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Abstract
The human vaginal microbiome plays a pivotal role in maintaining female reproductive health through its 
Lactobacillus-dominated microbial ecology. These bacteria contribute to the acidic pH of the vagina by 
producing lactic acid, ultimately preventing the colonization of pathogens. Additionally, they produce 
bacteriocins and hydrogen peroxide, which are detrimental to other microorganisms. Human vaginal 
microbiota is subjected to alterations with advancement in age, hormonal status, puberty, menstruation 
cycle, pregnancy and gestation, vaginal tract diseases, exposure to antibiotics, etc. Diet, lifestyle factors, 
obesity, and gestational diabetes are also reported to cause a shift in vaginal microbiota. This review 
thoroughly illustrates the perpetually changing dynamics of vaginal microbiota throughout women’s lives, 
as well as focuses on the impact of dysbiosis in bacterial vaginosis. More emphasis is given on 
immunological changes observed during bacterial vaginosis, mainly IL-1β, and its involvement in the 
development of preeclampsia. Thereby, this review highlights a mechanistic link between lower genital 
tract disease, bacterial vaginosis, and a hypertensive disorder of pregnancy, preeclampsia, via IL-1β–ROR-
γt–Th17 axis, which is regulated by vitamin D, with a suggestion on how shifts in vaginal microbial 
community may pose a risk for preeclampsia.
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Introduction
The feminine frontier: understanding the vaginal microbial landscape
Vaginal microbiome dominated by Lactobacillus: healthy status of the vaginal tract

Ravel et al. [1] demonstrated an exhaustive analysis of the diversity of the vaginal microbiome of women 
belonging to different ethnicities, such as White, Black, Asian, and Hispanic. Vaginal microbiome can be 
classified as five community state types (CSTs), i.e., CST-I to CST-V. Among these five, CST-I, -II, -III, and -V 
are dominated by L. crispatus, L. gasseri, L. iners, and L. jensenii, respectively. While CST-IV is the most 
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diverse range of microbiome containing community, which is not usually rich in Lactobacillus species. CST-
IV is a shelter for certain anaerobic bacterial populations, including Prevotella, Gardnerella, Atopobium, 
Megasphaera, Dialister, Eggerthella, Mobiluncus, Peptoniphilus, Finegoldia, and Sneathia  [1]. Vaginal 
microflora dominated by Lactobacillus acquires natural protection against opportunistic pathogens. The 
details of how Lactobacillus are involved in protecting the vaginal environment are illustrated in Table 1.

Table 1. Mode of action of Lactobacillus in protecting the vaginal environment.

Mechanism Description Example Reference

Hydrogen 
peroxide 
production

H2O2 is a potent antimicrobial oxidizing agent, toxic to 
catalase-negative microorganisms. It also promotes 
immune tolerance and prevents overgrowth of harmful 
bacteria, especially during pregnancy.

94% of L. jensenii and 95% of L. 
crispatus produce H2O2. L. fermentum 
and L. acidophilus also produce H2O2 
and protect against BV in pregnancy.

[2, 3]

Acidic pH Lactobacillus spp., ferment glycogen, which is present 
in the vaginal epithelial cell, and produce D- and L-
lactic acid, keeping the pH of the vaginal 
environment < 4.5, which is detrimental to certain 
pathogens.

L. crispatus, L. jensenii, L. gasseri [2, 4–7]

Bacteriocin 
production

Bacteriocins are anti-microbial peptides produced by 
Lactobacillus that can hinder cell wall synthesis, 
nuclease activity, and inhibit spore formation, leading 
to the death of the pathogen.

L. salivarius CRL 1328 inhibits N. 
gonorrhoeae, Enterococcus faecalis.

L. fermentum 123 against several 
Gram-positive, Gram-negative bacteria, 
and Candida spp.

[8–10]

Adherence & 
co-aggregation

Lactobacilli bind to epithelial cell surfaces and block 
receptor sites needed by pathogen colonization. They 
also co-aggregate with pathogens, depriving them of 
nutrition and forming an inhibitory barrier.

