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Abstract
Cutaneous lupus erythematosus (CLE) is the most common organ manifestation in individuals diagnosed 
with systemic lupus erythematosus (SLE). CLE can occur either alone or in association with SLE; in the 
latter case, it substantially increases the occurrence of disease flares and can cause disfigurement. The 
clinical pathogenesis of CLE is well established, as exposure to ultraviolet (UV) light and/or other 
environmental triggers, such as smoking or drug use, can lead to keratinocyte death in genetically 
susceptible individuals. This in turn activates cytotoxic T cells, plasmacytoid dendritic cells (pDCs), and B 
cells, creating a continuous interaction between the innate and adaptive immune systems. This interaction 
plays a pivotal role in CLE development, driving the formation of skin lesions. However, the molecular 
mechanisms underlying these cutaneous manifestations are not yet fully understood. While significant 
advances have been made in SLE treatment over the past few decades, U.S. Food and Drug Administration 
(FDA)-approved therapies remain limited to hydroxychloroquine, glucocorticoids, belimumab, and 
anifrolumab. Although new therapies for CLE have emerged, given the highly heterogeneous nature of the 
condition, personalized medicine is essential to prevent disfigurement and systemic disease flares. 
Understanding the molecular pathogenesis of CLE is crucial for developing targeted therapies and 
improving patient outcomes. This review presents current insights into CLE pathogenesis, highlighting key 
mechanisms driving the disease and exploring recent advances in treatments that have shown promise in 
clinical practice.
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Introduction
Systemic lupus erythematosus (SLE) is an autoimmune disease driven by autoantibodies (autoAbs), 
autoreactive B and T cells, and cytokine dysregulation, leading to systemic inflammation and organ damage 
[1–4]. The estimated prevalence of SLE in the United States ranges from 20 to 150 cases per 100,000 
individuals [5–8]. Cutaneous lupus erythematosus (CLE) is a prevalent manifestation of SLE that affects up 
to 85% of patients and can present as the sole clinical feature in some cases [9]. CLE often leads to 
significant disfigurement, impacting mental health, occupational productivity, and overall quality of life. 
Although the precise mechanisms underlying CLE remain incompletely understood, multiple factors, 
including genetic predisposition, sex, ethnicity, and environmental exposures, are believed to contribute to 
its pathogenesis.

CLE can be classified into three subtypes on the basis of its clinical presentation, disease course, and 
histological findings: acute CLE (ACLE), subacute CLE (SCLE), and chronic CLE (CCLE) (Table 1). These 
subtypes exhibit distinct patterns of systemic involvement, with ACLE showing the highest likelihood of 
progression to SLE and chronic discoid lupus erythematosus (CDLE) being the least likely to develop into 
systemic disease [10]. The progression of CLE to SLE occurs at varying frequencies across subtypes, i.e., in 
over 90% of ACLE cases, 50% of SCLE cases, and 28% of generalized DLE cases, and approximately 10% of 
lupus profundus and localized DLE cases evolve into SLE. Notably, lupus erythematosus tumidus is rarely 
associated with SLE [11–15]. Disease onset, disease progression, and treatment responses are influenced by 
socioeconomic determinants, including ethnicity, sex, income, and education, all of which impact the 
severity of CLE manifestations [16].

Table 1. Clinical subtypes of specific cutaneous manifestations of lupus erythematosus.

Subtypes of cutaneous lupus 
erythematosus (CLE)

Description Histopathologic findings*

Acute cutaneous lupus erythematosus (ACLE)
Localized (i.e., malar rash, 
butterfly rash)

•

Generalized/Disseminated 
(morbilliform)

•

82% photosensitivity†•
Transient (lasting from hours to weeks) and 
often occurs after sun exposure

•

Resolves without scarring•
Localized: mild erythematous to intense edema 
extending across the midface region and nasal 
bridge and sparing the nasolabial fold

•

Generalized: maculopapular rash•

Vacuolar interface dermatitis with 
keratinocyte necrosis

•

Superficial lymphohistiocytic 
infiltrate at the dermal-epidermal 
junction

•

Dermal mucin deposition [17]•

Toxic epidermal necrolysis 
(TEN)-like ACLE

• Erythema multiforme or TEN appearing 
eruption in pre-existing ACLE or SCLE lesions. 
With erythema multiforme (EM)-like 
presentation (also known as Rowell syndrome), 
lesions have a targetoid appearance, and with 
TEN presentation (also referred to as acute 
syndrome of apoptotic pan-epidermolysis or 
ASAP), there is diffuse erythema and Nikolsky 
sign (sloughing of the skin upon lateral 
pressure)

• Full-thickness epidermal necrosis; 
otherwise, histologic features are 
similar to those above [18]

•

Subacute cutaneous lupus erythematosus (SCLE)
76% photosensitivity†•
Resolves without scarring•
Annular: polycyclic plaques configuration with 
raised red border and central clearing

•

Psoriasiform: hyperkeratotic plaques potentially 
imitating psoriasis vulgaris

•

Similar histologic features to discoid 
lupus (see below), but often shows

A greater degree of epidermal 
atrophy and necrotic 
keratinocytes

i.

Less prominent hyperkeratosis, ii.

•Annular•
Psoriasiform/Papulosquamous•
Drug-induced (DI)-SCLE•
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Table 1. Clinical subtypes of specific cutaneous manifestations of lupus erythematosus. (continued)

Subtypes of cutaneous lupus 
erythematosus (CLE)

Description Histopathologic findings*

Localized: affects sun-exposed areas and 
shows a pattern of photodistribution

Sides of the face affected, and the central 
facial skin is usually unaffected

i.

V of the neckii.
Extensors of the upper extremityiii.

