Gynecological cancer remains one of the leading causes of mortality worldwide. Recent advances in genomic and molecular sequencing have significantly enhanced our understanding of the biological pathways that drive tumor progression and resistance to therapy. Targeted therapies, including monoclonal antibodies (mAbs), have revolutionized cancer treatment by selectively interfering with oncogenic proteins expressed on cancer cells. However, the long-term clinical benefit is often limited due to the emergence of drug resistance, frequently mediated by compensatory signaling pathways or immune escape mechanisms. To overcome these limitations, bispecific antibodies (bsAbs) represent an innovative class of therapeutic agents that have shown promising results across various medical fields. They have been developed to engage two distinct targets simultaneously, such as tumor antigens, immune effectors, or immunomodulatory checkpoints, thereby enhancing anti-tumor activity and reducing the risk of resistance. There are 17 bsAbs approved for clinical use in various countries, with numerous others currently in active development and over 600 bsAbs undergoing clinical trials worldwide. Among these, 11 have received FDA approval for the treatment of hematologic malignancies as well as solid tumors, including uveal melanoma, metastatic non-small cell lung cancer, small cell lung cancer, and biliary tract cancers. Although some studies have explored bsAbs in gynecological cancers, this area remains underdeveloped compared to other oncology fields. Most ongoing studies in this area are still in their early phases (phase I or phase II), and there is a need for optimization in terms of antibody design, efficacy, and safety profiles. Therefore, the purpose of this review is to present a comprehensive summary of the current research on bsAbs in gynecological cancers, with a focus on endometrial, cervical, and ovarian cancers. We will highlight ongoing clinical trials, discuss the mechanisms of action of these agents, and explore their potential benefits in enhancing treatment outcomes.
Gynecological cancer remains one of the leading causes of mortality worldwide. Recent advances in genomic and molecular sequencing have significantly enhanced our understanding of the biological pathways that drive tumor progression and resistance to therapy. Targeted therapies, including monoclonal antibodies (mAbs), have revolutionized cancer treatment by selectively interfering with oncogenic proteins expressed on cancer cells. However, the long-term clinical benefit is often limited due to the emergence of drug resistance, frequently mediated by compensatory signaling pathways or immune escape mechanisms. To overcome these limitations, bispecific antibodies (bsAbs) represent an innovative class of therapeutic agents that have shown promising results across various medical fields. They have been developed to engage two distinct targets simultaneously, such as tumor antigens, immune effectors, or immunomodulatory checkpoints, thereby enhancing anti-tumor activity and reducing the risk of resistance. There are 17 bsAbs approved for clinical use in various countries, with numerous others currently in active development and over 600 bsAbs undergoing clinical trials worldwide. Among these, 11 have received FDA approval for the treatment of hematologic malignancies as well as solid tumors, including uveal melanoma, metastatic non-small cell lung cancer, small cell lung cancer, and biliary tract cancers. Although some studies have explored bsAbs in gynecological cancers, this area remains underdeveloped compared to other oncology fields. Most ongoing studies in this area are still in their early phases (phase I or phase II), and there is a need for optimization in terms of antibody design, efficacy, and safety profiles. Therefore, the purpose of this review is to present a comprehensive summary of the current research on bsAbs in gynecological cancers, with a focus on endometrial, cervical, and ovarian cancers. We will highlight ongoing clinical trials, discuss the mechanisms of action of these agents, and explore their potential benefits in enhancing treatment outcomes.
Hepatocellular carcinoma (HCC) displays both shared and ethnicity-specific molecular characteristics. Using transcriptomic data from The Cancer Genome Atlas (TCGA), we compared gene expression profiles between Asian and Caucasian HCC patients.
Gene expression profiles were analyzed using the PyDESeq2 implementation of DESeq2, applying size factor normalization and dispersion estimation. Differentially expressed genes (DEGs) were identified with thresholds of false discovery rate (FDR) of < 0.05 and |log2FC| ≥ 1.0. Gene annotation, visualization, and pathway enrichment were conducted using Sanbomics, seaborn, and gene set enrichment analysis (GSEA) via the GSEApy package.
A total of 387 and 250 genes were commonly upregulated and downregulated, respectively, in both populations, including the upregulations of GPC3 and PLVAP and the downregulations of FCN3 and OIT3, indicating their potential as universal HCC markers. Conversely, 16 genes were upregulated in Asians but downregulated in Caucasians, and 25 showed the reverse pattern. Asian-specific upregulation of AKR1B10, UBE2C, and S100P suggests links to viral etiology and immune modulation, while MDK, LCN2, and NQO1 were upregulated in Caucasians, implicating proliferative and metabolic roles. Functional enrichment analysis revealed distinct immune and metabolic pathways. Asians showed elevated ubiquitin ligase activity and suppressed inflammatory responses, while Caucasians exhibited enhanced cytokine signaling, complement activation, and xenobiotic metabolism.
These findings highlight key molecular differences in HCC across ethnicities and emphasize the value of TCGA data for identifying both shared targets and population-specific therapeutic strategies. Understanding these differences is crucial for advancing precision oncology and developing tailored interventions.