Co-aggregation is reported with G. 
vaginalis, Candida albicans, and E. 
coli.

[10–14]

BV: bacterial vaginosis.

An ever-changing microbial ecosystem: factors affecting vaginal microflora diversity
Age

The composition of the vaginal microbiome changes throughout a woman’s lifespan, majorly affected by 
hormonal changes. In childhood, the vaginal environment is more alkaline and populated by anaerobic and 
skin-associated bacteria such as E. coli, Mycoplasma, and coagulase-negative Staphylococci. Puberty results 
in shoot in estrogenic levels, which is responsible for thickening of vaginal epithelium and an increase in 
glycogen availability, ultimately promoting the growth of Lactobacillus species, although some anaerobes 
like Prevotella and Atopobium may also be present [15, 16]. During reproductive years, women have a 
microbiome dominated by Lactobacillus, while others may have lower Lactobacillus levels. As women enter 
menopause, estrogenic levels drop, leading to reduced Lactobacillus abundance, increased vaginal pH, and a 
shift toward more diverse, Lactobacillus-depleted microbial communities [17, 18]. This shift is often 
associated with conditions such as vulvovaginal atrophy (VVA), where studies have shown a strong link 
between VVA and dominance of CST-IV-A microbiomes. Hormone replacement therapy (HRT) has been 
shown to partially reverse these changes, increasing glycogen levels and supporting Lactobacillus growth. 
Research indicates that women using HRT tend to have improved vaginal microbial profiles and reduced 
symptoms associated with estrogenic decline [19, 20].

Menstrual cycle

Menstrual cycle causes alterations in the vaginal microbiota, particularly during menstruation, where an 
increase in microbial diversity and a decrease in Lactobacillus abundance has been observed [21, 22]. 
Studies have shown that during menses, G. vaginalis and L. iners tend to increase, while L. crispatus and L. 
jensenii decrease in relative abundance. These changes return to normal following menstruation [23, 24]. 
The luteal phase, with elevated estrogenic and progesterone levels, is associated with greater microbial 
stability and a return to Lactobacillus-dominant communities [17]. This pattern supports the notion that 
hormonal fluctuations, particularly the drop in estrogen during menses, contribute to microbiome 
fluctuation. However, findings are not entirely consistent. A study by Chaban et al. [21], which tracked 
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women over a single menstrual cycle, reported minimal changes in microbial composition, though limited 
sample collection during menstruation may have influenced the results. Larger, longitudinal studies are 
needed to clarify the extent and patterns of menstrual cycle-related microbial shifts.

Pregnancy

The pregnancy period has been reported to present a more stable and less diverse vaginal microbiome 
consortium, which is dominated by one or two species of Lactobacillus [25, 26]. Alhabardi et al. [27] 
explored vaginal CST in pregnant women. Pregnant women showed significantly lower abundance of CST-
IV compared to non-pregnant women. The majority of pregnant women exhibited CST-I and -III [27]. 
Another study supporting these findings has been reported by MacIntyre et al. [28] in a British women’s 
cohort. It demonstrated that postpartum caused a diverse shift in vaginal microbiota with less abundance of 
Lactobacillus. A large population of African American women showed that postpartum-induced microbial 
alterations happen regardless of ethnicity [27]. Future insights with exhaustive research are required to 
understand the ethnically diverse population and their vaginal microbiome’s alterations during pregnancy.

Ethnicity

Numerous studies have reported that the vaginal microbiome of North American, Chinese, Japanese, and 
European women is rich in Lactobacillus spp. [29–32]. While African American ethnicity presents vaginal 
microbiome with depleted abundance of Lactobacillus [29]. It has been reported that Black women harbour 
a vaginal microbiome of CST-IV four times than that seen in Caucasian women. Lactobacillus abundance is 
seen to be less common in Black women than their Caucasian counterparts [31]. As mentioned earlier, 
Lactobacillus dominant CST-I, -II, -III, and -V are seen in Asian and American women, while Hispanic and 
Black women reported to have CST-IV with higher levels of pathogenic bacteria [1].