•

The drug-induced form may have a strong 
association with Ro/SS-A autoantibodies

•

follicular plugging, and minimal 
to absent basement membrane 
zone thickening [17, 19]

DI-SCLE histologic features are 
similar to those observed in other 
forms of SCLE [20, 21]

•

DI-SCLE may be histologically 
indistinguishable from idiopathic 
SCLE, requiring strong 
clinicopathologic correlation for 
accurate diagnosis. The presence 
of leukocytoclastic vasculitis, 
however, may favor DI-SCLE

•

Vesiculobullous annular• Vesiculobullous annular (also called bullous 
lupus): bullous or vesicular lesions 
corresponding to intense inflammation along 
the basement membrane; sometimes anti-
basement membrane antibodies are found, 
which may represent a concurrent presentation 
of bullous pemphigoid or epidermolysis bullosa 
acquisita in systemic lupus erythematosus 
(SLE).

• Distinguishing features include a 
subepidermal blister with 
neutrophils in the papillary dermis 
and perivascular chronic 
inflammatory infiltrate

•

Analysis of dermal mucin 
deposition, direct IF studies, and 
clinicopathologic correlation 
analysis may help to differentiate 
this form of LE from other 
subepidermal blistering conditions 
[22, 23]

•

Neonatal LE• Polycyclic papulosquamous lesions in 
neonates driven by transplacental transfer of 
maternal antibodies

• Histologic features are similar to 
those observed in other forms of 
SCLE [24]

•

Less common variants:
Erythrodermici.
Poikilodermatousii.
EM-like (Rowell syndrome)iii.
Vesiculobullous annular 
SCLE

iv.

• Rowell syndrome: target-like erythematous 
plaques imitating erythema exsudativum 
multiforme

• Histologic features are similar to 
those observed in other forms of 
SCLE [18, 25, 26]

•

Chronic cutaneous lupus erythematosus (CCLE)
Discoid LE (DLE)

Localized DLEi.
Generalized DLEii.
Hypertrophic/Verrucous DLEiii.
Mucosal DLEiv.

• 46% photosensitivity†•
Lesions begin as flat or slightly elevated, 
sharply demarcated, red macules or papules 
with a scaly surface

•

Later, hyperkeratotic, central scarring plaques 
appear, with hyperpigmentation, alopecia in 
scalp lesions

•

Common locations:
Face, scalp, ears, and conchal bowli.

•

Vacuolar interface dermatitis with 
dense pandermal perivascular and 
peri-appendageal lymphocytic 
inflammation

•

Follicular hyperkeratosis/plugging•
Variable epidermal atrophy or 
epidermal hyperplasia, and scarring

•

Dermal mucin deposition•
Thickening of the basement 
membrane zone [27, 28]

•

LE tumidus• 63% photosensitivity†•
Violaceous or erythematous edematous 
papules and plaques in sun-exposed areas

•

Lesions have erythema and induration but lack 
scaling and follicular plugging

•

Common locations of lesions:
Face, upper trunk/upper chest, and upper 
arms

i.
•

Single or multiple lesions•

Dense perivascular and peri-
adnexal lymphocytic inflammatory 
infiltrate with abundant dermal 
mucin deposition

•

Distinguishing features include a 
lack of significant vacuolar interface 
dermatitis and follicular plugging.

•

Does not show prominent 
basement membrane zone 
thickening [29]

•

May appear histologically identical 
to Jessner lymphocytic infiltration of 
the skin

•
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Table 1. Clinical subtypes of specific cutaneous manifestations of lupus erythematosus. (continued)

Subtypes of cutaneous lupus 
erythematosus (CLE)

Description Histopathologic findings*

Lupus profundus (also known as 
lupus panniculitis)

• 0% photosensitivity†•
Intense inflammation in the fat leads to 
indurated plaques that can evolve into 
disfiguring, depressed areas

•

Retracted atrophic lesions mainly over proximal 
extremities and with a distinctive distribution 
predominantly on the face, upper arms, upper 
trunk, breasts, buttocks, and thighs

•

Lobular panniculitis with lymphoid 
follicles containing reactive 
germinal centers, clusters of B 
lymphocytes and plasmacytoid 
dendritic cells, mixed cell infiltrate 
with plasma cells, and polyclonal T-
cell receptor y gene 
rearrangements

•

Dermal mucin deposition, +/– 
vacuolar interface dermatitis [30–
32]

•

Chilblain LE/Perniosis LE• 0% photosensitivity†•
Tender erythematous lumps in acral areas•
Acral, dusky to purple plaques that worsen in 
cold temperatures

•

Dense dermal perivascular 
lymphocytic infiltrate, erythrocyte 
extravasation, and variable fibrin 
deposits within vessels 
(lymphocytic vasculitis)

•

Papillary dermal edema•
May show vacuolar interface 
dermatitis [33, 34]

•

LE/Lichen planus overlap•
Lichenoid CLE-lichen planus 
overlap syndrome (LE-LP 
overlap syndrome)

•
Overlap syndrome, in which one or more of the 
clinical, histological, and immunopathological 
features of both LE and LP are present [35]

•

Mainly painful, bluish-red plaques with atrophy 
and scaling, and hyperkeratotic papules and 
nodules predominantly on the extremities

•

Erythematous/Violaceous plaques and papules 
with scaling, overlapping histological features 
of CLE and LP, with or without serological 
markers

•

Red or dusky purple papules and plaques on 
the following:

Toes, fingers, and sometimes the nose, 
elbows, knees, and lower legs

i.

