, which includes the selection of peptides that are immunogenic in both humans and model 
organisms [60, 61].

Moreover, in the case of ANN simulations, two architectures (180-2-1 and 180-1-1) were initially used, 
and the input peptide sequences (binders with IC50 ≤ 500 nM and rest non-binders) were offered in a 
conventional encoding, as described by Nielsen et al. [27]. Further, the network weights were renewed 
using gradient descent backpropagation algorithms. For a given peptide sequence of 9-mer, the ANN 
weights were renewed to lower the sum of squared errors between the forecasted and experimentally 
measured BA (target value). The training of the neural networks was performed using a five-fold cross-
validation (Supplementary file 1 in https://data.mendeley.com/datasets/dxz3dk3tcm/1). For each of the 
five training and test subsets, a series of network training sessions is conducted, each utilizing two distinct 
hidden neurons (1 and 2) along with a single bin for balanced training. For every series, a single network 
exhibiting the highest test performance (measured by the highest CC and the lowest square error) was 
ultimately chosen as an ANN predictor (refer to Table S6). Subsequently, the predictive performance of the 
corresponding ANN network for each MHC allele was assessed based on Aroc (see Table S6). From these 
findings, it can also be deduced that increasing the number of hidden neurons within the ANN architecture 
does not have a significant impact on performance. Consequently, the Aroc value for the ANN predictor 
featuring a single hidden neuron was utilized for comparison with the PSSM predictor. It is crucial to note 
that, initially, a BA (IC50) threshold for the MHC class I allele was established, where IC50 values exceeding 
500 nM were identified in competitive assays (involving an MHC and isolated peptides) and were compared 
with immunogenicity across various marker peptides and nonimmunogenic peptides [62]. This affinity 
threshold has been identified as being associated with the majority of known T-cell epitopes [63]. 
Nevertheless, this threshold value has also been demonstrated to be specific to MHC class I alleles [64]. An 
alternative way to assess the efficacy of peptide binding to MHC class I involves measuring the stability of 
peptide-MHC complexes over time, but affinity and stability do not rank the peptides in the same order 
within their source proteins and remain debatable [65, 66]. To compare the performance of ANN and PSSM 
predictors, the identical evaluation dataset from MHCIPREDS-IEDB was utilized. Consequently, upon 
comparison, the predictive performance of the ANN models was determined to be superior to that of the 
PSSM models for most of the MHC class I molecules (Figure 2). The ANN performance in terms of Aroc is 
maximum (0.97) for the alleles HLA-A*0202 and HLA-A*0203, as well as the minimum (0.56) for allele 
HLA-A*2902, whereas the maximum PSSM predictor performance in terms of Aroc is (0.93) for the allele 
HLA-A*0203 and the minimum (0.49) for allele HLA-B*4501 (Figure 2).

From the above results, it is clearly stated that PSSM predictors, to a high degree, describe the binding 
motif of the corresponding HLA class I alleles, though they demonstrate lower Aroc than the ANN 
predictors. This is to be expected since the ANN can take higher-order sequence associations into account 

https://data.mendeley.com/datasets/dxz3dk3tcm/1
https://data.mendeley.com/datasets/dxz3dk3tcm/1
https://data.mendeley.com/datasets/dxz3dk3tcm/1
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Figure 2. Histogram of the predictive performance measured in terms of the Aroc value of PSSM and ANN predictors 
for 22 MHC class I alleles trained and evaluated on the MHCIPREDS-IEDB dataset. Aroc: area under the receiver operating 
characteristic curve; PSSM: position-specific scoring matrices; ANN: artificial neural networks; MHC: major histocompatibility 
complex.

for a fixed length of MHC binding peptides [27]. Moreover, not only the size of the training and validation 
dataset but also the choice of specific algorithms can influence the efficiency of the forecast. To integrate 
PSSM-based MHC class I predictor in CTL epitope processing identification, we calculated the binding 
thresholds in terms of predicting peptides that bind with an IC50 value less than 500 nM, an established 
threshold associated with immunogenicity for 85% of all epitopes in the training set [51]. These binding 
threshold scores for each of the 22 MHC class I molecules were determined for PSSM predictors to 
demarcate the range of putative binders among the top-scoring peptides (Table 2). Paul et al. [64] also 
revealed similar observations that different MHC molecules bind ligands at different (forecasted) binding 
thresholds (scores). If a single criterion for MHC class I alleles has to be deliberated, then it is preferable to 
select absolute BA, as in the case of the ANN predictor, where IC50 ≤ 500 nM could be regarded as a 
reasonably good “universal” binding threshold. In a similar study, Bonsack et al. [67] confirmed the decisive 
threshold of IC50 ≤ 500 nM for MHC class I binding peptides through in vitro validation. However, predictive 
efficacy is increased using allele-specific affinity thresholds.