Hepatocellular carcinoma (HCC) displays both shared and ethnicity-specific molecular characteristics. Using transcriptomic data from The Cancer Genome Atlas (TCGA), we compared gene expression profiles between Asian and Caucasian HCC patients.
Gene expression profiles were analyzed using the PyDESeq2 implementation of DESeq2, applying size factor normalization and dispersion estimation. Differentially expressed genes (DEGs) were identified with thresholds of false discovery rate (FDR) of < 0.05 and |log2FC| ≥ 1.0. Gene annotation, visualization, and pathway enrichment were conducted using Sanbomics, seaborn, and gene set enrichment analysis (GSEA) via the GSEApy package.
A total of 387 and 250 genes were commonly upregulated and downregulated, respectively, in both populations, including the upregulations of GPC3 and PLVAP and the downregulations of FCN3 and OIT3, indicating their potential as universal HCC markers. Conversely, 16 genes were upregulated in Asians but downregulated in Caucasians, and 25 showed the reverse pattern. Asian-specific upregulation of AKR1B10, UBE2C, and S100P suggests links to viral etiology and immune modulation, while MDK, LCN2, and NQO1 were upregulated in Caucasians, implicating proliferative and metabolic roles. Functional enrichment analysis revealed distinct immune and metabolic pathways. Asians showed elevated ubiquitin ligase activity and suppressed inflammatory responses, while Caucasians exhibited enhanced cytokine signaling, complement activation, and xenobiotic metabolism.
These findings highlight key molecular differences in HCC across ethnicities and emphasize the value of TCGA data for identifying both shared targets and population-specific therapeutic strategies. Understanding these differences is crucial for advancing precision oncology and developing tailored interventions.
TNF-related apoptosis-inducing ligand (TRAIL) is a promising targeted anti-cancer agent for several types of cancer, including non-small cell lung cancer (NSCLC). The proteasome inhibitor bortezomib can further potentiate rhTRAIL-induced apoptosis in NSCLC cells. Here, the mechanisms underlying this sensitization were examined in TRAIL-sensitive H460 and TRAIL-resistant A549 and SW1573 NSCLC cells.
NSCLC cell lines were treated with rhTRAIL and bortezomib, and apoptosis was assessed through caspase activation assays, western blotting, and gene silencing of key apoptotic regulators, including Bid, XIAP, and cFLIP. Clonogenic assays were performed to evaluate long-term tumor growth suppression.
Bortezomib sensitization mechanisms varied across NSCLC cell lines. Combined rhTRAIL/bortezomib treatment enhanced apoptosis across all cell lines. In TRAIL-sensitive H460 cells, rapid caspase activation was observed, with both extrinsic and intrinsic apoptotic pathways contributing to cell death. Sensitization in H460 cells was predominantly mediated via the caspase-8/Bid amplification loop. In A549 cells, the bortezomib sensitizing effect also relied on the caspase-8/Bid amplification loop. Additionally, the inhibition of Bid and XIAP emphasized the critical role of mitochondrial pathways in apoptosis. In SW1573 cells, limited caspase cleavage was detected, with distinct cleavage patterns suggesting cell-specific apoptotic mechanisms. In this cell line, bortezomib primarily enhanced the extrinsic apoptotic pathway, with XIAP depression further increasing apoptosis. Silencing cFLIP, a caspase-8 inhibitor, significantly improved rhTRAIL sensitivity, emphasizing the critical role of caspase-8 activation in overcoming resistance in SW1573. The clonogenic assay demonstrated that bortezomib combined with rhTRAIL significantly suppressed tumor growth, especially in resistant cell lines.
This study underscores bortezomib’s ability to differentially enhance rhTRAIL-induced apoptosis by targeting multiple apoptotic regulators. The variety of effects that bortezomib can exert to enhance rhTRAIL-induced apoptosis makes it a very powerful combination for the treatment of NSCLC and various other types of cancer cells.
TNF-related apoptosis-inducing ligand (TRAIL) is a promising targeted anti-cancer agent for several types of cancer, including non-small cell lung cancer (NSCLC). The proteasome inhibitor bortezomib can further potentiate rhTRAIL-induced apoptosis in NSCLC cells. Here, the mechanisms underlying this sensitization were examined in TRAIL-sensitive H460 and TRAIL-resistant A549 and SW1573 NSCLC cells.
NSCLC cell lines were treated with rhTRAIL and bortezomib, and apoptosis was assessed through caspase activation assays, western blotting, and gene silencing of key apoptotic regulators, including Bid, XIAP, and cFLIP. Clonogenic assays were performed to evaluate long-term tumor growth suppression.