•

Lesions are brought on or exacerbated by cold 
temperatures and moisture

•

It may be difficult to distinguish by 
light microscopy alone; however, 
some authors have reported a 
double-layer indirect IF technique 
using patient serum and autologous 
lesional skin as substrates to 
establish the correct diagnosis [36]

•

Comedogenic LE• Comedogenic LE: a rare variant of chronic 
cutaneous lupus with comedones and 
inflammatory papules, and plaques resembling 
acne vulgaris, and also leading to scarring. 
Notably, discoid lupus lesions can also present 
with comedonal lesions, particularly in the ears

• Histologic features are not well 
documented in the literature; 
however, this subtype is reported to 
feature dilated follicles with 
prominent follicular plugging [37]

•

†: Photosensitivity (%) indicates the proportion of patients with each subtype that exhibit an increased skin reaction to sunlight, 
as quantified in clinical studies. *: Overlapping pathological features in several types of CLE include apoptosis, epidermal 
vacuolization, pervasive (including papillary and reticular dermis) inflammation, dermal mucin, basement membrane thickening, 
follicular plugging, and interface dermatitis [19]. IF: immunofluorescence.

CLE is diagnosed primarily through clinical evaluations, supported by histopathological examinations 
showing features such as apoptosis, interface dermatitis, and dermal inflammation [19]. In CLE, skin 
damage arises from a complex interaction between innate and adaptive immune responses, with 
keratinocytes playing a central role in disease initiation. UV radiation exposure can trigger keratinocyte 
apoptosis in susceptible individuals, leading to the release of intracellular debris. This, in turn, attracts 
inflammatory cells and promotes the secretion of cytokines and chemokines, ultimately driving an 
inflammatory cascade. A key consequence of this process is the overexpression of type I interferons (IFNs), 
which further amplify the immune response [29]. As the immune response intensifies, autoreactive T cells, 
plasmacytoid dendritic cells (pDCs), and B cells drive tissue damage, ultimately leading to lesion formation. 
These immune responses culminate in the deposition of autoAbs and immune complexes (ICs) at the 
dermal-epidermal junction, which manifests as interface dermatitis on hematoxylin and eosin (H&E) 
staining [19]. Immunofluorescence (IF) staining is used to detect immunoglobulin deposition at the 
dermoepidermal junction, which is an indicator of IC deposition and represents a positive result in the 
lupus band test [38].



Explor Immunol. 2025;5:1003222 | https://doi.org/10.37349/ei.2025.1003222 Page 5

Despite advances in our understanding of the clinical and immunopathological features of CLE, the 
molecular mechanisms driving disease pathogenesis remain poorly defined. Thus far, the U.S. Food and 
Drug Administration (FDA) has approved a limited number of therapeutic agents, including 
hydroxychloroquine, glucocorticoids, belimumab, and anifrolumab, which have shown varying degrees of 
efficacy. The heterogeneity of CLE underscores the necessity for more personalized treatment strategies, 
and a deeper understanding of the molecular underpinnings of CLE is critical for developing targeted 
therapeutic approaches that could improve clinical outcomes. This review explores the genetic, epigenetic, 
and cellular factors involved in CLE pathogenesis, as well as the available topical treatment options. 
Additionally, this study provides a framework for future research efforts aimed at elucidating the complex 
mechanisms driving this disease.

Genetic factors and epigenetic modifications in CLE
The genetic landscape of CLE is complex and shaped by both monogenic mutations and polymorphic 
variations that influence disease susceptibility (Table 2). A subset of lupus patients inherit monogenic 
mutations, such as those in the TREX1 gene, which encodes an enzyme crucial for breaking down cytosolic 
DNA [39]. When this process is disrupted, unprocessed DNA triggers an immune response, leading to 
familial chilblain LE, a condition characterized by painful, pernio-like nodules and recurrent swelling in the 
extremities [39].

Table 2. Genes associated with cutaneous lupus erythematosus (CLE).

Gene Associated subtype Gene function 
(expression/activity)

Reference(s)

HLA
HLA-DRB1*04 DLE High [40]
HLA-B8 DLE, SCLE (annular) High [41–43]
HLA-DR3 SCLE (annular) High [42, 43]
HLA-DR2 SCLE High [43]
HLA-DR5 SCLE (annular) Low [42]
HLA-DQA1 NLE (with an allele with glutamine at position 34 of the first 

domain); CCLE (with the OI02 allele)
High [44, 45]

HLA-DRw6 CLE High [41]
Non-HLA genes
Genetic polymorphisms

TREX1 CLE, SLE, FCL Low activity [39, 46–50]
MICA/B CLE, SLE High
IZKF CLE, SLE High
SAMHD1 CLE, FCL Low activity [51–53]
STING FCL High activity
Perforin SCLE Low
ITGAM DLE (with loci encoding integrin αM, also known as CD11b) High [54]
FCGRA Malar rash (with loci encoding low-affinity IgG Fc region 

receptor IIa)
High [55]

IFN-κ CLE (with a gene encoding IFN-κ) High [56]
Complement factors

Complement factor 
C1qA

SCLE Low [57]

Complement factor 
C2

SCLE, DLE Low [51, 58, 59]

C4 DLE (with the null C4 allele B*Q0) Low [60]
DLE: discoid lupus erythematosus; SCLE: subacute CLE; NLE: neonatal LE; FCL: familial chilblain lupus erythematosus; CCLE: 
chronic CLE; SLE: systemic lupus erythematosus; IFN: interferon.
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In addition to monogenic mutations, gene polymorphisms play a pivotal role in CLE by affecting key 
cellular processes, such as apoptosis, ubiquitination, debris clearance, and immune regulation [51]. 
Variants in genes such as SAMHD1 and those encoding complement factors (C1q and C2) further increase 
the likelihood of developing CLE lesions [51, 61]. Additionally, polymorphisms in human leukocyte antigen 
(HLA) genes have been linked to both CLE and neonatal lupus erythematosus (NLE), a rare condition 
affecting newborns that manifests as skin lesions, congenital heart block, and hematologic abnormalities 
[40, 44].