Thus, based on these observations, the PSSM-based MHC class I binding forecasts were applied without 
rescaling, thereby preserving prospective fundamental biological differences between MHC class molecules. 
However, ANN-based MHC class I binding peptide forecasts were performed with IC50 ≤ 500 nM (LTMBA 
value ≥ 0.426).

Evaluation of the EBV epitope dataset

The PSSM and ANN predictors successfully identified the EBV epitopes as revealed in the study conducted 
by Wohlwend et al. [44], above the chosen threshold (Table 2), except the epitope IACPIVMRY restricted by 
the HLA-B*1501 allele with a comparable BA score of 0.411 compared to the ANN predictor threshold 
(LTMBA value) of 0.426 (Table 3). This clearly indicates the real-life application of models in the 
identification of both established and novel HLA class I epitopes from EBV.
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Table 3. List of EBV epitopes used in the present study derived from Wohlwend et al. [44].

S. No. CD8+ T cell epitope HLA binding allele PSSM
predictor score

ANN
predictor score (binding affinity)

1 AFDQATRVY HLA-A*0101 8.505 0.438
2 HLSQAAFGL 6.252 0.633
3 SIIPRTPDV 6.581 0.46
4 YVLDHLIVV

HLA-A*0201

9.036 0.769
5 RYSIFFDYM 8.583 0.45
6 TYPVLEEMF

HLA-A*2402
7.784 0.455

7 IPQCRLTPL 12.551 0.454
8 RPPIFIRRL

HLA-B*0702
10.057 0.495

9 IACPIVMRY 6.259 0.411
10 SQISNTEMY 10.109 0.486
11 VQTAAAVVF

HLA-B*1501

6.888 0.428
EBV: Epstein-Barr virus; PSSM: position-specific scoring matrices; ANN: artificial neural networks.

Generalizability evaluation

The generalization ability of the MHC class I binding prediction model is essential for epitope prediction, as 
there are many HLA alleles with inadequate data for training an allele-specific model [68]. Therefore, we 
have performed a detailed analysis of the performance of PSSM/ANN predictors trained on one allele and 
their ability to accurately predict other alleles in their evaluation datasets. Pan-specific algorithms can 
predict peptide binding to HLA alleles for which limited or even no experimental data are available [69]. In 
Figure 3, the Aroc values for the models trained on the HLA-A*0201 dataset are given for 22 different 
alleles. The ANN model excellently performs over the PSSM model for alleles of the HLA-A*02 type, but for 
the other alleles, the performance of both models is poor, except for HLA-B*4002, 4501, 5101. The 
prediction capabilities are good to marginal for some alleles, suggesting that cross-allele prediction is 
feasible in some cases. This may be due to MHC supertype classification systems that make clustered sets of 
HLA molecules with largely overlapping peptide repertoires. These classification systems normally depend 
on descriptions such as published motifs and/or analysed shared repertoires of binding peptides, etc. [70–
73]. Generally, HLA-A and -B alleles are not clustered in the same supertype, but our PSSM/ANN predictor 
trained on HLA-A*0201 allele was able to make reasonable predictions for HLA-B*4002, 4501, and 5101 
alleles.