Diet

One of the crucial factors affecting the population of the vaginal microbiome is diet. A diet rich in 
carbohydrates results in high levels of glycogen, which is a sole nutritional requirement of lactic acid 
bacteria. Thus, these carbohydrate-rich diets promote the growth of Lactobacillus [33]. Insufficient intake of 
vitamin A, C, D, E, and β-carotene, as well as calcium, has been reported to be associated with increased risk 
of bacterial vaginosis (BV) [34–36]. Fat rich diets are also linked with a higher risk of BV. On the other hand, 
vitamin E, folate, and calcium supplementation reduce the chances of BV infection [37, 38].

Body mass index and exercise

High-intensity workouts have been shown to affect the vaginal microbiota. It increases the alpha diversity 
and resembles the profiles of CST-IV [22]. Obese women with a high body mass index (BMI) ratio presented 
a lower abundance of Lactobacillus with elevated pro-inflammatory cytokines when compared to their 
healthy counterparts [39]. Lower BMI upon bariatric surgery resulted in a significant increase in 
Lactobacillus within six months of the surgery [40].

Stress

Chronic stress can activate the hypothalamic-pituitary-adrenal (HPA) axis, leading to elevated levels of 
cortisol that can suppress immune function and disrupt vaginal microbial homeostasis by reducing 
Lactobacillus abundance [41]. This stress-induced dysbiosis has been linked with increased risk of BV and 
preterm birth. Multiple studies have demonstrated that stress is an independent risk factor for BV. Culhane 
et al. [42] found that pregnant women experiencing moderate to high stress measured using the Cohen 
Perceived Stress Scale were over twice as likely to have BV compared to those with low stress levels. 
Furthermore, racial differences in BV prevalence have been associated with differential exposure to chronic 
stress, with Black women reporting higher stress levels and significantly increased rates of BV compared to 
White women [43].

The factors influencing the vaginal microbiota diversity, such as age, menstrual cycle, pregnancy, 
ethnicity, diet, BMI and exercise, and stress, are illustrated in Figure 1.
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Figure 1. Factors influencing vaginal microflora. BMI: body mass index.

Vaginal microbiota dysbiosis

Alteration in the diversity of normal vaginal ecology is termed “vaginal dysbiosis”, which can result in 
adverse outcomes. Dysbiotic state exhibits a reduction in the CST-I, -II, -III, and -V, which are dominated by 
Lactobacillus and show an increase in bacterial population belonging to CST-IV, which contains Prevotella, 
Gardnerella, Atopobium, Mobiluncus, etc. These bacteria can further initiate a cascade of inflammatory 
reactions, inducing local and systemic inflammation [1].

Bacterial vaginosis: a gynaecological disease from an immunological perspective

BV is a polymicrobial disease seen in women of childbearing age. It can either be symptomatic or 
asymptomatic, and women with BV experience discomfort, itching, vaginal discharge, malodour from the 
vagina, burning sensation, and an increased pH of the vaginal environment. BV is characterised by the shift 
of vaginal microbiome from Lactobacillus-dominated CST to the CST-IV with reduced count of Lactobacillus 
along with the presence of opportunistic anaerobic pathogens [44]. The most prevalent bacterial species 
associated with BV are G. vaginalis, Prevotella, Mobiluncus, Sneathia, Atopobium, Peptostreptococcus, and 
Bacteroidetes. Previously, BV was referred to as Haemophilus vaginalis, but it was later found that this 
bacterium did not belong to the genus Haemophilus and was then renamed as G. vaginalis.