A genome-wide analysis of CCLE patients revealed striking similarities to SLE patients, particularly 
regarding the overexpression of genes associated with IFN signaling and apoptosis, two central pathways 
driving CLE pathology [62–65]. IFN-1 pathway genes (OAS1/2/L, IFIT1, and PLSCR1) and the chemokine C-
X-C motif chemokine ligand 1 (CXCL1) are notably upregulated in CCLE lesions [65, 66], supporting their 
role in disease progression. Moreover, genes involved in complement activation (C1R, C2, C1QB, C3AR1, 
CFB, CFD, and C4A/C4B) and leukocyte chemotaxis (FCGR3A, ITGAL, ITGB2, and NCF4) are dysregulated, 
further contributing to immune dysfunction.

While genetic changes lay the foundation for CLE development, epigenetic modifications add another 
layer of complexity to CLE pathogenesis. DNA hypomethylation in CD4+ T cells has been implicated in SCLE, 
as it alters the immune balance through the demethylation of key immune genes, including those at the 
perforin locus [67, 68]. Similarly, in CD4+ T cells in SLE, genes regulating inflammation, apoptosis, and cell 
migration are hypomethylated, promoting disease activity [69]. Notably, CXCL13 and TLR7 (Toll-like 
receptor 7) hypomethylation have been directly linked to skin damage in CLE [63, 69]. However, tumor 
necrosis factor (TNF) and TNF receptor family genes are epigenetically upregulated, amplifying the 
inflammatory responses characteristic of lupus [69].

Together, these genetic and epigenetic alterations underlie the complexity of CLE pathogenesis, with 
immune dysregulation, impaired debris clearance, and chronic inflammation converging to drive disease 
progression. Understanding these mechanisms not only improves our understanding of CLE pathogenesis 
but also paves the way for the development of targeted therapies aimed at modulating these underlying 
pathways.

Nonimmune cells
Keratinocytes

Keratinocytes, the primary cells of the epidermis, play a crucial role in the pathogenesis of CLE. In 
genetically susceptible individuals, exposure to UV radiation and other environmental factors induces 
keratinocyte death, leading to the release of damage-associated molecular patterns (DAMPs), including 
endogenous nucleic acids, high-mobility group box 1 (HMGB1) protein, and autoantigens such as Ro52 [70, 
71]. DAMPs are recognized by pattern recognition receptors (PRRs), such as melanoma differentiation-
associated protein 5 (MDA5), on keratinocytes, triggering the transcription of IFN-regulated genes via a 
TLR-independent pathway [10, 72]. This inflammatory response amplifies the autoimmune cascade in CLE 
[72]. Additionally, HMGB1 functions as a proinflammatory cytokine and an autoantigen, further 
contributing to tissue damage in CLE [73].

Additionally, keratinocytes secrete IFN-κ and IFN-λ (type I and type III IFNs), which, via self-signaling 
mechanisms, amplify the expression of IFN-responsive proinflammatory cytokines, such as IL-6, and 
chemokines, such as CXCL9-11, which bind to C-X-C motif chemokine receptor 3 (CXCR3) ligands to recruit 
more immune cells [72, 74, 75]. Consequently, cytotoxic T cells induce additional keratinocyte death 
through CXCR3-mediated mechanisms [70, 71]. This ongoing damage activates antigen-presenting cells 
(APCs), particularly DCs, which stimulate T- and B-cell responses. The autoAbs produced as a result of this 
process further target keratinocytes, perpetuating tissue damage and inflammation in CLE.

IFNs are activated via Janus kinase (JAK)-signal transducer and activator of transcription (STAT) 
signaling [74]. Nucleic acid motifs also activate the inflammasome via absent in melanoma 2 (AIM2) [76]. 
Interestingly, IFN-κ expression is upregulated, and basal phospho-STAT (pSTAT) activity is greater in the 
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healthy-appearing skin of CLE patients than in the skin of patients with other chronic inflammatory skin 
diseases, such as psoriasis [74].

UVB radiation upregulates the expression of Ro52 in keratinocytes and promotes its interactions with 
TNF-like weak inducer of apoptosis (TWEAK), which binds to its receptor, fibroblast growth factor-
inducible 14 (Fn14) [77, 78]. This interaction activates the NF-κB and PI3K/Akt pathways, leading to 
increased expression of Ro52 and activation of proinflammatory pathways, resulting in increased levels of 
proinflammatory cytokines [77, 78]. This sequential chemokine production sustains inflammation in the 
epidermal layer [62]. In established CLE lesions, keratinocyte apoptosis and proinflammatory chemokine 
production are limited to the dermal-epidermal junction, resulting in interface dermatitis [79]. On the other 
hand, keratinocytes from the healthy-appearing skin of CLE patients are more sensitive to UV radiation-
induced cytotoxicity than keratinocytes from healthy donors are [80, 81].

UV radiation also alters keratinocyte DNA, generating immunostimulatory motifs such as 8-
hydroxyguanosine [72]. Interestingly, compared with healthy individuals, CLE and SLE patients exhibit a 
larger number of dying keratinocytes and impaired clearance [81]. In CLE, autoAbs further amplify this 
response [82]. However, autoAbs targeting ribonucleoproteins may directly drive the formation of lupus 
lesions in mice [83].

