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Abstract
Messenger RNA (mRNA) vaccines represent a novel category of vaccinations with significant potential for 
the future. Recent studies have demonstrated the effectiveness of mRNA vaccines in combating various 
viral infections and cancer, particularly in cases where traditional vaccine platforms may not produce 
protective immune responses. In particular, mRNA vaccines have gained attention due to their quick 
development, scalable manufacturing, and ability to elicit strong immune responses. This review elucidates 
the synthesis of mRNA and mRNA vaccines, their mechanisms of action, and the strategies to enhance their 
delivery and address their advantages and limitations for viral disease. Many delivery strategies have been 
investigated in recent years, concentrating on nanoparticle-mediated mRNA vaccine delivery. The delivery 
mechanism is crucial for improving mRNA vaccine stability, biocompatibility, and targeting specific cells 
and tissues. By preventing mRNA degradation and increasing cellular uptake, nanocarriers significantly 
contribute to the stability and immunogenicity of mRNA vaccines. Nanoformulation functions not only as a 
carrier but also as a compartment that safeguards the mRNA from biological, chemical, and physical 
processes that may compromise its safety and efficacy. Despite these advances, challenges such as long-
term safety and innate immune activation remain. Eventually, this review concentrated on future 
considerations necessary for the more efficient and safer deployment of mRNA, emphasizing the merits and 
drawbacks of the existing viral disease mRNA vaccines, with an eye toward future innovations and clinical 
applications.
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Introduction
One of the most successful public health initiatives, vaccination is recognized for its ability to control, 
eliminate, and even completely eradicate infectious diseases. Vaccines reduce the spread and severity of 
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Graphical abstract. mRNA vaccine for various viral diseases. HIV: human immunodeficiency virus; mRNA: messenger 
RNA; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2

disease by preparing the immune system to identify and destroy pathogens [1]. Vaccines have saved 
countless lives and changed the face of global health since Edward Jenner’s groundbreaking research in 
1796, which showed that exposure to cowpox could protect against smallpox [2]. Numerous vaccines for 
viral diseases are being employed for regular immunization, following significant improvements in the 
treatment and prevention of viral infections. Consequently, researchers are endeavoring to develop an 
efficacious vaccine for cancer. In 2006, the FDA sanctioned the first vaccine for cancer in human history, 
which inhibits human papillomavirus (HPV) 16 and 18 infections for over five years, therefore reducing the 
risk of cervical cancer [3, 4]. Despite substantial progress in vaccine development, many viral diseases 
continue to escape adaptive immune responses [5]. Moreover, the growing need for production at a large 
scale and swift advancement necessitates the creation of innovative vaccination strategies. Viral and non-
viral diseases, such as human immunodeficiency virus (HIV) and cancer, require more research on vaccines 
to promote the development of innovative vaccine platforms.

The messenger RNA (mRNA) vaccination represents a novel approach that integrates immunology and 
molecular biology. The somatic cells are introduced with antigen-encoded foreign mRNA to facilitate 
antigen synthesis via the expression system [6]. These synthetic antigens can produce an immunological 
response [7]. In 1990, researchers introduced mRNAs into mouse somatic cells in vivo by utilizing mRNA 
expression vectors, resulting in the production of chloramphenicol acetyltransferase, luciferase, and beta-
galactosidase [8]. In 1992, Jirikowski et al. [9] administered vasopressin and oxytocin-encoded mRNA in 
genetically mutated mice with diabetes insipidus partially alleviated the condition. Despite significant 
discoveries thereafter, no meaningful advancements in mRNA research occurred due to challenges such as 
amplified immunogenicity, instability, and the absence of an adequate delivery method for mRNA vaccines 
[10–12].

Over the past decades, advancements in research and experimental methodologies have enhanced the 
effectiveness, safety, and large-scale industrial manufacturing of mRNA vaccines [13]. The mRNA vector 
lacks traits such as genomic integration, robust immunogenic responses, and antibiotic resistance [14–16]. 
Furthermore, nucleases swiftly decompose single-stranded RNA (ssRNA) [17]. While the damaged mRNA 
mechanisms provoke excessive activation of the immune system, the development of a safe and efficient 
delivery method utilizing modified mRNA can mitigate negative effects and improve efficacy [18, 19]. 
Enhanced therapeutic effectiveness can be achieved by mRNA carriers and modified mRNAs. For example, a 
herpes simplex virus 2 nucleoside-modified mRNA vaccination reduced viral levels in infected individuals 
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[20]. The liposome conjugated with mannose has been used to transport the mRNA into cells. The carrier 
vector not only enhanced mRNA overexpression but also safeguarded mRNA against degradation by 
upregulating the mannose receptor on cell membranes [21]. Modified mRNAs and numerous delivery 
vectors have been extensively examined for their therapeutic application, particularly during the COVID-19 
pandemic. Approved mRNA vaccines, notably for SARS-CoV-2 (severe acute respiratory syndrome 
coronavirus 2), show strong protection against severe illness, with others in development for viral diseases, 
especially for immunosuppressed groups. Their adaptability and precision make mRNA vaccines promising 
for future widespread use [22]. The mass production of mRNA vaccines depends on translational research, 
which is essential for expediting the speed of manufacturing. The in vitro translational research approach 
swiftly identifies structures and formulations in both clinical and preclinical research [23].

Notwithstanding these achievements, there are still significant gaps in the literature. Comparing the 
delivery methods, effectiveness results, and mechanistic insights of various mRNA vaccine applications for 
various viral diseases, including Zika, rabies, influenza, COVID-19, and HIV, is not well done. This review 
addresses these gaps by examining the synthesis and mechanism of mRNA vaccines, evaluating delivery 
technologies—especially nanoparticle-mediated systems—and analyzing their application across several 
high-priority viral diseases. This review aims to critically assess both the bottlenecks and breakthroughs in 
mRNA vaccine development and delivery to understand future research directions and improve global 
preparedness for emerging infectious threats.

The preclinical evidence facilitates future clinical assessment. The fast production of mRNA vaccines 
positions them as a viable therapeutic approach. mRNA vaccines signify a notable shift from conventional 
vaccination technology, presenting certain benefits but also encountering new obstacles. To compare 
mRNA vaccines with traditional vaccine platforms, including live-attenuated, inactivated, subunit, and viral 
vector vaccines, it is crucial to analyze fundamental attributes such as production techniques, immune 
responses, safety profiles, and storage necessities.

Live-attenuated vaccines: Live-attenuated vaccinations utilize a weakened version of the virus or 
bacterium that may multiply within the body without inducing sickness. Examples include the 
measles, mumps, and rubella (MMR) vaccination, as well as the yellow fever vaccine. Live-attenuated 
vaccines often elicit robust humoral (antibody) and cellular (T cell) immune responses, resulting in 
enduring protection with a reduced number of doses. In several instances, a solitary dose is adequate 
for enduring protection (e.g., the yellow fever vaccination). A minor threat exists that the attenuated 
pathogen may induce illness, particularly in immunocompromised persons (e.g., those with HIV or 
cancer). These vaccines often require refrigeration for storage, and some types may exhibit reduced 
stability compared to inactivated vaccines [24–26].