Clinically, BV is diagnosed based on Amsel’s criteria. According to this method, there should at least be 
three of the following symptoms in the sample: vaginal discharge with basic pH, i.e., pH > 4.5, discharge, 
release of fishy smell upon addition of potassium hydroxide (KOH) solution to vaginal discharge, and 
presence of squamous epithelial cells coated with bacterial cells [45]. Another method for BV diagnosis is 
based on the Nugent score system. This method implies microscopical examination of vaginal discharge for 
the presence of Gram-negative bacteria. Nugent scores 0–3 are considered normal samples, scores 4–6 are 
intermediate, while scores 7–10 are considered as BV [46]. One of the most widely reported bacteria 
causing BV is G. vaginalis, which plays a crucial pathogenic role in the pathogenesis of BV via contributing to 
pro-inflammatory characteristics, biofilm formation, competition with other host microbiota, and virulence 
factors. It belongs to the genus Gardnerella of the family Bifidobacteriaceae. They are rod-shaped, non-
motile, and are Gram-variable [47]. G. vaginalis has virulence factors like vaginolysin and adhesins. 
Vaginolysin shows cytolytic activities on red blood cells and then thrives on them for nutrition [48]. G. 
vaginalis also forms biofilms that provide a favourable environment for other pathogens and lead to 
antibiotic resistance with persistent infections [48].
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Vaginal swabs of BV patients have shown an increased level of pro-inflammatory cytokines, including 
interleukin-6 (IL-6), IL-8, IL-1β, and IL-1α [49]. The mechanistic link between G. vaginalis and immune 
activation has been studied. In THP-1 monocytes and human macrophages, exposure to G. vaginalis showed 
a significant upregulation of nucleotide-binding domain, leucin-rich containing family, pyrin domain 
containing 3 (NLRP3). This NLRP3 inflammasome further cleaves pro-IL-1β into IL-1β, which is an indicator 
of pro-inflammatory cascade initiation. Another study has also reported the significantly elevated levels of 
IL-1β correlated with higher neutrophil count in BV patients when compared to their healthy counterparts 
[50]. The molBV, a diagnostic tool that uses 16s rRNA gene sequencing for BV diagnosis, showed increased 
levels of IL-1β, and an increased ratio of IL-1β/IP-10 cytokine is associated with clearance of high-risk 
human papillomavirus (HR-HPV). This study proved that L. iners is associated with pro-inflammatory 
characteristics related to BV [51]. Women with BV are also reported to have significantly higher amounts of 
not just IL-1β but also of tumor necrosis factor-α (TNF-α) and IL-6 [52, 53]. Conclusively, it can be said that 
the BV condition leads to an inflammatory milieu with an elevation in the levels of IL-1β, TNF-α, and IL-6 
via the formation of the NLRP3 inflammasome.

Vaginal microbiota dysbiosis in pregnancy complications

Impact and association of fluctuations in vaginal ecology have been studied in various complications related 
to pregnancy, such as miscarriage, recurrent miscarriage, premature birth, gestational diabetes, preterm 
premature rupture of membrane, and preeclampsia (PE). Table 2 describes vaginal microflora diversity 
associated with these diseases.

Table 2. Vaginal microflora dysbiosis in various pregnancy complications.

Pregnancy 
complications

Vaginal microflora dysbiosis References

Miscarriage Low abundance of Lactobacillus but elevation in L. iners, high levels of B. plebeius, G. 
vaginalis, M. girerdii, and increased diversity of CST-IV

[54–57]

Recurrent miscarriage Decreased abundance of Lactobacillus, high abundance of Prevotella, Gardnerella, 
Pseudomonas, family Ruminococcaceae, Anaerococcus

[58–60]

Preterm birth Low abundance of Lactobacillus, high abundance of G. vaginalis, increased diversity of 
CST-IV with L. iners dominance, high levels of S. amnii, Prevotella, Atopobium 
vaginane, Megasphaera

[61–64]

Gestational diabetes Higher abundance of Bacteroidetes, Veillonella, Klebsiella, Escherichia-Shigella, 
Enterobacter, Enterococcus, high levels of fungal flora like Candida and 
Saccharomyces

[65, 66]

Preterm premature 
rupture of membrane

L. iners, U. parvum, P. bivia, P. timonensis, G. vaginalis positively associated [67]

Preeclampsia High abundance of Prevotella bivia [68]
CST: community state type.