Innate immune cells
pDCs and DCs

pDCs and DCs are APCs that play important roles in regulating inflammation in CLE and contribute to 
lesions. pDCs are specialized type I IFN-producing cells that express TLR7 and TLR9 and thus recognize 
nucleic acids, especially in the form of ICs [63]. pDCs are observed in skin biopsy samples from CLE 
patients, both with and without lesions, and are involved in the pathogenesis of both SLE and CLE [84–86]. 
The majority of pDCs are located within perivascular inflammatory areas in the dermis, whereas others are 
situated along the dermal-epithelial junction [85]. However, not all skin lesions contain pDCs [87]. Recently, 
single-cell RNA and spatial RNA sequencing revealed that the skin of CLE patients, both with and without 
lesions, harbors a type I IFN-rich environment attributed to CD16+ DCs, leading to proinflammatory 
subtypes [88].

Both DCs and pDCs are recruited to skin lesions through CXCL-chemokine interactions with CXCR3 by 
sensing nucleic acids released following keratinocyte death [62]. pDCs are further stimulated via TLRs, 
particularly TLR7 and TLR9 [89]. TLR9 and CD32 are activated upon the uptake of nucleic acids and ICs via 
endocytosis [90]. Once activated, pDCs produce large amounts of type I and type III IFNs, cytokines, and 
interleukins (ILs), further perpetuating the autoimmune response [91]. Additionally, the presence of type I 
IFN is essential for pDC maturation and migration [92]. Moreover, pDCs secrete large amounts of TNF and 
IL-6 in response to IFN-α, which further increases apoptosis [93], and contribute to the regulation and 
recruitment of T, B, and natural killer (NK) cells. The number of peripheral circulating pDCs is reduced in 
patients with LE, as pDCs preferentially migrate to affected tissues, including the skin [63]. While pDCs are 
most abundant in active lesions, low-level infiltration in non-lesional skin is a key subclinical feature that 
distinguishes the skin of CLE patients from that of healthy controls and may prime the skin for future flares 
[88, 94–96], with infiltration noted after skin injury [63] or UV exposure [97]. In a lupus-prone murine 
model, transient depletion of pDCs before disease initiation was found to ameliorate autoimmunity [86]. In 
human studies, anti-BDCA2 monoclonal antibodies, which specifically target the BDCA2 receptor on pDCs, 
have been shown to suppress type I IFN production and inflammatory mediators, thereby alleviating lupus-
associated cutaneous manifestations [98, 99].

NK cells

NK cells are abundant and proliferate in CLE skin lesions, and the number of these cells in the peripheral 
blood decreases due to their trafficking from blood to tissue [100–103]. In SLE, peripheral blood NK cell 
counts are inversely correlated with disease activity [104]. Compared with those of healthy controls, the NK 
cells of lupus patients secrete more IFN, and their cytotoxic functions are impaired [101, 105]. However, the 
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precise role of NK cells in CLE pathophysiology is unclear, although it is known that NK cells colocalize with 
CD8+ T cells at the dermal-epidermal junction, releasing granzyme B to induce keratinocyte apoptosis 
[100]. Type I IFNs provide negative feedback, reducing the amount of granzyme B released and limiting 
tissue damage. Invariant NK cells secrete IFN-γ, influencing both inflammatory and anti-inflammatory 
responses to tissue damage [100].

Neutrophils and monocytes

Neutrophils, as early responders in the innate immune system, are present in the skin before lesion onset in 
murine models of CLE [106]. UV radiation and other stimuli induce keratinocyte death, inducing the release 
of DAMPs that activate neutrophils. These neutrophils secrete antimicrobial peptides (AMPs), such as LL-
37, and reactive oxygen species (ROS) and form neutrophil extracellular traps (NETs) composed of 
chromatin, histones, and other intracellular contents [107, 108]. Elevated levels of LL-37 and other AMPs 
have been observed in CLE lesions compared with healthy skin [109, 110]. The increases in NETosis and IL-
17 externalization by neutrophils in SLE-affected skin suggest that NETs and IL-17 play a role in tissue 
damage and that the number of NETs and IL-17 levels are correlated with disease activity [104, 106]. In 
patients with various CLE subtypes, including tumid lupus, panniculitis, ACLE, and DLE, NETs are present in 
lesions, with higher NET numbers in tumid lupus, ACLE, and DLE lesions than in SCLE lesions, indicating 
distinct roles for neutrophils depending on the disease subtype [111, 112]. NETs also impact pDCs by 
complexing with double-stranded DNA (dsDNA) and LL-37, which are internalized through TLR9 and 
subsequently produce type I IFN in SLE [113, 114]. Additionally, LL-37/dsDNA complexes can function as 
autoantigens [115]. Notably, UV light exposure leads to the recruitment of neutrophils to the skin, which 
may further lead to temporary damage and upregulation of type I IFN gene expression in other organs, such 
as the kidneys [112]. However, the precise pathophysiological role of neutrophils and AMPs in CLE remains 
to be elucidated.

Furthermore, monocytes act as APCs and are recruited and activated by colony-stimulating factor 1 
(CSF-1) produced by keratinocytes upon UV exposure, leading to increased keratinocyte apoptosis [116]. 
Moreover, monocyte-derived DCs, the numbers of which are elevated in both the lesional and healthy skin 
of SLE patients, may contribute to CLE pathology because of their strong activation signature [88].

Macrophages

Macrophages act as APCs and play roles in processes such as phagocytosis and cytokine production [117]. 
An increased number of macrophages in CLE lesions predicts a poor response to hydroxychloroquine [118, 
119]. CD68-positive macrophages expressing FasL are found around hair follicles and contribute to hair 
follicle destruction through Fas-FasL interactions in CLE [120]. UVB irradiation increases the expression of 
CSF-1 in keratinocytes, thereby attracting macrophages that trigger keratinocyte apoptosis in lupus-prone 
mice with CLE but not in lupus-resistant mice with CLE [116]. Interestingly, macrophage infiltration after 
UV exposure may cause systemic symptoms such as arthralgia, weakness, fatigue, and headache [118].