Bortezomib sensitization mechanisms varied across NSCLC cell lines. Combined rhTRAIL/bortezomib treatment enhanced apoptosis across all cell lines. In TRAIL-sensitive H460 cells, rapid caspase activation was observed, with both extrinsic and intrinsic apoptotic pathways contributing to cell death. Sensitization in H460 cells was predominantly mediated via the caspase-8/Bid amplification loop. In A549 cells, the bortezomib sensitizing effect also relied on the caspase-8/Bid amplification loop. Additionally, the inhibition of Bid and XIAP emphasized the critical role of mitochondrial pathways in apoptosis. In SW1573 cells, limited caspase cleavage was detected, with distinct cleavage patterns suggesting cell-specific apoptotic mechanisms. In this cell line, bortezomib primarily enhanced the extrinsic apoptotic pathway, with XIAP depression further increasing apoptosis. Silencing cFLIP, a caspase-8 inhibitor, significantly improved rhTRAIL sensitivity, emphasizing the critical role of caspase-8 activation in overcoming resistance in SW1573. The clonogenic assay demonstrated that bortezomib combined with rhTRAIL significantly suppressed tumor growth, especially in resistant cell lines.
This study underscores bortezomib’s ability to differentially enhance rhTRAIL-induced apoptosis by targeting multiple apoptotic regulators. The variety of effects that bortezomib can exert to enhance rhTRAIL-induced apoptosis makes it a very powerful combination for the treatment of NSCLC and various other types of cancer cells.
The green synthesis of silver nanoparticles (AgNPs) has recently gained prominence as a sustainable and eco-friendly alternative to conventional physical and chemical methods. Utilizing biological entities such as plant extracts, bacteria, fungi, and biomolecules, the method acts by both reducing and stabilizing mechanisms. It does not use any harmful chemical substances, thus proving to be eco-friendly. Green-synthesized AgNPs exhibit enhanced biocompatibility, stability, and targeted delivery of the drug due to the use of naturally derived surface capping agents. These unique characteristics allow selective interference with cancer cells. The mechanism involved is the generation of reactive oxygen species (ROS), the induction of apoptosis, DNA damage, and cell cycle arrest. Green AgNPs also possess broad-spectrum antimicrobial, catalytic, antiparasitic, and anti-inflammatory properties, supporting the fact that they can be utilised in biomedical fields such as drug delivery, bioimaging, biosensing, tissue engineering, and regenerative medicine. Recent advancements have focused on controlling NP size, shape, and surface functionality to maximize efficacy while simultaneously minimizing cytotoxicity. This review provides a comprehensive analysis of the latest green synthesis strategies, their characterizations, and the molecular mechanisms by which they exert anticancer effects. Recent patents highlight the clinical potential of AgNPs in cancer therapy. US Patent 12201650 (2025) describes green synthesis using Caralluma sinaica, while other patents (WO2007001453, US7462753) outline adaptable biomedical formulations. Studies on biogenic AgNPs also show significant tumor inhibition and selective cytotoxicity against cancer cells. Furthermore, the article discusses current biomedical applications and critically evaluates the limitations, such as reproducibility, toxicity concerns, and scalability for clinical translation. Addressing these challenges is essential for the integration of green AgNPs into mainstream cancer therapeutics. The convergence of nanotechnology and biologically derived synthesis opens promising avenues for the development of safe, effective, and environmentally sustainable medical innovations.
The green synthesis of silver nanoparticles (AgNPs) has recently gained prominence as a sustainable and eco-friendly alternative to conventional physical and chemical methods. Utilizing biological entities such as plant extracts, bacteria, fungi, and biomolecules, the method acts by both reducing and stabilizing mechanisms. It does not use any harmful chemical substances, thus proving to be eco-friendly. Green-synthesized AgNPs exhibit enhanced biocompatibility, stability, and targeted delivery of the drug due to the use of naturally derived surface capping agents. These unique characteristics allow selective interference with cancer cells. The mechanism involved is the generation of reactive oxygen species (ROS), the induction of apoptosis, DNA damage, and cell cycle arrest. Green AgNPs also possess broad-spectrum antimicrobial, catalytic, antiparasitic, and anti-inflammatory properties, supporting the fact that they can be utilised in biomedical fields such as drug delivery, bioimaging, biosensing, tissue engineering, and regenerative medicine. Recent advancements have focused on controlling NP size, shape, and surface functionality to maximize efficacy while simultaneously minimizing cytotoxicity. This review provides a comprehensive analysis of the latest green synthesis strategies, their characterizations, and the molecular mechanisms by which they exert anticancer effects. Recent patents highlight the clinical potential of AgNPs in cancer therapy. US Patent 12201650 (2025) describes green synthesis using Caralluma sinaica, while other patents (WO2007001453, US7462753) outline adaptable biomedical formulations. Studies on biogenic AgNPs also show significant tumor inhibition and selective cytotoxicity against cancer cells. Furthermore, the article discusses current biomedical applications and critically evaluates the limitations, such as reproducibility, toxicity concerns, and scalability for clinical translation. Addressing these challenges is essential for the integration of green AgNPs into mainstream cancer therapeutics. The convergence of nanotechnology and biologically derived synthesis opens promising avenues for the development of safe, effective, and environmentally sustainable medical innovations.
The current study uses the depicted approach to synthesize curcumin-piperine loaded Poloxamer F-68 coated magnetic nanoparticles (CUR-PIP-F68-Fe3O4 NPs) to achieve a synergistic anti-cancer impact on an in vitro HCT-116 colon cancer cell. Integrating magnetic nanoparticle technology with phytoconstituents enhances the potential for targeted drug delivery with minimal systemic toxicity and facilitates therapeutic outcomes.