This review discusses one of the pregnancy complications, PE, and its correlation with BV. The review 
describes how BV and its immune consequences affect an individual during pregnancy, eventually setting 
an alarm for early development and/or aggravation of PE (Table 2).

Preeclampsia: at the crossroads of maternal health

PE is considered a hypertensive disorder of pregnancy that is one of the most common gynaecological 
disorders. Globally, PE negatively impacts approximately 2–8% of pregnancies, leading to fetal and 
maternal morbidity as well as mortality. This disorder is usually seen after 20 weeks of gestation and is 
characterised by hypertension (> 140/90 mmHg) and the presence of proteins in urine referred to as 
proteinuria (> 300 mg/24 h) [45, 69]. There are numerous risk factors for the development of PE, including 
pregnancy at an advanced age, renal diseases, obesity, gestational diabetes, and chronic hypertension. Most 
importantly, a previous pregnancy with PE possesses a significant risk for the development of PE in the 
following subsequent pregnancies [69]. These days, genetic predisposition and its association with PE have 
also come to the surface. Chromosome 13 with a single nucleotide polymorphism proximate to the FLT-1 
locus is associated with an increased risk of developing PE [70].
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Pathologically, PE is characterised by impaired and defective placentation, spiral arteries leading to 
hypoxia, oxidative stress, and placental ischemia. Hypertension and proteinuria are seen due to enhanced 
endothelial dysfunction. One of the placental antiangiogenic factors, i.e., soluble fms-like tyrosine kinase 1, 
antagonises the placental and vascular endothelial growth factors, and this results in impaired functionality 
of endothelial growth factors. This ultimately leads to venous congestion, contributing to reduced blood 
flow to various organs, including the heart [71].

Preeclampsia: an immunovascular complication of pregnancy

During PE, the immune tolerance shifts from normal to pro-inflammatory phenotype with an imbalance in 
the population of regulatory T cells (Treg cells) and a subset of helper T cells (Th cells), which is Th17. PE is 
associated with pro-inflammatory immune markers in peripheral blood, which are known to induce 
oxidative stress, endothelial dysfunction, and local as well as systemic inflammation, leading to fetal 
mortality. PE is not only a multi-factorial disorder, but it is also an “immunovascular” complication, 
pertaining to severe damage at the maternal-fetal axis, and may lead to systemic immune dysfunction. This 
section of the review explains the role of Th17/Treg cell profiling in PE.

Treg cell population is a crucial factor involved in the maintenance of tolerance against the fetus during 
pregnancy, and a high abundance of these immune cells is seen under normal pregnancy cases. They are the 
subpopulations of CD4+CD25+ lymphocytes. Treg cells differentiation and functionality require expression 
of a transcription factor, forkhead box protein 3 (Foxp3) [72, 73]. On the other hand, another independent 
subset of CD4+ T cells, Th17 cells, possesses pro-inflammatory characteristics. Th17 requires retinoic acid-
related orphan receptors-γt (ROR-γt) for its differentiation and functions.