Adaptive immune cells
T cell

T cells, including CD4+, CD8+, memory, and γδ T cells, regulatory T (Treg) cells, and T helper 17 (Th17) cells, 
play crucial roles in the pathogenesis of CLE [79]. CD4+ T follicular helper and T peripheral helper cells 
promote B-cell activation and autoAb production [121–124]. The role of Treg cells in CLE remains unclear, 
as studies have reported both increased and decreased numbers of these cells in SLE skin samples [125–
128]. In lupus-prone mice, UV exposure enhances CD4+ and CD8+ T-cell activation in draining lymph nodes 
while suppressing Treg cells, an effect that is amplified in a type I IFN-dependent manner [129]. However, 
whether this mechanism occurs in the skin and its impact on CLE inflammation remains unknown. Th1 cells 
are considered key drivers of CLE pathogenesis, with a notable shift toward Th1-associated chemokines 
across all CLE subtypes [130, 131]. Th17 cells, which are prevalent in individuals with IL-2-deficient SLE, 
exacerbate inflammation by skewing naive T-cell differentiation toward Th17 cells rather than Treg cells 
[132, 133].
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Upon UV exposure, keratinocytes release chemokines such as CXCL9, CXCL10, and CXCL11, which bind 
to the CXCR3 receptor on T cells. This interaction results in the recruitment of autoreactive cytotoxic T cells, 
triggering keratinocyte death [70–72, 74, 75]. Among these chemokines, CXCL10 plays a key role in 
directing CXCR3-expressing T cells to skin lesions. Consequently, T-cell activation occurs through 
interactions between the T-cell receptor (TCR) and major histocompatibility complex (MHC) class II, 
initiating downstream signaling [134]. This cascade involves increased phosphorylation of signaling 
molecules and increased calcium influx, which is mediated by the association of spleen tyrosine kinase 
(SYK) with the Fc receptor γ-chain (FcRγ), further amplifying TCR signaling [135].

Upon recruitment, cytotoxic CD8+ T cells target basal keratinocytes, contributing to interface 
dermatitis, as observed via H&E staining [136]. These cells express granzyme B, which is elevated in CDLE 
scarring lesions compared with SCLE lesions, suggesting a role for the cells in scarring pathophysiology 
[137]. While Th2 cells may initiate inflammation, Th1 cells dominate established lesions, promoting type I 
IFN production by cytotoxic T cells and macrophages [136, 138]. Transcriptomic analysis of skin T cells 
revealed an IFN-rich signature, with reduced numbers of cytotoxic and effector T cells compared with those 
in lupus nephritis biopsy samples [139]. T cells induce keratinocyte apoptosis via FAS/FASL interactions 
[120], whereas IL-21 from Th cells increases granzyme B levels in pDCs and NK cell-mediated keratinocyte 
damage [140, 141]. However, type I IFNs suppress granzyme B production in pDCs [140]. Moreover, Th 
cells respond to nucleosomes, driving anti-DNA antibody production in B cells in SLE [142–144]; Th clones 
produce IL-2, IFN-γ, and IL-4; and lupus CD4+ T cells overexpress perforin through epigenetic regulation via 
DNA methylation [68, 145].

Interestingly, CLE patients present significantly lower numbers of CD4+, CD8+, Tregs, and γδ-T cells 
than individuals with other inflammatory skin diseases and healthy controls do, contributing to 
autoimmunity via impaired immunosuppressive function [125, 134, 146]. The proportions of CD4+ T cells 
and FOXP3+ T cells and the CD4/CD8 ratio are significantly lower in SCLE lesions than in CDLE lesions 
[126]. Additionally, a proteomic study revealed a unique increase in IL-16 expression in CLE lesions [147].

When upregulated, CD40L on T cells interacts with B cells to promote maturation and antibody 
secretion [134] and engages APCs to amplify the TCR signal [148]. Signaling pathways, such as the cyclic 
adenosine monophosphate (cAMP)-dependent phosphorylation and protein kinase C (PKC) pathways, are 
either inhibited or activated, similar to the PI3K pathway [134].

B cells and plasma cells

B cells play a pivotal role in the pathogenesis of CLE through multiple mechanisms, primarily via autoAb 
production and interactions with T cells [149–152]. Following keratinocyte death induced by UV exposure 
or other triggers, naive B cells become activated, differentiate into plasma cells, and begin secreting 
autoAbs, a process further amplified by IFN signaling [153, 154].

Plasma cell differentiation, survival, and sustained autoAb production are supported by survival signals 
mediated through B-cell-activating factor, also known as B-lymphocyte stimulator (BAFF/BLyS) and IL-6 
from surrounding cells [149, 155]. Additionally, Th cells support plasma cell differentiation [156], as 
somatic hypermutation and isotype switching depend on CD40 and IL-21 [149]. IL-21 and TLR7/9 facilitate 
B-cell recruitment to inflammation sites in CLE lesions and localized autoAb production in mouse models 
[157], whereas IL-17 recruits immune cells and increases B-cell autoAb production in SLE [133]. Plasma 
cells can accumulate at the site of inflammation [158], whereas B cells form clusters in the skin and arrange 
in lymphoid-like structures, called tertiary lymphoid organs/structures (TLOs) [87, 159].