•

Inactivated vaccines: Inactivated vaccinations utilize viruses or bacteria that have been rendered 
nonviable, preventing replication. Examples are the inactivated poliovirus vaccine (IPV) and the 
hepatitis A vaccine. Inactivated vaccinations are regarded as highly safe as they lack live germs, 
thereby eliminating the danger of disease manifestation. They exhibit greater stability at elevated 
temperatures compared to live-attenuated vaccines and often do not need ultra-cold storage. 
Inactivated vaccinations often elicit a less robust immune response compared to live-attenuated 
vaccines, frequently necessitating several doses or booster injections. These vaccines often elicit a 
vigorous antibody response but may not provoke a significant T-cell response, which is crucial for 
enduring protection [27, 28].

•

Subunit vaccines: Subunit vaccines are pure components of the pathogen, including proteins or 
carbohydrates, which produce an immune response. Examples include the HPV vaccination and the 
Haemophilus influenzae type b vaccine. Subunit vaccinations, including only components of the 
pathogen, pose no risk of infection, rendering them safe for immunocompromised persons. These 
vaccines are generally more stable than live-attenuated vaccinations and may be stored under 
regular refrigeration conditions. Subunit vaccinations often produce a less robust immune response 
than live-attenuated vaccines and may need adjuvants or several doses to improve efficacy. These 

•
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vaccinations frequently induce only an antibody response and may not produce the complete 
spectrum of immunological protection (e.g., T-cell responses) [29, 30].

Viral vector vaccines: Viral vector vaccines such as the AstraZeneca COVID-19 vaccine and the 
Ebola vaccine utilize a distinct virus (unrelated to the target disease) to introduce genetic material 
into cells, prompting the production of the pathogen’s proteins to produce an immune response. 
Similar to live-attenuated vaccinations, viral vector vaccines can produce both humoral and cellular 
immune responses, potentially resulting in prolonged protection. Like mRNA vaccines, viral vector 
vaccines do not need the cultivation of the target pathogen, facilitating expedited development and 
manufacture. Certain people may possess pre-existing immunity to the viral vector employed, 
thereby diminishing the vaccine’s efficacy. While not as rigorous as mRNA vaccines, viral vector 
vaccines sometimes need refrigeration, posing difficulties in resource-constrained environments [31, 
32].

•

Every vaccination platform possesses unique benefits and drawbacks. mRNA vaccines are notable for 
their rapid creation and adaptability; yet, issues related to stability and cold-chain storage persist. Live-
attenuated vaccinations provide robust protection but entail a little risk of inducing illness. Inactivated 
vaccinations are safer; nonetheless, they generally need several doses. Subunit vaccines have good safety 
and stability, although they may need adjuvants to elicit adequate protection. Ultimately, viral vector 
vaccines produce a robust immune response; however, they may be influenced by pre-existing immunity to 
the vector. Comprehending these distinctions is essential for choosing the appropriate vaccination platform 
for certain illnesses and demographics. The mRNA vaccines can be designed and manufactured more 
rapidly than traditional vaccines, as they do not require the growth of viruses or bacteria (e.g., for live-
attenuated or inactivated vaccines) [33]. The mRNA platform can be quickly adapted to target new variants 
of a virus, making it highly responsive to emerging infectious diseases [34].

Study design
A thorough narrative overview of previous studies on mRNA vaccines, their role in vaccine production, and 
their efficacy in preventing viral infections is presented in this review. It examines the development of 
vaccination technologies by contrasting mRNA-based platforms with traditional techniques, including live-
attenuated, inactivated, and subunit vaccines, etc. The review focuses especially on mRNA vaccine delivery 
systems, describing their advantages, present problems, and possible fixes to several viral illnesses. 
Additionally, it draws on data from clinical trials and meta-analyses to highlight the progress of mRNA 
vaccines across various stages of development, supported by tables summarizing trials using diverse 
delivery strategies.

Methods
A thorough literature review was conducted using major databases such as PubMed and ClinicalTrials.gov 
to uncover relevant publications and clinical trials. Both single and multiple combinations of keywords like 
“mRNA vaccine”, “mRNA synthesis”, “mRNA vaccine formulation”, and “mRNA delivery”, as well as disease-
specific terms like “mRNA vaccine for COVID-19”, “Zika virus”, and “HIV”, were employed. The procedures 
involved in mRNA production, formulation, and the variety of delivery devices used are examined in this 
narrative review. Clinical trials, their advancement, and the relative benefits of mRNA vaccines over 
traditional vaccine platforms in the treatment of viral infections are all summarized. Additionally, the 
review addresses the application of mRNA vaccines in viral disease, presents challenges in the field, and 
proposes possible solutions.

Synthesis of mRNA and stability improvement
Synthetic mRNA is generated through the transcription of a complementary DNA (cDNA) template, usually 
plasmid DNA (pDNA), in vitro with the use of bacteriophage RNA polymerase [35]. The initial phase of this 
process involves the synthesis of pDNA. While mRNA synthesis appears more complex than pDNA 
production, raw pDNA often contains bacterial DNA remnants and exists in various forms (supercoiled, 
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relaxed, or linear), complicating the consistent generation of pure and stable pDNA for applications such as 
vaccination. Linearization of pDNA results in the removal of bacterial DNA during transcription by RNA 
polymerase [36].

The synthetic mRNA produced contains an open reading frame (ORF) surrounded by essential 
components: a 5' cap (7-methyl-guanosine) and a 3' poly(A) tail [37, 38]. The pDNA utilized for 
transcription must contain a bacteriophage promoter, an ORF, and a restriction site for linearization. 
Transcription is facilitated by RNA polymerase (T7, T3, or SP6) along with the required nucleotides. The 
production of capped mRNA can be achieved by incorporating a cap analog such as m7G(5')-ppp-(5')G [39]. 
Following transcription, DNase treatment eliminates the pDNA template and bacterial DNA [40].

The stability of mRNA is crucial for facilitating effective protein expression. Alterations to the 5' UTR 
(untranslated region) and 3' UTR surrounding the ORF can enhance mRNA stability and expression levels 
significantly [41]. A 5' cap, exemplified by the LNA (locked nucleic acid)-modified cap analog 
(m7(LNA)G[5']ppp[5']G), enhances stability and translation efficiency [42, 43]. Enzymatically added caps 
demonstrate greater efficacy compared to synthetic analogs [44, 45]. The poly(A) tail is essential for mRNA 
stability; its removal leads to destabilization, decreased translation efficiency, and impaired polysome 
formation [46, 47].

Furthermore, the incorporation of modified or synonymous codons in the mRNA sequence may 
enhance stability through modifications to the secondary structure or by improving translation fidelity [48, 
49]. Elevating the G:C content enhances stability [50]. Modifying elements such as codons, 5' UTR, 3' UTR, 
cap, and poly(A) tail enhances mRNA stability and promotes efficient immune responses [51, 52].