Rank measure analysis of PSSM and ANN predictors with NetMHCpan 4.0 and NetCTLpan 1.1
NetCTLpan dataset

Although the existence of homologous peptides between training and testing datasets has been avoided to 
provide real-world estimates of forecast performance metrics, the relative ranking of diverse predictors is 
principally unaffected by the existence of homologous peptides [63]. Thus, the additional performance 
evaluation of the present PSSM/ANN predictors was estimated in terms of the relative ranking of the 
reported ligands between all nonamers included in the source protein as described by Larsen et al. [45, 46]. 
This evaluation indicates how large a portion of the peptides for a provided protein needs to be verified to 
identify the new epitopes [74]. For each of the stated ligands in the NetCTLpan dataset (Supplementary file 
2 in https://data.mendeley.com/datasets/dxz3dk3tcm/1), the source protein was identified, and the 
affinity of all nonamers contained in the source protein was forecasted (assuming that all nonamers, except 
for the reported ligand, are non-binders). Here, we define the term reliability of a forecast method as the 
probability of identifying an epitope in each protein within a certain top percentage of the peptides [45]. 
The rank measure performance of the NetMHCpan 4.0 method based on EL (1.11%) and BA (3.19%) 
showed similar results (comparatively higher average values) as compared to PSSM (2.23%) and ANN 
(3.13%) predictors. The results from these evaluations are encouraging because the most natural MHC 
binders compiled in the NetCTLpan dataset were identified within the top 5% (Table S7; Table 4). 
Therefore, in terms of wet laboratory work, nearly ~97% less expenses are consumed on materials, labor, 

https://data.mendeley.com/datasets/dxz3dk3tcm/1
https://data.mendeley.com/datasets/dxz3dk3tcm/1
https://data.mendeley.com/datasets/dxz3dk3tcm/1
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Figure 3. The cross-allele performance of the PSSM and ANN prediction models, trained on the HLA-A*0201 dataset 
and tested on the evaluation dataset of all 22 alleles. Aroc: area under the receiver operating characteristic curve; PSSM: 
position-specific scoring matrices; ANN: artificial neural networks.

and time for the peptides that require experimental verification to detect new epitopes in an antigen. 
However, the NetCTLpan method reports a rank measure of 3.7% for the peptides that need to be 
experimentally verified to detect new epitopes with 90% likelihood. Thus, for a hypothetical protein of 300 
peptides, this means that, on average, 7 and 9 peptides need to be tested to identify the epitope using PSSM 
and ANN predictors, respectively. The corresponding numbers reported for NetCTL, NetMHCpan, and 
NetCTLpan were 17, 13, and 11 peptides, respectively [46, 47]. Using the NetCTLpan tool, the experimental 
effort to discover 90% of new epitopes can be minimized by 15% and 40%, respectively, compared to the 
NetMHCpan and NetCTL tools [47]. However, the corresponding peptide numbers are 3 and 10 to identify 
new CTL epitopes using NetMHCpan 4.0 (EL) and NetMHCpan 4.0 (BA), respectively. Thus, the overall 
performance of EasyPred modeler-based predictors (PSSM and ANN) was found to be similar to 
NetMHCpan 4.0 (BA) but lower than NetMHCpan 4.0 (EL).

Table 4. Rank measure analysis of MHC class I predictors (PSSM and ANN) based on the NetCTLpan dataset.

Average relative rank of epitopes in their source antigen (%)S. No. MHC class I allele No. of antigen

PSSM ANN NetMHCpan 4.0 (EL) NetMHCpan 4.0 (BA)

1 HLA-A*0101 29 0.36 1.84 0.3246 0.3159
2 HLA-A*0201 254 3.30 4.17 3.1785 17.405
3 HLA-A*1101 14 1.72 0.80 0.399 0.4765
4 HLA-A*6801 12 3.05 3.11 0.9291 0.907
5 HLA-A*0301 65 2.77 3.68 1.5704 1.4966
6 HLA-B*0702 25 1.59 4.71 0.6781 0.9225
7 HLA-B*4501 14 2.83 3.66 0.7079 0.8363
Average 2.23 3.13 1.11 3.19
MHC: major histocompatibility complex; PSSM: position-specific scoring matrices; ANN: artificial neural networks; EL: eluted 
ligands; BA: binding affinity.
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SARS-CoV-2 dataset