A Box-Behnken design was employed to optimize the CUR-PIP-F68-Fe3O4 NPs prepared by the co-precipitation method. Optimized formulation was evaluated for morphological characteristics, elemental composition, and magnetic properties. An in vitro cytotoxicity assay was conducted to observe the % viability of cells and to further calculate the IC50. Cellular uptake studies were investigated using confocal microscopy.
Results showed that the optimised nanoparticles possessed a particle size of 158.7 ± 0.057 nm, zeta potential of –30.3 ± 0.1 mV, and encapsulation efficiency of 98.85 ± 0.066%. Analysis by vibrational sample magnetometer revealed that magnetic saturation was 75.6 emu/g and 50.7 emu/g for bare Fe3O4 nanoparticles and drug-loaded magnetic nanoparticles, respectively. Scanning electron microscopy (SEM) depicted the morphological characteristics; elemental composition of synthesized magnetic nanoparticles was confirmed by energy dispersive X-ray (EDX) analysis by illustrating the presence of C (13.50 ± 0.30%), Fe (78.81 ± 1.23%), and O (7.69 ± 0.29%). The MTT assay and cellular uptake studies unveiled that CUR-PIP-loaded magnetic nanoparticles possess a synergistic cytotoxic effect and the highest drug uptake against the HCT-116 colon cell line.
The combination approach of curcumin-piperine magnetic nanoparticles to HCT-116 cells enhanced the anticancer efficacy of the curcumin and further demonstrated the potential of this approach to conduct in vivo studies.
The current study uses the depicted approach to synthesize curcumin-piperine loaded Poloxamer F-68 coated magnetic nanoparticles (CUR-PIP-F68-Fe3O4 NPs) to achieve a synergistic anti-cancer impact on an in vitro HCT-116 colon cancer cell. Integrating magnetic nanoparticle technology with phytoconstituents enhances the potential for targeted drug delivery with minimal systemic toxicity and facilitates therapeutic outcomes.
A Box-Behnken design was employed to optimize the CUR-PIP-F68-Fe3O4 NPs prepared by the co-precipitation method. Optimized formulation was evaluated for morphological characteristics, elemental composition, and magnetic properties. An in vitro cytotoxicity assay was conducted to observe the % viability of cells and to further calculate the IC50. Cellular uptake studies were investigated using confocal microscopy.
Results showed that the optimised nanoparticles possessed a particle size of 158.7 ± 0.057 nm, zeta potential of –30.3 ± 0.1 mV, and encapsulation efficiency of 98.85 ± 0.066%. Analysis by vibrational sample magnetometer revealed that magnetic saturation was 75.6 emu/g and 50.7 emu/g for bare Fe3O4 nanoparticles and drug-loaded magnetic nanoparticles, respectively. Scanning electron microscopy (SEM) depicted the morphological characteristics; elemental composition of synthesized magnetic nanoparticles was confirmed by energy dispersive X-ray (EDX) analysis by illustrating the presence of C (13.50 ± 0.30%), Fe (78.81 ± 1.23%), and O (7.69 ± 0.29%). The MTT assay and cellular uptake studies unveiled that CUR-PIP-loaded magnetic nanoparticles possess a synergistic cytotoxic effect and the highest drug uptake against the HCT-116 colon cell line.
The combination approach of curcumin-piperine magnetic nanoparticles to HCT-116 cells enhanced the anticancer efficacy of the curcumin and further demonstrated the potential of this approach to conduct in vivo studies.
Lung cancer remains the leading cause of cancer mortality worldwide, with progress limited by tumor heterogeneity, drug resistance, and conventional therapy limitations. Nanotechnology-enabled drug delivery offers a transformative approach, enabling the precise engineering of nanocarriers for selective targeting, controlled release, and reduced toxicity. Recent innovations include inhalable systems that achieve localized pulmonary deposition, stimuli-responsive nanocarriers that release drugs in response to tumor microenvironment cues, and nano-immunotherapies that synergize with immune checkpoint blockade. Exosome-based vesicles further offer biomimetic advantages of low immunogenicity and natural tissue tropism. In parallel, theranostic platforms integrate treatment with imaging to enable real-time monitoring of drug delivery and tumor response. This review synthesizes mechanistic advances and translational developments in lung cancer nanomedicine, with emphasis on strategies that overcome biological barriers such as hypoxia, extracellular matrix density, and efflux pump activity. Clinical progress between 2020 and 2025 highlights next-generation antibody—drug conjugates, nanoparticle vaccines, and gene-loaded systems, several of which have reached regulatory approval or advanced trial stages. Together, these advances highlight the potential of nanocarriers to transform lung cancer therapy into more precise, personalized, and less toxic interventions.