Numerous studies have reported the role of imbalance in Th17/Treg cells in PE. Eghbal-Fard et al. [74] 
showed that PE patients’ peripheral blood samples exhibited significantly elevated levels of Th17 cells and 
upregulation of ROR-γt with significant downregulation of Foxp3 and IL-10 mRNA. These were indications 
of an altered ratio of Th17/Treg cells with a predominance of Th17 cells. PE samples also showed 
upregulation of microRNAs like miR-106b and miR-326, which suggests the differentiation of Th17 cells. 
Higher expression of CD81 in trophoblasts, which is ultimately responsible for Th17 cell differentiation 
over Treg cells, was also seen in PE [74]. Comparative analysis of peripheral blood mononuclear cells 
(PBMCs) from PE and normal pregnant women showed a significant decrease in Foxp3 expression with a 
significant decrease in the Treg cell population. This was accompanied by a significant elevation in the 
expression of ROR-γt in PE patients, suggesting a higher population of Th17 cells in PE [75]. Zhang et al. 
[76] studied the immunological differences associated with severe PE (sPE). They analysed peripheral 
blood samples of sPE and healthy pregnant women, and it showed that sPE patients had significantly higher 
percentages of Th17 and Th22 cells in PBMC when compared to their normal counterparts. sPE patients 
also had decreased concentration of anti-inflammatory cytokine IL-10 in plasma, with a notable reduction 
in the Treg cells. They also established a positive correlation between Th17 and Th22, leading to pro-
inflammatory characteristics. Thus, it can be said that sPE may have a Th17 and Th22-dominated 
immunological profile with reduced abundance of Treg cells [76].

Furthermore, the frequencies of CD4+ T cells expressing Foxp3 as an indication of Treg cells and IL-17 
as an indicator of Th17 cells have also been reported. Researchers compared the peripheral blood samples 
of healthy pregnant women and PE patients during the third trimester to check Treg cell markers such as 
CD4+CD25high, CD4+CD127lowCD25+, and CD4+Foxp3+, as well as Th17 cell marker CD4+IL-17+ T cells. 
Healthy pregnant women had significantly higher frequencies of CD4+CD25high, CD4+CD127lowCD25+, and 
CD4+Foxp3+ compared to PE patients and nonpregnant controls. PE samples showed a significant elevation 
in the percentage of CD4+IL-17+ T cells. PE patients exhibited a decreased ratio of CD4+Foxp3+ and CD4+IL-
17+ T cells, suggesting a higher abundance of Th17 cells, resulting in a pro-inflammatory phenotype [77]. 
This finding was in alignment with another paper that reported similar results. PE patients showed 
significantly higher percentage of CD3⁺CD4⁺ T lymphocytes that produce IL-17A, compared to healthy 
pregnant individuals. CD4⁺CD25⁺Foxp3⁺ Treg cell markers were notably downregulated in PE than in 
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controls. Whether the Treg cells show proliferative responses as well as suppressive capability was also 
studied as an index of stimulation (SI). In PE samples, the addition of autologous Treg cells to 
CD3⁺CD4⁺CD25⁻ T lymphocytes did not make a difference in SI, which highlights the fact that it has lost its 
suppressive characteristic. While it showed a significant reduction in SI in healthy pregnant women, 
suggesting its immunosuppressive function [78].

Vitamin D: a master regulator of the vaginal microbial-obstetric axis

Vitamin D is a diverse, multifaceted master regulator of the extracellular system, possessing several 
antibacterial, antiviral, and anti-inflammatory properties. Vitamin D induces the transcription of genes 
encoding antimicrobial peptides like cathelicidin (LL-37) and β-defensin 2, which can disrupt the bacterial 
cell membrane [79]. It promotes cell death via inducing autophagy or lysosomal disruption and inhibits the 
viral replication and invasion, exerting antiviral properties [80]. Vitamin D inhibits NF-κB, leading to 
downregulation of IL-1β, IL-6, IFN-γ, IL-12, and TNF-α [81]. More importantly, vitamin D also maintains the 
ratio of Th17/Treg cells. It can suppress ROR-γt, thereby inhibiting the differentiation of Th17 cells [82] 
and promoting the transcription of Foxp3, in turn promoting the differentiation of Treg cells [83]. It also 
promotes the growth of Lactobacillus in the vagina via promoting insulin secretion. This insulin secretion 
can result in glycogen synthesis and its deposition. Increased glycogen in the vaginal microenvironment 
lowers the vaginal pH, providing suitable conditions for the colonisation of Lactobacillus, simultaneously 
inhibiting the growth of pathogenic microorganisms [84]. Vitamin D maintains vaginal epithelial barrier 
integrity via promoting vaginal epithelial cell growth, increasing the thickness of the barrier, and restricting 
the invasion of pathogens [85].