In a comparative evaluation (average rank measure analysis) of EasyPred modeler-based predictors (PSSM 
and ANN) on the SARS-CoV-2 dataset of Grifoni et al. [49], the PSSM predictor (2.46%) performed better 
than other T-cell epitope forecast methods, NetMHCpan 4.0 (EL) (2.66%), NetCTLpan 1.1 (2.69%), 
NetMHCpan 4.0 (BA) (3.33%), as well as its own ANN predictor (4.67%), respectively (Table 5). Similar 
results were also observed for evaluation on the SARS-CoV-2 dataset of Gfeller et al. [50]. In which both the 
predictors (PSSM and ANN) identified all the CD8+ T cell epitopes above their cutoff score, except for a few: 
LYLYALVYF (A*2402: 0.418), LWLLWPVTL (A*2402: 0.402), FTSDYYQLY (A*2402: 0.326), and YFPLQSYGF 
(A*2402: 0.38) in the case of ANN. Moreover, % rank measure analysis in their source protein revealed that 
the PSSM predictor identified the epitopes within 3% (average 2.4%) (Table 6). However, Nosrati et al. [75] 
recently established that ANN was the most accurate algorithm for distinguishing epitopes and non-
epitopes of the Crimean-Congo hemorrhagic fever virus with an accuracy of 90%. Such evaluation 
knowledge is of urgent significance that would assist COVID-19 vaccine developers in facilitating the 
evaluation of vaccine candidate immunogenicity against human populations [76].

Table 5. Comparative using rank measure evaluation of PSSM and ANN predictors with up-to-date tools NetMHCpan 4.0 
(EL/BA) and NetCTLpan 1.1 on SARS-CoV-2 dataset from the study of Grifoni et al. [49].

Average relative rank of epitopes in their source antigen (%)S. No. T cell epitope Source protein

PSSM
predictor

ANN
predictor

NetMHCpan 4.0 (EL) NetMHCpan 4.0 (BA) NetCTLpan 1.1

1 ALNTLVKQL Spike 2.77 6.80 1.42 3.87 2.06
2 VLNDILSRL Spike 0.79 0.95 0.16 0.47 0.32
3 LITGRLQSL Spike 2.29 5.06 8.06 9.64 5.06
4 RLNEVAKNL Spike 4.98 9.33 1.11 7.06 1.42
5 NLNESLIDL Spike 1.58 4.35 0.79 1.58 1.11
6 FIAGLIAIV Spike 0.40 0.28 0.40 0.16 0.79
7 ALNTPKDHI Nucleocapsid 3.16 8.03 2.43 4.62 6.08
8 LQLPQGTTL Nucleocapsid 2.92 5.12 1.70 2.91 1.12
9 LALLLLDRL Nucleocapsid 7.06 10.71 12.41 5.56 10.94
10 LLLDRLNQL Nucleocapsid 0.24 0.24 0.24 0.24 0.24
11 GMSRIGMEV Nucleocapsid 0.71 0.49 0.49 0.49 0.49
Average 2.46 4.67 2.66 3.33 2.69
PSSM: position-specific scoring matrices; ANN: artificial neural networks; EL: eluted ligands; BA: binding affinity.

Table 6. Evaluation of PSSM and ANN predictors on the SARS-CoV-2 dataset of Gfeller et al. [50] using threshold 
(cutoff score) and % rank measure analysis in the source protein.

PSSM predictor ANN predictorS. 
No.

CD8+ T cell 
epitope

Source protein (SWISS-
PROT accession no.)

HLA binding 
allele

Score % rank Score % rank

1 LYLYALVYF AP3A (P0DTC3) 9.218 0.75 0.418 13.48
2 LWLLWPVTL VME1 (P0DTC5)

A*2402
8.366 1.4 0.402 22.43

3 LPPAYTNSF SPIKE (P0DTC2) B*0702, 
B*3501, 
B*5301

9.718, 10.505, 
9.574

0.32, 0.24, 
0.87

0.457, 
0.447, 0.495

2.21, 19.37, 
6.56

4 FTSDYYQLY AP3A (P0DTC3) A*0101, 
A*2402, 
A*2902

14.473, 2.999, 
11.658

0.37, 
16.48, 0.37

0.491, 
0.326, 0.540

34.08, 
46.81, 22.47

5 YFPLQSYGF SPIKE (P0DTC2) A*2402 7.166 1.42 0.38 34.78
6 SASKIITLK AP3A (P0DTC3) A*0301, 

A*1101
6.574, 5.973 2.25, 1.9 0.672, 0.790 0.37, 0.37

PSSM: position-specific scoring matrices; ANN: artificial neural networks.
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CTL epitope processing forecast