Formulation of mRNA vaccines
mRNA vaccines offer advantages like rapid development, scalability, and production efficiency. Their 
manufacturing process includes three stages: synthesis, purification, and formulation of the mRNA 
component. This section discusses the recent advances in each phase to enhance vaccine production.

In the synthesis phase, mRNA is produced via in vitro transcription using RNA polymerase enzymes 
(T7, SP6, or T3) to transcribe the gene of interest from a linearized DNA template [53]. Once synthesized, 
the mRNA is purified to remove contaminants like residual nucleotides, enzymes, and DNA. Standard 
methods like DNase digestion followed by lithium chloride precipitation are commonly used, but they may 
not fully eliminate impurities such as double-stranded RNA or incomplete mRNA transcripts [54]. 
Ineffective purification can lead to poor translation efficiency and altered immunogenicity. Advanced 
techniques like reverse-phase HPLC have improved purification, leading to higher transfection and protein 
synthesis [55]. Chromatography methods such as size exclusion and ion-pair reverse-phase 
chromatography are often employed. Ion-pair reverse-phase chromatography is particularly effective in 
isolating mRNA from contaminants due to charge differences, offering higher yields and purity compared to 
size exclusion [56–59]. Other methods, like affinity chromatography using oligo dT beads and tangential 
flow filtration, are also used for further refinement [60, 61].

In the formulation phase, mRNA is encapsulated in lipid nanoparticles (LNPs) to prevent degradation 
and enhance delivery. LNPs, which are FDA-approved for mRNA vaccines, are formed by mixing lipids 
[ionizable lipids, cholesterol, PEG (polyethylene glycol)] in an organic solvent with mRNA in an aqueous 
buffer. This creates electrostatic interactions, forming stable nanoparticles. After synthesis, the solution 
undergoes dialysis to remove solvents and adjust pH. Microfluidic mixing is the preferred method for 
creating uniform LNPs with high mRNA encapsulation efficiency. Platforms like NanoAssemblr® are widely 
used for precise and consistent nanoparticle formation at both research and commercial scales [62, 63].

Mechanism of action of mRNA vaccines
The mechanism of action of mRNA vaccines involves the introduction of synthetic mRNA into host cells. 
This mRNA encodes a specific antigen, which is then translated by the host’s ribosomes. The resulting 
protein is recognized by the immune system, prompting an immune response that includes the production 
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of antibodies and the activation of T cells. This process ultimately prepares the immune system to recognize 
and combat the actual pathogen upon exposure.

mRNA serves as a messenger transcribed from genomic DNA within the nucleus and translated by 
ribosomes in the cytoplasm to synthesize proteins. mRNA is initially transcribed from DNA as primary 
mRNA through the action of RNA polymerase. This mRNA comprises exons and introns. It undergoes 
additional processing, including intron removal, the addition of a 5' cap, and a poly(A) tail at the 3' end, to 
form mature mRNA [64, 65].

In mRNA vaccination, the mRNA is synthesized externally and subsequently delivered to cells, where it 
penetrates the cell membrane for translation into the target protein within the cytoplasm. The vaccine-
derived mRNA, akin to natural mRNA, binds to ribosomes for the process of translation. In the process of 
translation, the poly(A) tail interacts with poly-A-binding proteins (PABP), while eukaryotic initiation 
factors are associated with the 5' UTR cap. The ribosome decodes the codons in the mRNA coding region, 
translating them into amino acids [66]. The mRNA in vaccines comprises a 5' cap, 5' UTR, coding region, 3' 
UTR, and poly(A) tail, all essential for effective translation and antigen production [67].

The efficacy of mRNA vaccines is significantly dependent on the activation of the immune system; 
however, the role of type I interferon (IFN) is still a subject of debate. Inhibition of type I IFN receptors has 
been demonstrated to enhance immune responses, leading to increased production of antigen-specific 
antibodies and CD8+ T cells [68]. Factors that influence the immune response encompass the half-life of the 
antigen, the presentation of antigens on MHC (major histocompatibility complex) class I and II molecules, 
and interactions with components of the innate immune system, including NK cells and macrophages.

An important benefit of mRNA vaccines compared to pDNA vaccines is that mRNA does not necessitate 
nuclear entry or transcription for the synthesis of the target protein [69]. mRNA delivery encounters 
significant challenges, especially in traversing the cell membrane and evading endosomal entrapment [70]. 
The mRNA encodes the antigen, initiating an immune response that enables the body to identify and fight 
the pathogen upon subsequent exposure [64].

Delivery systems for mRNA vaccines
Various methods used in mRNA delivery are represented in Figure 1.

Figure 1. Methods of mRNA delivery. mRNA: messenger RNA
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Direct administration of mRNA

Preliminary research has shown that in vivo nude mRNA delivery can produce an immunotherapeutic 
reaction in mice [8]. Currently, administration methods for mRNA encompass subcutaneous, intradermal, 
intranodular, intramuscular, intravenous, and intratumoral injections, which are vital for stimulating 
antigens and initiating a response from the immune system [33, 71, 72]. Phua et al. [73] found that 
subcutaneous nude mRNA injection in mice surpassed the efficacy of nanoparticle-based delivery of mRNA. 
Lint et al. [74] discovered that when mRNA is directly injected into the tumor through intratumoral 
injection, it provokes a suitable response from the immune system and is considered a potentially feasible 
vaccine delivery technique in the coming years. Currently, the direct injection of unencapsulated mRNA is 
mostly employed for the treatment or prevention of viral infections [75]. Nonetheless, despite the potential 
to produce a response from the immune system, the efficacy of this transport route is comparatively 
limited, and nude mRNA is frequently subject to fast degradation post-injection. The direct injection of nude 
mRNA is overly simplistic and rudimentary for application in human patients; it is frequently utilized as a 
method to administer modified mRNA vaccines in conjunction with alternative delivery techniques to 
enhance vaccination efficacy.

Physical administration of mRNA

The efficacy of antigen release by mRNA is enhanced using many established physical techniques, including 
microneedles, electroporation, and gene gun, among others. Electroporation possesses an adjuvant effect, 
capable of recruiting pro-inflammatory cells and stimulating cytokine synthesis at the site of 
administration, hence enhancing the immune response of the mRNA vaccine [76]. It also enhances mRNA 
transport effectiveness without requiring additional receptor modalities, minimizing unwanted 
immunological responses [77]. Callis et al. [78] discovered that transfection efficacy in plant and animal 
cells can be increased by the electroporation of the mRNA. In 2017, the electroporation approach increased 
the mRNA transfection efficacy (50–90%) in dendritic cells (DCs) [79]. The gene gun technique employs 
pressurized He gas as an accelerating force to propel gold particles coated with mRNA into host cells, 
serving as an effective way for the delivery of mRNA [80]. Qiu et al. [80] employed the gene gun technique 
on mouse skin for the introduction of human alpha-1 antitrypsin mRNA, effectively inducing an antibody 
release. Peking et al. [81] treated hereditary skin disorders by mRNA-based formulation, with mRNA 
successfully delivered to mice targeted skin layer using the gene gun method. However, the gene gun 
technique is hardly employed in humans or large animals. Physical methods of delivery of mRNA may 
influence the function of cells and their physiological structure and potentially result in aberrant cell death. 
Consequently, using physical mRNA delivery in humans poses significant risks [33, 76].