Lung cancer remains the leading cause of cancer mortality worldwide, with progress limited by tumor heterogeneity, drug resistance, and conventional therapy limitations. Nanotechnology-enabled drug delivery offers a transformative approach, enabling the precise engineering of nanocarriers for selective targeting, controlled release, and reduced toxicity. Recent innovations include inhalable systems that achieve localized pulmonary deposition, stimuli-responsive nanocarriers that release drugs in response to tumor microenvironment cues, and nano-immunotherapies that synergize with immune checkpoint blockade. Exosome-based vesicles further offer biomimetic advantages of low immunogenicity and natural tissue tropism. In parallel, theranostic platforms integrate treatment with imaging to enable real-time monitoring of drug delivery and tumor response. This review synthesizes mechanistic advances and translational developments in lung cancer nanomedicine, with emphasis on strategies that overcome biological barriers such as hypoxia, extracellular matrix density, and efflux pump activity. Clinical progress between 2020 and 2025 highlights next-generation antibody—drug conjugates, nanoparticle vaccines, and gene-loaded systems, several of which have reached regulatory approval or advanced trial stages. Together, these advances highlight the potential of nanocarriers to transform lung cancer therapy into more precise, personalized, and less toxic interventions.
Cancer immunotherapy has revolutionized oncology by harnessing the immune system to target tumor cells. Cancer vaccines that trigger immune responses specific to tumors are becoming more and more popular among new approaches. Nevertheless, traditional tumour-associated antigens are susceptible to immune tolerance and frequently show low immunogenicity. The revolutionary potential of cryptic and non-canonical antigens as new targets for precision immunotherapy is examined in this review. Due to their enhanced tumor selectivity and ability to evade central tolerance, these unconventional antigens present encouraging options for vaccine development. This review examines the mechanisms underlying their antigen production, advanced technologies for their discovery, and various vaccine platforms, highlighting their potential to drive the next generation of cancer vaccines.
Cancer immunotherapy has revolutionized oncology by harnessing the immune system to target tumor cells. Cancer vaccines that trigger immune responses specific to tumors are becoming more and more popular among new approaches. Nevertheless, traditional tumour-associated antigens are susceptible to immune tolerance and frequently show low immunogenicity. The revolutionary potential of cryptic and non-canonical antigens as new targets for precision immunotherapy is examined in this review. Due to their enhanced tumor selectivity and ability to evade central tolerance, these unconventional antigens present encouraging options for vaccine development. This review examines the mechanisms underlying their antigen production, advanced technologies for their discovery, and various vaccine platforms, highlighting their potential to drive the next generation of cancer vaccines.
Microsatellite-stable metastatic colorectal cancer (MSS mCRC) is currently treated with chemotherapy and targeted agents based on RAS and BRAF mutational status. Although these therapies offer initial benefit, most patients rapidly develop resistance, with fewer than 20% remaining progression-free at two years. This review aims to synthesize emerging evidence on the metabolic mechanisms driving treatment resistance in MSS mCRC, with a particular focus on the immune-metabolic signature (IMMETCOLS) classification. We conducted a comprehensive review of preclinical models, transcriptomic datasets, and clinical trial results addressing metabolic adaptations to chemotherapy and targeted therapies in MSS mCRC. The IMMETCOLS framework defines three metabolic subtypes—IMC1, IMC2, and IMC3—each associated with distinct resistance mechanisms. IMC1 exhibits glycolysis and transforming growth factor-β (TGF-β)-dependent signaling enriched in inflammatory fibroblasts, conferring resistance to chemotherapy. IMC2 relies on oxidative phosphorylation and glutamine metabolism, supporting antioxidant defenses and resistance to both cytotoxic agents and anti-EGFR therapies. IMC3 demonstrates lactate-fueled respiration and pentose phosphate pathway activation, contributing to redox balance, DNA repair, and resistance to targeted therapies such as anti-BRAF or KRAS inhibitors. All subtypes display metabolic plasticity under therapeutic pressure. Emerging clinical data support tailoring targeted therapy combinations based on IMMETCOLS subtype, particularly in BRAF- and HER2-positive populations. Understanding subtype-specific metabolic rewiring in MSS mCRC offers novel opportunities to overcome drug resistance. Targeting the metabolic vulnerabilities defined by the IMMETCOLS signature may improve response durability and inform precision treatment strategies.
Microsatellite-stable metastatic colorectal cancer (MSS mCRC) is currently treated with chemotherapy and targeted agents based on RAS and BRAF mutational status. Although these therapies offer initial benefit, most patients rapidly develop resistance, with fewer than 20% remaining progression-free at two years. This review aims to synthesize emerging evidence on the metabolic mechanisms driving treatment resistance in MSS mCRC, with a particular focus on the immune-metabolic signature (IMMETCOLS) classification. We conducted a comprehensive review of preclinical models, transcriptomic datasets, and clinical trial results addressing metabolic adaptations to chemotherapy and targeted therapies in MSS mCRC. The IMMETCOLS framework defines three metabolic subtypes—IMC1, IMC2, and IMC3—each associated with distinct resistance mechanisms. IMC1 exhibits glycolysis and transforming growth factor-β (TGF-β)-dependent signaling enriched in inflammatory fibroblasts, conferring resistance to chemotherapy. IMC2 relies on oxidative phosphorylation and glutamine metabolism, supporting antioxidant defenses and resistance to both cytotoxic agents and anti-EGFR therapies. IMC3 demonstrates lactate-fueled respiration and pentose phosphate pathway activation, contributing to redox balance, DNA repair, and resistance to targeted therapies such as anti-BRAF or KRAS inhibitors. All subtypes display metabolic plasticity under therapeutic pressure. Emerging clinical data support tailoring targeted therapy combinations based on IMMETCOLS subtype, particularly in BRAF- and HER2-positive populations. Understanding subtype-specific metabolic rewiring in MSS mCRC offers novel opportunities to overcome drug resistance. Targeting the metabolic vulnerabilities defined by the IMMETCOLS signature may improve response durability and inform precision treatment strategies.