The PSSM and ANN predictors of the EasyPred modeler described in the present study have been shown to 
perform best when high-sensitivity forecasts for CTL epitope identification are focused (Figure 4). Most of 
the MHC molecules achieve a sensitivity of 80% at the threshold determined by the score of the top 85% in 
the training set, while some alleles (HLA-A*0101, A*1101, and A*6801) approached the sensitivity of 100%. 
If focusing on optimal sensitivity, it was shown that the forecast algorithm should exclude both proteasomal 
cleavage and TAP forecasts, reducing the method to the MHC binding forecast alone (Figure 4). Whether 
this observation reflects actual biological aspects of the specificity overlap between the three pathway 
players or it simply occurs because the forecast of MHC class I affinity has gained accuracy during the 
recent years, the predictors for TAP transport efficiency and proteasomal cleavage have not much changed 
or been renewed [77].

Figure 4. Sensitivity analysis of PSSM and ANN predictors, TAP-2003 [52] and TAP-2004 [53] matrices, as well as 
constitutive- and immuno-proteasomal cleavage matrices in identifying CTL epitopes. MHC: major histocompatibility 
complex; PSSM: position-specific scoring matrices; ANN: artificial neural networks; TAP: transporters associated with antigen 
processing; CTL: cytotoxic T lymphocytes.

Discussion
Antigen processing happens before the MHC binding, revealing the pool of peptides that can become T-cell 
epitopes. MHC class I-restricted CTL epitopes, in general, are obtained from protein pieces produced by the 
protease activity of the constitutive and/or immunoproteasome. The activity of several amino peptidases 
with the resulting loss of information shapes the N-terminus of every MHC class I-restricted peptide. In 
contrast, the C-terminus results from the proteasomal cleavage [78]. Moreover, it is believed that the 
immuno-proteasome is more responsible for producing CTL epitopes [54, 79, 80]. As a first approximation, 
proposed by Assarsson et al. [81], about 15% of all peptides that can be made from a protein are TAP 
transported into the ER, and about 2.5% of peptides that are made will bind to an MHC molecule. Further, 
about 50% of MHC binding peptides presented on the cell surface will be recognized by a CD8+ T cell 
receptor (TCR) and considered CTL epitopes. Using TAP binding as a filter, Doytchinova et al. [53] have also 
shown that the forecast of the peptide unable to bind with TAP decreases the number of peptides binding to 
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MHC by 10–30% (depending on MHC allele). Although there are several bioinformatics programs available 
for the forecast of proteasomal cleavage sites in antigens [82, 83], substantial success has been realized in 
blending these into an integrated CTL epitope forecast system. RankPep [36], ProPred1 [29], MAP [84], and 
PEPVAC [85] programs provide a platform for a concurrent forecast of proteasomal cleavage and MHC 
binding. Other virtual models of the endogenous antigen processing pathway have also been developed, 
incorporating proteasomal cleavage, TAP transport, and MHC class I binding forecasts [86, 87] such as 
MAPPP [84], WAPP [88], EpiJen [28], MHC-pathway [89], and NetCTL [45]. Many of these methods have 
also proved their efficiency in screening new epitopes and designing poly-epitope vaccines for cancer [90, 
91], tuberculosis [92], Ebola [93], dengue [94], novel coronavirus [95], etc. In a large-scale benchmark 
evaluation of a publicly available MHC class I pathway presentation forecast server, Larsen et al. [46] 
showed that the NetCTL method substantially outperformed all these methods, closely followed by the MHC 
pathway. Further, the NetCTL method has also proven successful in the identification of CTL epitopes from 
Influenza [96], HIV [97], and Orthopoxvirus [98]. NetCTLpan [47] is also available for integrating many 
MHC class I allele binding, TAP transport efficiency, and proteasomal cleavage forecasts to an overall 
forecast of CTL epitopes. However, all these methods are limited because they allow for the forecast of 
peptide binding to pre-calculated parameters of MHC molecules and have one or more limitations. 
However, the current algorithms, PSSM and ANN predictors of the EasyPred modeler, are independent of 
using pre-calculated MHC binding parameters, and the user can make their own PSSM and ANN parameters 
for the forecast. Therefore, an integrated model was developed in the present study to predict CTL epitope 
primarily based on forecasting MHC class I binding and constitutive, as well as immuno-proteasomal 
cleavage and TAP binding as filters. This type of filtering algorithm has been shown to improve the forecast 
of CTL epitopes by decreasing the false positives and improving the process of drug and vaccine design 
strategies [28, 99]. It is worth noting that proteasomal cleavage, TAP transport, and MHC binding have 
largely undergone co-evolution so that MHC molecules have evolved to bind peptides in the ER. As a result, 
their combination does not provide vastly improved forecasts [89]. Thus, we recommend using the MHC 
class I binding forecasts as a primary tool to select candidate peptides for wet lab validations. We also 
recommend CTL processing forecasts to reduce further candidates to test in vitro/in vivo [51].