Dendritic cell

DCs are among the most powerful immune system stimulants for antibody release. DCs use the MHC for the 
delivery of processed antigen to CD4+ and CD8+ T cells, hence initiating cellular immune response [33, 82]. 
Concurrently, DCs can deliver antigens to B cells, triggering a humoral immune response [83]. The delivery 
of mRNA involves transfecting mRNAs that encode proteins, peptides, or other immune stimulants in DCs, 
followed by the host organism being infected with DCs carrying mRNA to initiate the specific response from 
the immune system based on the antigen [84]. This method operates independently of additional carrier 
molecules and achieves great delivery efficiency. It is extensively utilized in clinical research, animal 
models, and pre-clinical trials [85–88]. This method has mostly been utilized in the treatment of cancer due 
to the predominance of eliciting cellular immune responses [89]. Nonetheless, the mRNA transfection rate 
is rather poor when relying just on DC endocytosis, prompting the frequent utilization of electroporation to 
enhance the rate of transfection of the mRNA [90]. Gay et al. [90] employed electroporation to DCs carrying 
HIV-specific antigens encoded in mRNA for HIV therapy. Followed by at least twice intradermal injection, 
cytotoxic T-lymphocytes (CTLs) CD28+/CD45RA–CD8+ immune responses were induced in HIV patients. A 
significant obstacle to the practical implementation of DC-loaded mRNA is the time and cost-intensive 
manufacturing procedure, which limits the scalability of DC-based mRNA vaccines. Furthermore, within 
hours of transfection, the immune system produced a diminished response, resulting in a decreased 
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therapeutic response [91]. Considering these factors, diseases necessitating substantial mRNA vaccine 
administration in the immediate future should prioritize delivery methods with rapid manufacturing 
capabilities.

Polymer delivery systems

The polymer-based delivery system uses a cationic polymer as a vector for mRNA delivery [92, 93]. 
Frequently utilized polymer delivery polymers are poly(beta-amino esters) (PBAEs) and polyethylenimine 
(PEI), which are a few examples. PEI is the most extensively utilized polymer. It is a water-soluble cationic 
polymer recognized by branched, linear, or dendritic structures, commonly used for mRNA transfection 
[94, 95]. Linear PEI is marketed as jetPEITM was previously utilized for siRNA (short interfering RNA) and 
DNA transfection and can be used for transfection of mRNA [92, 96]. Nonetheless, PEI possesses inherent 
cytotoxicity that is resistant to degradation; hence, researchers frequently alter low-molecular-weight PEI 
with fatty chains to mitigate its toxicity [94, 97, 98]. PBAEs are biodegradable polymers initially created for 
DNA transfection [99]. Kaczmarek et al. [100] created a delivery system based on a polymer by combining 
lipid-PEG with PBAEs, achieving high effectiveness and stable mRNA transport, after successfully injecting 
intravenously. In 2007, research showed that PBAEs can facilitate mRNA delivery, achieving elevated 
mRNA transfection levels in vitro in the absence of serum proteins [101]. The ease of synthesis has led to 
the creation of numerous PBAEs, some of which improve in vivo mRNA stability [92, 102, 103]. Lipids and 
PBAEs can be combined to enhance the stability of mRNA in blood. Compared to lipids, polymer materials 
are strong contenders for mRNA transport. However, the cytotoxicity of polymer complexes, similar to 
cationic lipids, has hindered wider application [104]. In addition to modifying polymer-based vectors with 
other materials to enhance their capabilities, optimizing branching patterns and molecular weight appears 
to be a promising approach.

Lipid nanoparticles

LNPs are the sole nano-delivery technology for mRNA vaccines that are clinically successful and have 
received approval for human use. The Pfizer and Moderna SARS-CoV-2 mRNA vaccination uses LNPs to 
transport the mRNA to the target. Cationic liposomes are frequently utilized as RNA carriers, since lipids 
are positively charged and RNA is negatively charged, which creates electrostatic complexes, hence 
enhancing mRNA transport efficacy [105]. The mRNA-lipid combination, along with other excipients, may 
produce LNP ranging from 80 to 200 nm, which can reach the cell cytoplasm through endocytosis. Their 
most common composition comprises cholesterol, natural phospholipids, ionizable cationic lipids, and PEG 
[76]. The mRNA is self-aggregated due to cationic lipids forming approximately 100 nm particles and, 
through endocytosis, reaches the cytoplasm, gets ionized, and releases mRNA. Cholesterol stabilizes the 
LNP, PEG increases its half-life, and phospholipids help form the lipid bilayer [33, 92]. LNP encapsulates the 
mRNA in the core, which safeguards it from degradation. The lipophilic characteristics of the LNP 
component facilitate the transport of mRNA lipid complex across the membrane of the cell through 
endocytosis [76, 91]. LNP is frequently utilized as a delivery method for siRNA in initial studies [106].

Currently, LNP is extensively utilized in the delivery of mRNA. Geall et al. [107] employed an mRNA-
lipid complex to administer a self-amplifying RNA, resulting in elevated mRNA expression levels when 
compared to naked mRNA in mice, while also efficiently producing CD4+ and CD8+ T cell immunological 
responses. Various delivery routes can elicit distinct immune stimulation responses from mRNA LNPs, 
potentially fulfilling the therapeutic requirements for diverse illnesses. Pardi et al. [108] discovered that 
administering mRNA LNPs at the correct dosage via intradermal, intramuscular, and subcutaneous routes 
might facilitate localized gene translation. Common mRNA-LNP delivery methods are tracheal inhalation, 
intraperitoneal injection, and intravenous injection, the latter showing the highest systemic delivery 
efficiency [109]. However, the methods by which mRNA escapes from electrostatic complexes to achieve a 
free state for functionality in the cytoplasm remain inadequately comprehended. The in vivo ambient pH 
alters the ionization state of lipid-carrying mRNA is considered crucial to the release mechanism [104]. 
Simultaneously, more investigation is needed into decreasing the toxicity, and the management of 
immunogenicity in cationic lipid-based delivery systems is critically required.
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Cellular transport and encapsulation can be enhanced by using phospholipids in LNP formulation. To 
extend the circulation duration for LNP, the cholesterol level should be increased while decreasing the level 
of phospholipid. Some studies indicate that higher phospholipid molar ratios enhance LNP delivery 
efficiency. Zwitterionic phospholipids may help stabilize electrostatic interactions between mRNA, lipids, 
and surrounding water molecules. However, the precise role of phospholipids in mRNA transport through 
LNPs remains unclear [110].

Protamine delivery system

Protamines are positively charged proteins with resinous structures. The combination of protamine with 
mRNA in various ratios of mass can produce electrostatic mRNA-protamine complex nanoparticles of 
various sizes [111]. This compact conjugate structure may efficiently safeguard mRNA from degradation by 
RNase enzyme, and this complex can produce a robust immunological response from immune cells, 
including DCs, neutrophils, NK cells, B cells, and monocytes [112–114]. It suggests that protamine may 
serve as both an mRNA transporter and an immunological activator. In 1961, protamine was among the 
initial materials investigated for the delivery of RNA [115].