During radiation treatment, reactive oxygen species (ROS) and nitrogen species (RNS) are produced and, by extension, DNA adducts known as 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NG), respectively. However, one of the most common side effects induced by radiotherapy is skin toxicity, which affects patients’ quality of life. In the present study, we aimed to investigate the potential predictive value of 8-OHdG and 8-NG by exploring the correlations between the alterations in the concentration levels of the two lesions and radiation-induced tissue injury upon exposure to external beam radiotherapy.
For the purpose of this work, we collected blood serum samples from 33 breast cancer patients who received adjuvant radiotherapy. To conduct statistical analysis, we used: (1) linear adjustment to correlate the percent changes of 8-OHdG and 8-NG with the degree of toxicity; and (2) polynomial adaptation and exponential fitting to correlate the percent changes of 8-OHdG and 8-NG with the correlation coefficient r for the development of radiation dermatitis, respectively.
According to our findings, there is a statistically significant correlation between the alterations in the 8-OHdG and 8-NG levels and skin grade toxicity across time and varying radiation doses (p < 0.05).
Both DNA lesions seem to possess a promising predictive role in radiation dermatitis, while the severity and exact grade of radiation-induced skin toxicity can be determined.
During radiation treatment, reactive oxygen species (ROS) and nitrogen species (RNS) are produced and, by extension, DNA adducts known as 8-hydroxy-2′-deoxyguanosine (8-OHdG) and 8-nitroguanine (8-NG), respectively. However, one of the most common side effects induced by radiotherapy is skin toxicity, which affects patients’ quality of life. In the present study, we aimed to investigate the potential predictive value of 8-OHdG and 8-NG by exploring the correlations between the alterations in the concentration levels of the two lesions and radiation-induced tissue injury upon exposure to external beam radiotherapy.
For the purpose of this work, we collected blood serum samples from 33 breast cancer patients who received adjuvant radiotherapy. To conduct statistical analysis, we used: (1) linear adjustment to correlate the percent changes of 8-OHdG and 8-NG with the degree of toxicity; and (2) polynomial adaptation and exponential fitting to correlate the percent changes of 8-OHdG and 8-NG with the correlation coefficient r for the development of radiation dermatitis, respectively.
According to our findings, there is a statistically significant correlation between the alterations in the 8-OHdG and 8-NG levels and skin grade toxicity across time and varying radiation doses (p < 0.05).
Both DNA lesions seem to possess a promising predictive role in radiation dermatitis, while the severity and exact grade of radiation-induced skin toxicity can be determined.
O6-Methylguanine-DNA methyltransferase (MGMT) acts as a genomic custodian, reversing alkylation damage to preserve DNA integrity. However, when its regulatory balance tips via promoter methylation, polymorphisms, or epigenetic silencing, MGMT can become a liability, fuelling cancer progression, treatment resistance, and poor outcomes across malignancies. This review uncovers the nuanced control of MGMT, revealing how its genetic and epigenetic shifts shape tumor behavior, therapeutic response, and risk stratification. We aim to transform molecular insights into actionable clinical strategies, reimagining MGMT as both a biomarker and therapeutic lever. We curated high-impact studies (up to 2025) from PubMed, Scopus, and Web of Science, focusing on MGMT modulation, synthetic lethality, CRISPR-based restoration, and epigenetic therapies. Emerging multi-omics and translational frameworks were prioritized. MGMT’s activity is choreographed by an intricate interplay of promoter methylation, histone marks, transcriptional regulation, and microRNA influence. These dynamics critically affect sensitivity to alkylating agents like temozolomide. Intriguingly, MGMT also engages with the immune landscape modulating response to immunotherapies. Innovations in multi-omics, single-cell analytics, and AI-based biomarker profiling are unveiling previously hidden regulatory layers. Decoding MGMT’s regulation unlocks new therapeutic frontiers. Cutting-edge strategies from CRISPR to liquid biopsy promise more personalized, resistance-proof cancer care.
O6-Methylguanine-DNA methyltransferase (MGMT) acts as a genomic custodian, reversing alkylation damage to preserve DNA integrity. However, when its regulatory balance tips via promoter methylation, polymorphisms, or epigenetic silencing, MGMT can become a liability, fuelling cancer progression, treatment resistance, and poor outcomes across malignancies. This review uncovers the nuanced control of MGMT, revealing how its genetic and epigenetic shifts shape tumor behavior, therapeutic response, and risk stratification. We aim to transform molecular insights into actionable clinical strategies, reimagining MGMT as both a biomarker and therapeutic lever. We curated high-impact studies (up to 2025) from PubMed, Scopus, and Web of Science, focusing on MGMT modulation, synthetic lethality, CRISPR-based restoration, and epigenetic therapies. Emerging multi-omics and translational frameworks were prioritized. MGMT’s activity is choreographed by an intricate interplay of promoter methylation, histone marks, transcriptional regulation, and microRNA influence. These dynamics critically affect sensitivity to alkylating agents like temozolomide. Intriguingly, MGMT also engages with the immune landscape modulating response to immunotherapies. Innovations in multi-omics, single-cell analytics, and AI-based biomarker profiling are unveiling previously hidden regulatory layers. Decoding MGMT’s regulation unlocks new therapeutic frontiers. Cutting-edge strategies from CRISPR to liquid biopsy promise more personalized, resistance-proof cancer care.