An increasing body of literature substantiates the prediction of direct T cell immunogenicity, which 
refers to the relative capacity of a specific set of peptides that are bound within an MHC complex and 
recognized by the TCR. In the MHC-peptide-TCR complex, the residues P1, P2, and P9 of the peptide are 
most likely to interact directly with MHC binding, whereas the other residues, P3 to P8, are more likely to 
engage with the TCR. These investigations have shown that certain amino acids, including tryptophan, 
phenylalanine, and isoleucine, are prevalent in immunogenic peptides, while other residues, such as serine, 
methionine, and lysine, are less common. This phenomenon may be attributed to the longer side chains of 
tryptophan and phenylalanine, which have a higher likelihood of interacting with the TCR [100]. 
Consequently, it is possible to generate more immunogenic peptides through amino acid substitutions in 
naturally occurring MHC class I-restricted epitopes, thereby enhancing the stability and affinity of the MHC-
peptide-TCR complex. This approach enhances the immunogenicity of MHC class I transitional affinity 
binders [101]. Furthermore, Rasmussen et al. [102] indicated that the stability of the peptide-MHC class I 
complex is crucial for eliciting T-cell responses. Therefore, parameters related to BA and stability are vital 
for characterizing and predicting peptide immunogenicity [103]. Given these more dependable structural 
models, peptide-based vaccines are likely the most favored and extensively researched due to their ease of 
synthesis and biocompatibility [104].

However, the efficacy of peptide vaccines tends to be compromised by various factors such as rapid 
clearance, extracellular and enzymatic degradation, poor solubility (due to the presence of hydrophobic 
peptides), reduced immunogenicity, and reduced uptake of the peptide by antigen-presenting cells (APC) 
[105]. With current advancements in nanobiotechnology-based delivery systems, such as self-assembled 
peptide nanoparticles (SANP) using spacers for separation of epitopes for proteasomal cleavage, which can 
efficiently deliver peptide vaccines to APC, could help to surmount the limitations and elicit T cell responses 
in humans [106–109]. Successful production and efficiency of such vaccine delivery systems require 
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deliberation of other variables, e.g., material toxicity, particle shape and size, surface charge, and stiffness or 
rigidity, which are crucial in various biological processes, such as bioavailability, biodistribution, and 
cytotoxicity, including activation of adaptive immune responses [110, 111] and specific other biomedical 
applications [112].

In conclusion, this study emphasizes the creation of an innovative forecasting model aimed at 
identifying peptide interactions with MHC class I molecules through the application of sequence weighting 
and ANN methodologies. As a result of this research, we have successfully established new forecasting 
parameters, specifically PSSM and ANN weights, for predicting MHC binding peptides. The models 
developed can be utilized alongside the EasyPred modeler to forecast MHC class I binding peptides, which 
includes the processing of CTL epitopes. Overall, the findings discussed highlight the importance of 
predicting MHC peptide binding for epitope identification, while also acknowledging the challenges that 
persist, indicating significant opportunities for enhancement and integration with other structure-based 
approaches. These forecasting techniques will relieve vaccinologists and immunologists from the burdens 
of uninformed experimentation, enabling them to devise improved, quicker, and more innovative methods 
for discovering new reagents, diagnostics, and vaccines.
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