Fotin-Mleczek et al. [116] administered a vaccine that has protamine as a carrying agent of an mRNA to 
the tumor, effectively inducing a comprehensive anti-tumor-specific response. At the mass ratio of mRNA to 
protamine of 2:1, the resultant complex measures around 300 nm, exhibiting relative stability and eliciting 
robust immunological activation alongside elevated cytokine levels, but with a considerable inhibition of 
protein production. Consequently, it is widely believed that while mRNA-protamine complexes induce 
immune responses, translation efficiency may be limited [116, 117]. In recent years, mRNA-protamine 
formulations have been extensively utilized in clinical studies, demonstrating significant therapeutic 
efficacy in conditions such as rabies [110].

Advantages of mRNA vaccines
Currently, over 30 diseases globally can be averted with vaccination. Despite decades of rigorous endeavors 
to create effective vaccines for formidable viruses that induce recurrent or chronic infections, such as HIV 
and respiratory syncytial virus (RSV), success has not yet been achieved. Moreover, the major challenge for 
emerging virus vaccines is the urgent necessity for swift development, which conventional methods cannot 
adequately address, as demonstrated by the outbreaks of Zika virus, Ebola, and Middle East Respiratory 
Syndrome (MERS) in the last decade, as well as the outbreak of COVID-19 between 2020–2022 [118]. 
Therefore, a more powerful and adaptable platform for vaccine delivery must be created as it is necessary.

In 1990, the in vivo use of in vitro transcribed (IVT) mRNA was documented, demonstrating protein 
synthesis from directly injected reporter gene mRNA into the muscle of the mouse [8]. Nonetheless, 
apprehensions over mRNA instability, robust innate immune responses, and inadequate in vivo transport 
efficiency led to a lack of significant investment in the development of mRNA vaccines [33, 119].

Leveraging significant technology advancements and research investments over the last few years, 
mRNA has appeared as a viable platform for vaccines for various viral diseases. The mRNA vaccine often 
provides various benefits over traditional methods, such as protein subunit, inactivated viral, live 
attenuated, and genetic material-based vaccines. Primarily, mRNA vaccination is safe, being a non-
integrating platform or non-infectious, it poses no possible danger of mutagenesis or infection. Secondly, 
high efficacy of mRNA vaccination, nucleoside modifications significantly enhance mRNA stability and 
translational efficiency, while LNPs serve as effective carriers for in vivo mRNA delivery, facilitating 
immediate acceptance and expression in targeted cells, ultimately resulting in robust and adaptive cellular 
and humoral response from the immune system [118, 120]. Thirdly, the rapid development and 
adaptability of mRNA vaccines may be achieved within a few days using acquired gene sequence data. This 
method is very adaptable and applicable to nearly all protein targets [121]. Table 1 shows a SWOT analysis 
of mRNA for viral disease.
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Table 1. SWOT analysis of mRNA vaccines in the context of viral diseases

SWOT analysis Internal factor*

External factor# Strengths (S)
Rapid design and development cycle•
Non-integrative into the host genome 
minimizes the genomic risk

•

Strong immunogenicity with flexible 
antigen targeting

•

Scalable, cell-free synthetic production•
Advanced delivery systems improve 
targeting and uptake

•

Weaknesses (W)
High instability of mRNA; prone to 
degradation

•

Innate immune activation may cause adverse 
reactions

•

Currently, high production costs compared to 
traditional platforms

•

Opportunities (O)
Expansion into cancer, 
autoimmune, and 
personalized vaccines

•

Pandemic preparedness 
using rapid-response 
platforms

•

Increased global funding 
and infrastructure 
investment

•

OS strategy
Leverage rapid development and scalable 
production to expand into personalized 
and cancer vaccines

•
OW strategy

Address instability and cold storage limitations 
by investing in thermostable mRNA 
formulations

•

Threats (T)
Viral mutations that reduce 
vaccine effectiveness

•

Competition from other 
vaccine technologies

•

Regulatory uncertainty for 
novel delivery systems

•

Public vaccine hesitancy is 
reducing coverage

•

Supply chain bottlenecks 
(e.g., raw materials, lipids)

•

TS strategy
Use strong immunogenicity and delivery 
systems to counter emerging viral 
variants and maintain efficacy

•
TW

Mitigate high costs and public mistrust 
through policy incentives and public education 
campaigns targeting misinformation

•

* Internal factors: attributes inherent to mRNA vaccine technology or design (e.g., scalability, immunogenicity). # External 
factors: influences from the regulatory, social, geopolitical, or scientific situation (e.g., distribution logistics, mutations, public 
perception). mRNA: messenger RNA

mRNA vaccines for viral diseases
Various viral diseases prevented using mRNA vaccines are shown in the Graphical abstract.

Influenza

Influenza virus vaccines have been utilized for over 80 years, although they remain a significant focus of 
investigation-based study and a considerable demand on community health resources due to the necessity 
for frequent updates to address the continually evolving viruses [122]. The inaugural influenza vaccine was 
employed in the mid-1930s, following the recent discovery of influenza A viruses (IAVs) a few years earlier 
at Mill Hill. Influenza immunization originally entailed subcutaneous administration of formalin-inactivated 
viruses cultured in murine lungs; subsequently, egg-cultivated viruses that are inactivated were created by 
Jonas Salk and Thomas Francis Jr. for the military of the USA. In the following decades, both IAVs and IBVs 
were encompassed in influenza vaccination and are now generally advocated for yearly administration. 
These vaccinations are crucial instruments for managing seasonal influenza and addressing influenza 
pandemics [123–125].