Cancer is the second leading cause of death globally and in the United States, second only to cardiovascular disease. Unlike many cardiovascular conditions, cancer is often less preventable, manageable, and curable—even with ongoing technological advancements in medicine. The adverse effects of cancer treatments on cancer patients remain profound due to shared cellular characteristics between cancerous and normal cells; one of the primary adverse effects is treatment-induced inflammation. These inflammatory responses aim to eliminate cancerous cells but often damage normal tissues. Notably, inflammatory side effects vary considerably across the growing diversity of therapeutic approaches. This study reviewed studies between 2007 and 2024, comparing the inflammatory profiles associated with five major radiation therapies (RTs): Three-Dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), Image-Guided Radiation Therapy (IGRT), Stereotactic Body Radiation Therapy (SBRT), and Proton Beam Therapy (PBT)—each characterized by distinct mechanistic and therapeutic features. In addition to each radiation modality eliciting distinct inflammatory responses, tissue-specific variability further complicates clinical outcomes. Accordingly, this review also undertakes a cross-tissue comparison of radiation-induced inflammation, with a focus on the gastrointestinal (GI) system, central nervous system (CNS), and skin. However, the variation in treatment modalities and organ-specific inflammatory biomarkers greatly hinders direct comparison across studies. Finally, this review highlights potential inflammatory mitigations, including ambroxol, that may be employed synergistically with RTs, minimizing side effects and enhancing patient outcomes. Taken together, while all modalities offer therapeutic value alongside certain limitations, proton-based therapy demonstrates the greatest potential for minimizing toxicity though its broader adoption remains limited by cost-effectiveness concerns.
Cancer is the second leading cause of death globally and in the United States, second only to cardiovascular disease. Unlike many cardiovascular conditions, cancer is often less preventable, manageable, and curable—even with ongoing technological advancements in medicine. The adverse effects of cancer treatments on cancer patients remain profound due to shared cellular characteristics between cancerous and normal cells; one of the primary adverse effects is treatment-induced inflammation. These inflammatory responses aim to eliminate cancerous cells but often damage normal tissues. Notably, inflammatory side effects vary considerably across the growing diversity of therapeutic approaches. This study reviewed studies between 2007 and 2024, comparing the inflammatory profiles associated with five major radiation therapies (RTs): Three-Dimensional Conformal Radiation Therapy (3D-CRT), Intensity-Modulated Radiation Therapy (IMRT), Image-Guided Radiation Therapy (IGRT), Stereotactic Body Radiation Therapy (SBRT), and Proton Beam Therapy (PBT)—each characterized by distinct mechanistic and therapeutic features. In addition to each radiation modality eliciting distinct inflammatory responses, tissue-specific variability further complicates clinical outcomes. Accordingly, this review also undertakes a cross-tissue comparison of radiation-induced inflammation, with a focus on the gastrointestinal (GI) system, central nervous system (CNS), and skin. However, the variation in treatment modalities and organ-specific inflammatory biomarkers greatly hinders direct comparison across studies. Finally, this review highlights potential inflammatory mitigations, including ambroxol, that may be employed synergistically with RTs, minimizing side effects and enhancing patient outcomes. Taken together, while all modalities offer therapeutic value alongside certain limitations, proton-based therapy demonstrates the greatest potential for minimizing toxicity though its broader adoption remains limited by cost-effectiveness concerns.
Liquid biopsy (LB) is a complex of procedures aimed at the detection of tumor-derived fragments (nucleic acids, proteins, cells, etc.) persisting in the blood or other body fluids. It can be utilized for early cancer diagnosis, analysis of biomarkers of tumor drug sensitivity and prognosis, monitoring of minimal residual disease (MRD), etc. Circulating tumor DNA (ctDNA) is an accessible and reliable LB analyte as it may contain tumor-specific mutations and is amenable to efficient detection by next-generation sequencing (NGS) or droplet digital PCR (ddPCR). High level of ctDNA is typically associated with increased tumor burden and poor prognosis, whereas treatment-related ctDNA clearance increases the probability of a favorable disease outcome. Major efforts have been invested in enhancing the analytical performance of ctDNA detection. Stimulation of apoptosis of tumor cells by irradiation of cancer lumps has been shown to result in a transient but modest increase in ctDNA concentration. There are several sophisticated modifications of ultra-deep NGS protocols, which discriminate between “true” low-copy mutation-specific signals and sequencing artifacts. Slowing physiological ctDNA decay by interfering with liver macrophages and circulating nucleases has shown promise in animal experiments. Reproducibility of ctDNA-based LB assays remains insufficient for samples with ultra-low content of ctDNA; hence, interlaboratory harmonization of ctDNA testing procedures is of paramount importance.