Numerous studies have shown that a deficiency of vitamin D can have an adverse effect on vaginal 
health and pregnancy outcomes. This section of the review illustrates how vitamin D deficiency (VDD) can 
increase the risk of developing BV and PE.

In non-pregnant women, lower levels of 25-hydroxyvitamin D (25(OH)D) have been reported to be 
significantly associated with increased risk of symptomatic and asymptomatic BV [86, 87]. A meta-analysis 
revealed that VDD during pregnancy can increase the risk of BV by 54% and it is associated with ethnicity 
and gestational age. Up to 56% and 122% increased prevalence of BV due to VDD is seen in the case of 
African women and the first trimester, respectively [88]. A dose-dependent relationship between BV and 
maternal vitamin D levels has also been studied. Pregnant women with severe VDD, i.e., < 20 nmol/L, had a 
57% prevalence of BV. VDD increased the risk of developing BV by 1.26 to 1.56-fold [35]. A National Health 
and Nutrition Examination Survey-based meta-analysis showed a significantly increased odds of developing 
BV in pregnant women with VDD, wherein non-Hispanic Black women had increased prevalence of BV as 
well as VDD [36]. Additionally, Liu et al. [89] reported that VDD acts as an independent risk factor for BV, 
and the risk increases as the vitamin D levels drop. However, this association can only be seen up to vitamin 
D levels of ≥ 63.1 nmol/L. This was considered a plateau, above which the vitamin D supplementation did 
not reduce the risk of BV [89].

Significant association between VDD and PE has also been reported. Women in their 22 weeks or fewer 
gestational weeks with VDD had developed PE in the later stages of their pregnancies. It was observed that 
a 50 nmol/L decrease in the levels of vitamin D resulted in almost twice times higher risk of developing PE 
[90]. A meta-analysis revealed that VDD with levels < 20 ng/mL was associated with a significant risk of PE 
[91]. In an Indian cohort-based study, PE showed a significant 11-fold increased odds due to VDD [92]. 
Another Indian cross-sectional study reported that 82.8% of preeclamptic women had VDD. It was seen 
that sPE was associated with severely low levels of vitamin D, indicating a dose-dependent association [93]. 
In Arab-American cohorts, pregnant women with VDD showed a 3-fold increased risk of developing PE 
[94]. These clinical findings indicate that vitamin D acts as a unifying factor that bridges the gap between 
BV and PE through the IL-1β–ROR-γt–Th17 axis.
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Discussion
Vitamin D-regulated IL-1β–ROR-γt–Th17 axis: establishing a link between bacterial vaginosis and 
preeclampsia