Notwithstanding the available vaccine alternatives, viruses of seasonal influenza are projected to result 
in more than a few million infections and are linked to around 650,000 fatalities annually worldwide [126, 
127]. Vaccine policy and coverage differ significantly among nations: in 2019, immunization rates for those 
aged 65 and older ranged from around 6% to over 70% of the population. In nations with substantial 
vaccination coverage, the virus of seasonal influenza exerts a significant illness burden, which can be largely 
ascribed to the deficiencies of existing vaccines [126, 128].
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A limited number of pre-clinical and early clinical experiments for mRNA-based influenza vaccines 
have been performed or are underway. A phase I experiment was conducted to assess the safety of mRNA 
vaccines carried by liposomes containing H7N9 or H10N8, the full-length IAV, avian viruses with pandemic 
potential, can be delivered either intradermally or intramuscularly [129]. The immunizations were well 
handled and produced elevated, enduring antibody titers, comparable to current vaccines. The adverse 
effects documented in the 2019 research, including discomfort and edema at the site of administration, 
myalgia, and exhaustion, are analogous to those associated with mRNA vaccines for coronavirus [130]. The 
participants are recruited for trials by Moderna to evaluate a quadrivalent seasonal formulation of mRNA-
1010, and preliminary findings after its first phase clinical trial in old and adults indicate it is safe and 
generates antibody responses [34]. The phase II clinical study performed by Pfizer of mRNA vaccines 
targeting seasonal influenza in people above 65 years [131]. Multiple firms are exploring the feasibility of a 
multivalent vaccination incorporating antigens from both the influenza virus and influenza and SARS-CoV-
2. ‘Novavax’ is a nanocarrier-based vaccine, while Moderna has also declared to merge SARS-CoV-2 and 
influenza antigens into a unified vaccine [132]. Although influenza mRNA vaccines have been under 
research for some years, the efficacy of mRNA vaccines against SARS-CoV-2 has elevated their clinical 
application to a prominent prospect. The ability to manufacture substantial volumes of tailored, precisely 
regulated vaccinations in a comparatively short timeframe is appealing in relation to existing vaccine 
platforms. The regulatory inquiries and logistical challenges associated with the implementation of novel 
technology for the deployment of coronavirus vaccines which is expected to facilitate the introduction of 
next-generation influenza vaccines soon [133]. There is growing interest and investment in mRNA-based 
influenza vaccines, with several candidates in or completing phase III trials. It’s also crucial to monitor 
efforts like the WHO/MPP mRNA Technology Transfer Programme to track how low and middle-income 
countries are advancing in influenza vaccine development [134].

Zika virus

The initial human case of Zika virus infection was identified in 1952 in Nigeria. It is spread by Aedes spp. 
mosquitoes, remained inconspicuous for years until epidemics transpired from 2007 to 2017 in America, 
French Polynesia, and Yap Island. After the 2015 Brazil epidemic, which marked the initial instance of the 
indigenous Zika virus spread, initiatives started to emphasize the Zika virus investigation and the 
formulation of vaccines for the Zika virus. The worldwide concern for pregnant women stemmed mostly 
from the adverse effects on fetuses infected with the Zika virus in Brazil and other nations globally [135]. 
Neutralizing antibodies are essential agents of shield against infections and have been associated with the 
effectiveness of vaccinations [75, 136, 137]. Despite global interest in Zika resulting in several vaccine 
candidates, there is still no approved vaccine for the disease.

Despite the extensive range of vaccine platforms for the Zika virus, only two mRNA technology-based 
vaccine candidates have undergone clinical testing. The mRNA vaccination technology is a secure and 
efficacious method for developing protective immune responses. In contrast to existing vaccination 
candidate platforms, mRNA vaccines eliminate the danger of insertional and infection mutagenesis, while 
also circumventing the potential for antivector protection, so permitting recurrent delivery [33]. The 
effectiveness of an mRNA vaccine candidate in an AG129 murine model. A single administration of Zika 
virus prM-E mRNA-LNP conferred protection to rats following a deadly Zika virus infection. In comparison 
to the placebo group, vaccinated animals exhibited no clinical symptoms or weight reduction and had 
decreased virus loads. Finally, the BALB/c mice vaccination, accompanied by the isolated splenocytes 
analysis for T cells, revealed specific antigens for CD4+ and CD8+ T-cell responses. This study facilitates the 
usage of liposomes for mRNA vaccine delivery by liposome [138].

HIV/AIDS

Since the initial clinical identification of acquired immunodeficiency syndrome (AIDS) and the subsequent 
discovery of the retrovirus HIV in the early 1980s, the HIV/AIDS epidemic remains a significant global 
health issue despite four decades of rigorous study. In 2019, there were 1.7 million new infections and 
690,000 AIDS-related fatalities worldwide; in 2020, 38 million individuals were living with HIV. 
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Contemporary prevention and treatment modalities for HIV/AIDS encompass the administration of 
antiretroviral medications for pre-exposure prophylaxis (PrEP) and antiretroviral therapy (ART), which 
have facilitated the transition of AIDS from a life-threatening condition to a manageable chronic disease 
[139]. Nonetheless, the drugs are costly, need rigorous compliance with dose protocols for effectiveness, 
and induce adverse effects. Furthermore, many HIV-infected patients acquire treatment resistance, 
necessitating alterations in their pharmaceutical regimen. Access to treatment is a significant obstacle, 
especially in low- and middle-income countries, as indicated by the consistently elevated rates of new 
infections over the past decade [140]. Consequently, preventive vaccination is a fundamental element of a 
comprehensive approach to eradicating the pandemic. Creating an effective HIV vaccine has, however, been 
shown to be exceptionally challenging. As the pandemic approaches its fifth decade, there are no authorized 
vaccines for HIV, with just one promising clinical research (RV144 trial) exhibiting a low effectiveness of 
31% [141].

The mRNA vaccine utilizes mRNA that encodes an immunogen, which is converted into protein once 
delivered to host cells. In 1989, it was discovered that mRNA contained in cationic liposomes could 
transfect mouse cell lines [142]. The protein expression and translation were shown following the injection 
of nude mRNA into the skeletal muscle of the mouse [8, 143]. Nonetheless, employing mRNA for vaccines 
was impractical due to the instability of RNA molecules, insufficient delivery mechanisms, challenges in the 
large-scale production of mRNA, and unregulated activation of innate immunity via RNA sensors [143, 144]. 
Current technical advancements and enhanced delivery systems have mitigated these challenges, leading to 
the emergence of mRNA vaccines as a potential platform for antigen delivery. The mRNA-based vaccines 
provide several advantages compared to conventional vaccination platforms, such as enhanced safety, 
effectiveness, and streamlined manufacturing processes. The absence of effective delivery mechanisms for 
molecules of mRNA was a significant impediment to the advancement of mRNA vaccines. The optimal 
delivery mechanism will enhance cellular uptake with minimal toxicity and safeguard mRNA against 
destruction [145].

Rabies

Rabies is a deadly neurological illness caused by the neurotropic rabies virus, affecting infected animals and 
humans. It is an ssRNA virus belonging to the Lyssavirus family, transmitted by several animal vectors; dog 
bites are the cause of more than 95% of rabies cases in humans, while additional carriers include bats, 
skunks, raccoons, and coyotes [146]. The true impact of rabies is challenging to assess due to case under-
reporting and insufficient monitoring data; nonetheless, the risk of exposure is estimated to be more than 3 
billion people worldwide, with 59,000 fatalities annually attributed to canine rabies. Regrettably, rabies 
continues to claim numerous lives, despite Louis Pasteur’s introduction of the first effective human 
vaccination against the disease over 130 years ago [147, 148].

The application of mRNA technology for the efficient synthesis of mRNA that is precisely tailored to the 
encoded antigen offers several benefits compared to current vaccination technologies in the creation and 
manufacture of preventive vaccines for infectious diseases. The mRNA vaccines do not incorporate any 
living viral components, unlike attenuated or live vaccinations, hence eliminating the risk of consequent 
infection and reversion to pathogenicity [118]. The prophylactic mRNA vaccine, which was first developed 
for rabies, has been advanced through in vivo animal models before human evaluations. The choice to 
prioritize rabies was influenced by many considerations. The rabies genome is well-defined and 
uncomplicated, as is the immune response target, the RABV-G protein antigen [149]. Numerous licensed 
vaccinations are available and established standardized assays for assessing the RABV-G antigen immune 
response, allowing for straightforward comparisons of rabies mRNA vaccine candidates with licensed and 
commercially available rabies vaccines [150].