B cells interact with keratinocytes via BAFF and its receptor (BAFF-r) in both SLE and CLE; BAFF is 
expressed by lesional keratinocytes, and associated receptors [BAFF-r, transmembrane activator and CAML 
(calcium-modulating cyclophilin ligand interactor) interactor (TACI), and B-cell maturation antigen 
(BCMA)] are expressed by B cells [87, 160–162]. BAFF is essential for B-cell maturation [163], and its 
expression in keratinocytes can be induced by immunostimulatory DNA motifs, highlighting its importance 
in CLE [161].
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Patients with ACLE and SCLE commonly have detectable circulating autoAbs, including anti-Ro 
(Ro60/Ro52), anti-La, and anti-galectin-3, which are rarely present at measurable levels in CDLE [104, 164, 
165]. These autoAbs are associated with HLA-DR3 in SLE [165] and with disease severity [166]. AutoAbs 
form ICs at the dermal-epidermal junction, resulting in the characteristic “lupus band” visible via IF, which 
aids in CLE diagnosis [167–169]. In SLE, B-cell deposition in nonlesional skin is correlated with a worse 
prognosis [170], and the extent of B-cell infiltration in lesional skin varies by LE subtype [87, 171], with 
DLE patients showing a stronger B-cell signature and greater enrichment of B cells than ACLE and SCLE 
patients [172]. Compared with similar SLE lesions, isolated CLE lesions exhibit a more pronounced B-cell 
signature, linking cutaneous and systemic disease activity [171]. Despite these differences, circulating B-cell 
populations largely overlap between SLE and isolated CLE.

Circulating anti-Ro and anti-La autoAbs are strongly associated with photosensitivity, with Ro proteins 
detected in CLE lesions [170, 173–176]. These findings are supported by the observation that UV exposure 
induces keratinocyte apoptosis and promotes Ro antigen translocation to the cell surface, where anti-Ro 
autoAbs can bind [177–181]. Additionally, UVB upregulates Ro/SSA and La/SSB expression on apoptotic 
keratinocytes, enhancing autoAb interactions [178, 179]. These findings highlight the role of autoantigen 
redistribution in the aberrant UV response observed in lupus.

The presence of anti-Ro autoAbs in the serum correlates with increased IL-17A+ lymphocytes in 
lesional skin in SCLE, and Ro52 deletion in mice triggers Th17-driven inflammation [182, 183]. Ro52 
negatively regulates IFN production, reducing inflammatory cytokine levels, while its deficiency leads to the 
development of CLE-like lesions [182, 184–186]. Moreover, Ro60, an RNA-binding protein, may mediate UV 
responses, and Ro60 deficiency in mice results in lupus-like features, including autoAb production, 
glomerulonephritis, and photosensitivity [187–189]. Nonetheless, the functional link between Ro52/Ro60 
autoAbs and their targets remains unclear.

B cells drive skin damage in addition to autoAb production through IFN-dependent processes, 
including antigen presentation, receptor engagement, and cytokine signaling [153]. Additionally, IL-6 
production by B cells sustains the survival of these cells [149, 190]. Notably, B-cell signatures and infiltrates 
in autoAb-negative CLE highlight the role of B cells in fueling autoimmune reactions through antigen 
presentation and T-cell activation [87, 172].

Overall, cutaneous lupus exemplifies how environmental triggers, such as UV light, initiate a cascade of 
immune crosstalk between innate and adaptive immune cells that drives chronic skin inflammation in 
cutaneous SLE. Keratinocyte injury leads to the release of cytokines, chemokines, and nucleic acids that 
activate pDCs, which subsequently secrete type I IFNs to orchestrate T- and B-cell activation. CD4+ and CD8+ 
T cells amplify local inflammation through IFN-γ secretion and cytotoxic activity, while B cells produce 
autoAbs that form ICs, further engaging innate immune pathways. This tightly orchestrated network of 
keratinocytes, pDCs, and adaptive immune cells sustains a self-perpetuating inflammatory loop that 
underlies the chronicity of cutaneous SLE.

Personalized therapy
CLE can be treated with systemic or topical therapies. In cases where disease activity is limited to the skin 
with no internal organ involvement, topical therapy is preferred. However, systemic treatment is indicated 
where the area of the body surface involved is large or where the disease is recalcitrant to topical therapies. 
Systemic therapies for CLE overlap with therapies for SLE. Systemic therapies include antimalarials, 
systemic glucocorticosteroids, noncorticosteroid immunosuppressants, and some biologics and have been 
reviewed elsewhere [191]. Systemic retinoids can be used to treat CCLE or SCLE [192–196], and 
isotretinoin can be administered at the same dose as that used to treat acne vulgaris (0.5–1 mg/kg body 
weight). Although the mechanism of action is unclear, retinoids may act by regulating the immune system, 
clearing inciting antigens or factors, or regulating epidermal differentiation in CLE lesions with otherwise 
abnormal keratinization [192]. Lesions may recur upon cessation of treatment. In the United States, the use 
of isotretinoin in patients with child-bearing potential is restricted by the mandatory participation of both 
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prescribers and patients in iPledge, a Risk Evaluation and Mitigation Strategy program. CLE can also be 
treated with acitretin at 50 mg daily [197]; however, esterification of acitretin with ethanol converts the 
drug to etretinate, which has a half-life of 120 days and is a teratogen, thus requiring the use of 
contraception for 2–3 years after cessation of the drug [198].