BV and PE are two clinically distinct disorders. However, they share a common factor in their underlying 
pro-inflammatory milieu. In case of BV, the disruption of the Lactobacillus-dominated vaginal microbiota 
leads to an overgrowth of opportunistic pathogens such as G. vaginalis, which provokes local inflammation 
via activation of the NLRP3 inflammasome and elevated levels of cytokines like IL-1β, IL-6, and TNF-α. IL-1β 
is a known inducer of Th17 cells. As mentioned earlier, Foxp3 is a key transcriptional factor required for 
differentiation and the functions of Treg cells. IL-1β can induce the alternative splicing of Foxp3 at exon 7, 
leading to Foxp3 isoform Foxp3Δ7. This isoform induces differentiation of naïve CD4+ T cells into the 
inflammatory Th17 subtype [95]. IL-1β, along with IL-6 and IL-23, has been reported to activate ROR-γt, 
which is a Th17 lineage-specific transcription factor, leading to differentiation of Th17 cells from naïve 
CD4+ T cells [96]. Parallelly, VDD also fails to inhibit IL-1β, thereby aggravating Th17 predominance. PE, on 
the other hand, is characterised by systemic immune dysregulation, specifically the imbalance between pro-
inflammatory Th17 cells and immunosuppressive Treg cells, which leads to elevated IL-17, decreased IL-10, 
and increased oxidative stress and endothelial dysfunction. These immune responses reflect a shift from 
immune tolerance to a pro-inflammatory state in both conditions. BV and PE both present an increased 
ratio of Th17/Treg cells.

Therefore, it can be hypothesised that microbial dysbiosis in the vaginal ecosystem, i.e., vaginal 
dysbiosis in case of BV, can contribute to pro-inflammatory characteristics with an elevation in IL-1β, a 
potent inducer of Th17 cells. IL-1β, via upregulating the ROR-γt, VDD, or alternative splicing of Foxp3, can 
induce the differentiation of Th17 cells, which are the immunological players responsible for local 
inflammation. The lower genital tract disorder BV, which has already provoked local inflammation in 
vaginal mucosa, can lead to systemic inflammation via favouring the differentiation of Th17 cells, which 
may go up to the upper genital tract, where it can induce systemic inflammation with endothelial 
dysfunction, oxidative stress and high systolic as well as diastolic blood pressure, all of which are symptoms 
of PE. Thus, when an individual with vaginal microbiota dysbiosis due to BV conceives, she will be at higher 
risk for developing PE in later stages of her pregnancy. Figure 2 displays the vitamin D-regulated IL-
1β–ROR-γt–Th17 axis responsible for a dynamic interaction between BV and PE.

Conclusions
Vaginal microbiome is a vital player in women’s reproductive health, and a healthy Lactobacillus-dominant 
vaginal microbial environment provides protective benefits to the host. However, any factors causing 
changes in this microbial community can provoke a local or system-wide inflammation with adverse 
consequences. This review illustrates a probable interplay between dysbiosis in vaginal microbiota and its 
immunological consequences, which might be an alarming factor for pregnancy-related complications. BV 
with a highly diverse vaginal microbial community CST-IV, high abundance of G. vaginalis, and the following 
shift in immunophenotype from normal to pro-inflammatory, ultimately possesses a major risk for the 
development of PE, via IL-1β–ROR-γt–Th17 axis. Vitamin D is also emerging as a master regulator of this 
axis, as its deficiency can aggravate IL-1β-mediated inflammation along with impairment of the vaginal 
epithelial barrier. The reversal of this diseased inflammatory state can be achieved by addressing the 
vaginal dysbiosis first, followed by already available marketed drugs and vitamin D supplementation. This 
way, it not only ensures symptom management but also restores a balance in the vaginal microbial 
community, which reduces the chances of recurrent infection as well as decreases the chances of 
complications in future pregnancies of an individual. The newly emerging association between vaginal 
health and hypertensive disorder of pregnancy calls for speculative and exhaustive future research. 
Screening for any changes in vaginal ecology and vitamin D check-ups during early gestation periods can 
aid in understanding this complicated vaginal microbial-immuno-obstetric axis, which can open the doors 
for new diagnostic methods and microbiota-targeted therapies. Understanding and employing this axis can 
improve maternal and fetal health during complicated pregnancies.
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Figure 2. Crosstalk between bacterial vaginosis and preeclampsia via vitamin D-regulated IL-1β–ROR-γt–Th17 axis. 
FOXP3: forkhead box protein 3; ROR-γt: retinoic acid-related orphan receptors-γt; Th17: helper T cells 17; Treg: regulatory T 
cells.
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