Recent reports have detailed a technological framework for the versatile and precise synthesis of 
protein antigens in mRNA, which has been utilized for rabies. The investigations at the preclinical level have 
shown that intradermal or intramuscular administration of mRNA can produce cellular and humoral 
immune responses against the protein antigen [151].
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COVID-19

COVID-19 is an illness induced by the SARS-CoV-2, which is a positive ssRNA virus enveloped by protein. It 
belongs to the Betacoronavirus genus within the Coronaviridae family. The whole genome comprised 
29,881 nucleotides in the ancestral SARS-CoV-2 strain, with a 3' poly(A) tail and methylated 5' cap, 
encoding 9,860 amino acids that represent 4 structural proteins, 9 accessory proteins, and 16 nonstructural 
proteins. More than 220 countries have been devastated by COVID-19, resulting in more than 400 million 
incidence cases and 5.75 million fatalities [152–154].

The initial group of vaccines for COVID-19 is mRNA vaccines undergoing clinical testing. According to 
the WHO report, the number of COVID-19 vaccines exceeded 300, including 47 mRNA vaccines [155]. 
Moderna (mRNA-1273), Pfizer-BioNTech (BNT162b2), and CureVac mRNA vaccines represent the swiftest 
developed vaccine in medical history [156, 157]. The initial two received permission from various 
regulatory bodies for emergency use in China, the USA, and Canada [158]. The FDA approved official 
marketing for the Pfizer-BioNTech COVID-19 vaccine in August 2021, making it the first vaccine to get such 
approval. Additionally, on October 29, 2021, it became the first vaccine authorized for children under the 
age of 11 years. Kitano et al. [159] did a risk assessment of the mRNA vaccine for COVID-19 in children from 
6 months to 4 years and found that the benefits of the mRNA vaccine far outweigh any negative effects. The 
Pfizer-BioNTech vaccine has a dose of 30 μg and is 95% effective, and the Moderna vaccine is 94.5% 
effective with a dose of 50 μg [160]. After inoculation with homologous SARS-CoV mRNA vaccines, 
individuals have a superior antibody response than other vaccines [161], and spike antibody assay of the 
antibody is preferred over nucleoside antibody [162].

Because of the intricate relationships between SARS-CoV-2, its variants, and societal dynamics, 
environmental factors are crucial to the spread of COVID-19 and make predictive models more difficult to 
understand [163, 164]. While higher COVID-19 vaccination rates are essential, they alone are not sufficient 
to significantly reduce mortality; additional health policies and interventions are also necessary [165]. 
Higher healthcare spending and better medical infrastructure are linked to lower COVID-19 fatality rates, 
with Western European countries showing stronger outcomes compared to Eastern Europe due to greater 
per capita health investment [166]. Organizations like WHO, Coalition for Epidemic Preparedness 
Innovations (CEPI), Global Alliance for Vaccines and Immunization, and International Vaccine Institute (IVI) 
are crucial in pandemic preparedness, working together to enhance vaccine access and strengthen global 
responses to infectious diseases [167].

The 2019 pandemic has catalyzed the growth of platforms for mRNA vaccines for the treatment and 
prevention of several contagious infections, leading to the progressive introduction of a new generation of 
vaccinations for the general public, which has garnered amplified attention. The vaccines based on mRNA, 
in contrast to conventional vaccinations, enable the modification of the design of antigens and provide the 
integration of sequences from many variations to address novel changes in the viral genome. In the future, 
the mRNA-based vaccination will facilitate the management and prevention of viral diseases and the 
treatment of other conditions. The foremost vaccination approved by the FDA for COVID-19 was an mRNA-
based vaccine because of its benefits, rapid development cycle, absence of cell culture requirements, and 
excellent immunogenicity [168]. Even machine learning can be applied to data like the number of 
infections, the turnout in the participation in the vaccination campaign, the respective vaccination plan, and 
the doses administered to reduce side effects and fatality rate [169]. The COVID-19 pandemic demonstrated 
that urgent health crises catalyze problem-driven innovation, resulting in rapid breakthroughs such as 
mRNA vaccines. Addressing these challenges not only advances industrial competitiveness but also 
contributes significantly to humanity’s ability to overcome pandemic situations [170, 171]. Table 2 lists a 
few examples of mRNA-based vaccines for viral diseases under clinical trials [172].



Explor Immunol. 2025;5:1003212 | https://doi.org/10.37349/ei.2025.1003212 Page 14

Table 2. List of mRNA vaccines for viral diseases under clinical trials

Viral disease NCT identifier Phase/Status Delivery route/Formulation

NCT05227001 I/Completed i.m. injection/NA
NCT05426174 I/Completed i.m. injection/NA
NCT05052697 I/II/Completed i.m. injection/NA
NCT04956575 I/II/Completed i.m. injection/LNP
NCT05415462 III/Completed i.m. injection/LNP
NCT05333289 I/II/Completed i.m. injection/LNP
NCT06744205 I/II/Recruiting i.m. injection/NA

Influenza

NCT06727058 I/II/Recruiting i.m. injection/NA
NCT03014089 I/Completed Injection/NA
NCT04064905 I/Completed Injection/NA

Zika virus

NCT04917861 II/Completed Injection/NA
NCT00833781 I/II/Completed i.d. injection/Dendritic cell
NCT02888756 II/Terminated Intranasal/Dendritic cell
NCT02413645 I/Completed Inguinal intranodal injection/Dendritic cell
NCT06694753 I/Not yet recruiting i.m. injection/LNP

HIV/AIDS

NCT05903339 I/Active, not recruiting Injection/Ferritin NP and LNP
NCT03713086 I/Completed i.m. injection/NARabies
NCT02241135 I/Completed Injection/RNActive®

NCT04449276 I/Completed i.m. injection/NA
NCT05972993 I/Not yet recruiting i.m. injection/NA
NCT05144139 I/II/Completed i.m. injection/NA
NCT05212610 IV/Recruiting i.m. injection/NA
NCT04368728 II/III/Completed i.m. injection/NA

COVID-19

NCT04380701 I/II/Completed i.m. injection/NA
AIDS: acquired immunodeficiency syndrome; HIV: human immunodeficiency virus; i.d.: intradermal; i.m.: intramuscular; LNP: 
lipid nanoparticle; NCT: National Clinical Trial; mRNA: messenger RNA; NA: not applicable; NP: nanoparticle

Current constraints in mRNA vaccine development and emerging solutions
The mRNA vaccines have emerged as a transformative instrument in combating infectious illnesses, notably 
exemplified by the efficacy of COVID-19 vaccines such as Pfizer-BioNTech and Moderna. Nonetheless, 
despite their remarkable efficiency, mRNA vaccination technology has several limitations and solutions.