Aberrant type I IFN (particularly IFN-α) expression has been observed in the skin, as mentioned above, 
and drives SLE by activating DCs, enhancing autoAb production, and upregulating interferon-stimulated 
genes (ISGs), which correlate with disease activity [29]. Anifrolumab blocks IFNAR1, thereby disrupting 
this inflammatory loop. Its efficacy in cutaneous and musculoskeletal SLE, as demonstrated in TULIP-1 and 
TULIP-2, supports this mechanism [199, 200]. Anifrolumab is also emerging as a treatment for cutaneous 
lupus [201–204]. In cases where the disease is recalcitrant to existing systemic therapies, anifrolumab at 
300 mg IV every 4 weeks was found to lead to a clinically meaningful reduction in inflammation or 
clearance of skin lesions after just 1 month. In cases of cutaneous disease resulting in alopecia, some 
recovery of hair growth was also observed. In patients with lupus limited to the skin, topical therapies 
alone can be sufficient. In patients with both systemic manifestations of lupus and skin involvement while 
on systemic therapies, topical therapies can help clear the skin without further escalation of the systemic 
regimen. Topical therapies targeting inflammatory pathways include corticosteroids, calcineurin inhibitors, 
and JAK inhibitors. Topical retinoids help control CLE by regulating keratinocyte maturation.

Topical corticosteroids have long been used to treat inflammatory skin disorders, including CLE. They 
have pleiotropic pharmacologic effects and can therefore modulate the inflammatory response by 
vasoconstriction, inhibiting the release of phospholipase A2 and the transcription of inflammatory 
mediators [199]. Specifically, corticosteroids pass through the cell membrane of inflammatory cells and 
bind glucocorticoid receptors in the nucleus to alter the gene expression of inflammatory transcription 
factors. However, prolonged use of topical steroids can lead to tachyphylaxis, i.e., loss of efficacy, as 
demonstrated by loss of the vasoconstrictive effect of the steroid [200]. The long-term use of topical 
steroids can also increase the risk of atrophy of the skin resulting from loss of collagen in the dermis [205]. 
Thus, topical regimens should involve steroid-sparing strategies, such as alternating the use of a topical 
steroid with a calcineurin inhibitor or avoiding the use of topical steroids in areas that have higher rates of 
absorption due to thinner skin (the face) or where there is occlusion (intertriginous areas) that may 
increase the potency as well as the risk of adverse effects. Despite this, both topical steroids and calcineurin 
inhibitors remain the first-line topical therapies to manage CLE flares [206].

In areas of thinner skin such as the face and neck or intertriginous areas such as the axilla, inguinal 
areas, and inframammary or infraabdominal pannus areas, lower-potency topical steroids such as 
hydrocortisone 2.5%, alclometasone 0.05%, or desonide 0.05% can be used, whereas medium-potency 
topical steroids such as triamcinolone acetonide 0.1% or even high-potency topical steroids such as 
betamethasone dipropionate 0.05% or ultrahigh potency topical steroids such as clobetasol 0.05% can be 
used on the scalp, trunk, and extremities.

If chronic use of a topical agent is anticipated or if the anatomical site is at high risk of adverse events, 
such as the face, use of a topical calcineurin inhibitor is advisable. Calcineurin inhibitors such as tacrolimus 
ointment or pimecrolimus cream work by binding to the cytoplasmic protein macrophilin-12 to form 
complexes that inhibit calcineurin, blocking calcium-dependent signaling and thus the transcription of 
many cytokines [207]. Tacrolimus is considered more potent than pimecrolimus but may also cause more 
irritation during initial application [208]. Tacrolimus 0.1% ointment is considered as potent as mid-potency 
topical steroids such as betamethasone valerate 0.12% [209].

Although the FDA has approved ruxolitinib for only atopic dermatitis and vitiligo, ruxolitinib 1.5% 
cream can be used to treat CLE as a steroid-sparing agent. Ruxolitinib is a JAK1/2 inhibitor and thus inhibits 
the JAK-STAT pathway, which is involved in the autocrine elaboration of type I IFNs in CLE [210]. A 
systematic review of the literature revealed that other JAK inhibitors targeting JAK1 or TYK2 also 
demonstrated efficacy in treating CLE [211].
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Topical retinoids, such as tretinoin [212], tocoretinate [213], and tazarotene [214], have been reported 
to treat CLE and are particularly appropriate for lesions with comedonal features. A clinical feature of SCLE 
is photosensitivity, and this is also the case for CLE. Sun protection and avoidance remain paramount 
strategies to reduce flares of both types of CLE and to avoid the exacerbation of internal disease. Indeed, a 
recent study revealed that lupus nephritis triggered by sun exposure may be mediated by neutrophils 
[112]. However, many patients do not realize that SLE can be triggered by sun exposure [215]. 
Furthermore, dark-skinned individuals with CLE practice less photoprotection than light-skinned 
individuals do [216]. In a trial, among 25 patients treated with SPF 60 sunscreen containing a mix of 
organic filter and organic and mineral pigments, none developed lesions in treated areas; however, 14 
patients developed lesions in vehicle cream-treated areas exposed to UVA and UVB [217].

Conclusions
The pathogenesis of CLE is highly complex, posing significant challenges to the development of 
personalized therapies. This review highlights mechanisms involving both immune and nonimmune cells, 
emphasizing disease heterogeneity. CLE can manifest as a distinct entity or in association with SLE, with 
variable pathogenetic pathways. Notably, serum autoAbs and proinflammatory cytokines are often detected 
months to years before an SLE diagnosis, indicating that their emergence precedes clinical onset. Similarly, 
subclinical inflammation is detected in the apparently clinically normal skin of CLE/SLE patients, reflecting 
disease processes that occur prior to lesion onset. However, the timing of this skin inflammation and the 
potential effectiveness of early interventions remain unknown. Keratinocytes, in addition to immune cells, 
play critical roles in tissue injury, suggesting their promise as therapeutic targets. Strategies targeting both 
immune and nonimmune cells are essential for improving CLE outcomes and potentially mitigating SLE 
progression.
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