The fundamental constraint of mRNA vaccines is their volatility at higher temperatures. mRNA is 
a delicate molecule that rapidly degrades when subjected to heat or inadequate storage 
conditions. This has created considerable logistical difficulties, particularly for the extensive 
delivery of the vaccine to isolated or under-resourced regions. The COVID-19 vaccine developed 
by Pfizer necessitates storage at ultra-low temperatures (about –70°C), demanding specialized 
freezers and complicating worldwide distribution efforts [173]. Innovative formulations and 
methods are being created to increase the stability of mRNA vaccines and to proliferate their 
accessibility in diverse situations.

(i).

Since mRNA vaccines provide a robust immune response in several individuals, the degree of 
immunity may fluctuate among other demographic groups. Variables like age, sex, genetic 
predisposition, and pre-existing health issues can affect the vaccine’s efficacy. Older people and 
immunocompromised persons may demonstrate a diminished immunological response to mRNA 
vaccines, perhaps necessitating booster doses or alternate immunization approaches [174, 175]. 
In the case of pregnancy, COVID-19 mRNA vaccination is safe, showing no increased risk of 
adverse outcomes, and is associated with a reduced risk of stillbirth [176].

(ii).

Despite the good safety profile demonstrated by mRNA vaccines in extensive clinical studies, 
apprehensions persist over a few side effects. Certain individuals have encountered adverse 
responses, including anaphylaxis, to constituents in the vaccine formulation, such as LNPs utilized 

(iii).
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for mRNA delivery into cells. Additionally, there have been a few instances of myocarditis and 
pericarditis, especially in younger boys after mRNA immunization [177]. These few side effects 
need continuous monitoring and may undermine public trust in immunizations [178].

The manufacturing of mRNA vaccines necessitates advanced technology and meticulous accuracy. 
The manufacturing of mRNA, its encapsulation in LNPs, and the requisite quality control to 
guarantee batch uniformity can be resource-intensive. This has constrained the capacity to 
rapidly increase output, particularly during the early phases of the COVID-19 epidemic. Moreover, 
guaranteeing equal distribution is a hurdle, as affluent countries have greater access to these 
vaccinations than lower-income nations [61, 174, 179, 180]. The development of various mRNA 
vaccines for COVID-19 paves the path for the development of optimal vaccines for diseases like 
Tuberculosis (TB), AIDS, influenza, etc. [181].

(iv).

The long-term efficacy and length of protection of mRNA vaccines, while offering robust defense 
against illnesses such as COVID-19, remain subjects of ongoing investigation. Preliminary 
research indicates that immunity may diminish over time, necessitating booster doses. The 
introduction of novel viral variations is a difficulty, since vaccinations may not provide sufficient 
protection against these newer strains, necessitating ongoing modifications to vaccine 
formulations [176, 182, 183].

(v).

The mRNA vaccines, despite their promise, encounter several problems such as stability concerns, 
variability in immune responses, safety issues, manufacturing complexities, and the necessity for long-term 
effectiveness evidence. Current research and technical progress seek to overcome these restrictions and 
broaden the worldwide application of mRNA vaccine technology for illnesses outside COVID-19. Data from 
various countries show that vaccination rates naturally rise with income, peaking around 70% without 
coercion. Forcing higher rates through strict mandates may harm democracy and cause greater 
socioeconomic issues than the pandemic itself [184]. Effective COVID-19 crisis management highlights the 
need for coordinated multi-level governance, timely information sharing, and rapid vaccine R&D to combat 
future pandemics. Strong leadership, preparedness, and strategic investments are essential to protect 
public health and socioeconomic stability [185].

Conclusions
In the field of global vaccination technology, mRNA vaccines have quickly evolved from a theoretical 
breakthrough to a game-changing instrument. Recent discoveries, especially during the COVID-19 
pandemic, have shown the enormous potential of mRNA platforms for both therapeutic and preventive 
applications, after twenty years of research and development. The synthesis, mode of action, delivery 
methods, and disease-specific uses of mRNA vaccines for significant viral threats, such as COVID-19, Zika, 
rabies, influenza, and HIV, were all critically investigated in this study. By doing this, it filled in important 
gaps in the literature, especially the lack of comparative analysis of delivery methods and implications for 
particular diseases.

Theoretical implications

This review explains how molecular design, delivery methods, and immune modulation interact to 
influence vaccine efficacy, adding to the expanding theoretical framework surrounding mRNA vaccine 
development. The necessity for quick, scalable, and efficient solutions to pandemic emergencies and 
resistant viral diseases led to the development of mRNA vaccines, which are highlighted as a problem-
driven innovation. The study deepens our knowledge of how nucleotide modifications and nanoparticle-
based delivery systems affect mRNA stability, immunogenicity, and expression efficiency by combining 
findings from preclinical and clinical investigations.

Additionally, this study offers a novel conceptual framework for vaccine development that integrates 
translational medicine, immunology, and nanotechnology. It suggests that mRNA vaccines are not merely 
an alternative to traditional platforms but a foundational shift in how we approach global immunization 
strategies, with implications that extend into oncology and other therapeutic areas.



Explor Immunol. 2025;5:1003212 | https://doi.org/10.37349/ei.2025.1003212 Page 16

Managerial or policy implications

This review highlights the strategic importance of investing in mRNA infrastructure from a managerial and 
policy perspective, especially for pandemic preparedness and global health equity. The effectiveness of 
mRNA vaccines during COVID-19 has shown that they can be developed and implemented quickly, which is 
essential for halting the spread of newly emerging infections. Funding and regulatory support for cold-
chain innovations, scalable manufacturing, and region-specific vaccine platforms that target regional 
disease burdens should be given top priority by policymakers.

The pharmaceutical industry and health authorities around the globe must also adopt flexible 
regulatory frameworks that can take into account the modular nature of mRNA platforms and their quicker 
development schedules. In addition, the integration of mRNA technology into routine vaccination programs 
and public health policy could revolutionize how we prevent and respond to infectious disease outbreaks, 
especially in resource-limited settings.

Ideas for future research

Even though the available data is encouraging, the science behind mRNA vaccines has not yet reached its 
full potential. Future studies ought to concentrate on:

Recognizing the long-term immune reactions brought on by mRNA vaccines, including any possible 
impacts on immune memory and innate immunity.

•

Enhancing formulation and delivery methods, especially those that lessen reliance on the cold chain 
and increase temperature stability.

•

Looking into how mRNA vaccines might work in concert with other therapeutic approaches, like 
checkpoint inhibitors or other immunotherapies, to treat cancer.

•

Investigating mRNA vaccines that are customized for specific immune profiles or local pathogen 
strains.

•

Lastly, more studies on self-amplifying RNA platforms and multi-antigen mRNA constructs could lead 
to more powerful, affordable, and long-lasting vaccines in the future.

•

Finally, expanded research on multi-antigen mRNA constructs and self-amplifying RNA platforms may 
pave the way for next-generation vaccines that are more potent, cost-effective, and durable. As the field 
matures, collaborative efforts between academia, industry, and government will be crucial to unlocking the 
full potential of mRNA technologies for global health transformation.
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