Liquid biopsy (LB) is a complex of procedures aimed at the detection of tumor-derived fragments (nucleic acids, proteins, cells, etc.) persisting in the blood or other body fluids. It can be utilized for early cancer diagnosis, analysis of biomarkers of tumor drug sensitivity and prognosis, monitoring of minimal residual disease (MRD), etc. Circulating tumor DNA (ctDNA) is an accessible and reliable LB analyte as it may contain tumor-specific mutations and is amenable to efficient detection by next-generation sequencing (NGS) or droplet digital PCR (ddPCR). High level of ctDNA is typically associated with increased tumor burden and poor prognosis, whereas treatment-related ctDNA clearance increases the probability of a favorable disease outcome. Major efforts have been invested in enhancing the analytical performance of ctDNA detection. Stimulation of apoptosis of tumor cells by irradiation of cancer lumps has been shown to result in a transient but modest increase in ctDNA concentration. There are several sophisticated modifications of ultra-deep NGS protocols, which discriminate between “true” low-copy mutation-specific signals and sequencing artifacts. Slowing physiological ctDNA decay by interfering with liver macrophages and circulating nucleases has shown promise in animal experiments. Reproducibility of ctDNA-based LB assays remains insufficient for samples with ultra-low content of ctDNA; hence, interlaboratory harmonization of ctDNA testing procedures is of paramount importance.
Angiogenesis, invasion, and tube formation are critical processes in tumor progression and metastasis. The use of nanoparticles derived from natural products presents a promising approach for targeted cancer therapy. This study evaluates the anti-angiogenic and anti-invasive effects of Moringa oleifera silver nanoparticles (MO-AgNPs) as a therapeutic strategy against these processes.
The anti-angiogenic and anti-invasive activities of MO-AgNPs were investigated using a series of in vitro and ex vivo models. These included the rat aortic ring assay, endothelial tube formation assay, cell invasion assay using endothelial cell lines (Ea.hy926), and a three-dimensional (3D) co-culture spheroid model to simulate tumor microenvironment behavior. Comparisons were made with known inhibitors: quercetin (15.11 μg/mL) and suramin (100 μg/mL).
MO-AgNPs at 12 μg/mL significantly inhibited Ea.hy926 cell invasion by 62.10% and significantly suppressed endothelial tube formation, comparable to the effect of quercetin. In the ex vivo aortic ring assay, MO-AgNPs reduced microvessel sprouting by 83.824 ± 0.081%, surpassing the inhibition achieved by suramin. Additionally, in the 3D spheroid model, MO-AgNPs at concentrations of 12 μg/mL and 6 μg/mL, as well as quercetin, significantly reduced spheroid diameter by day 14, indicating suppressed invasive potential and angiogenic support.
MO-AgNPs exhibit strong anti-angiogenic and anti-invasive effects across various tumor-relevant models, highlighting their potential as a therapeutic agent against tumor progression and angiogenesis-related diseases. These results support further investigation of MO-AgNPs as a novel nanotherapeutic for cancer treatment.
Angiogenesis, invasion, and tube formation are critical processes in tumor progression and metastasis. The use of nanoparticles derived from natural products presents a promising approach for targeted cancer therapy. This study evaluates the anti-angiogenic and anti-invasive effects of Moringa oleifera silver nanoparticles (MO-AgNPs) as a therapeutic strategy against these processes.
The anti-angiogenic and anti-invasive activities of MO-AgNPs were investigated using a series of in vitro and ex vivo models. These included the rat aortic ring assay, endothelial tube formation assay, cell invasion assay using endothelial cell lines (Ea.hy926), and a three-dimensional (3D) co-culture spheroid model to simulate tumor microenvironment behavior. Comparisons were made with known inhibitors: quercetin (15.11 μg/mL) and suramin (100 μg/mL).
MO-AgNPs at 12 μg/mL significantly inhibited Ea.hy926 cell invasion by 62.10% and significantly suppressed endothelial tube formation, comparable to the effect of quercetin. In the ex vivo aortic ring assay, MO-AgNPs reduced microvessel sprouting by 83.824 ± 0.081%, surpassing the inhibition achieved by suramin. Additionally, in the 3D spheroid model, MO-AgNPs at concentrations of 12 μg/mL and 6 μg/mL, as well as quercetin, significantly reduced spheroid diameter by day 14, indicating suppressed invasive potential and angiogenic support.
MO-AgNPs exhibit strong anti-angiogenic and anti-invasive effects across various tumor-relevant models, highlighting their potential as a therapeutic agent against tumor progression and angiogenesis-related diseases. These results support further investigation of MO-AgNPs as a novel nanotherapeutic for cancer treatment.
Clinico-pathological features have traditionally guided prognosis and adjuvant therapy for breast cancer (BC) patients. In the past decade, genomic tests such as Oncotype DX entered clinical practice to refine risk stratification and predict chemotherapy benefit for hormone-receptor positive (HR+)/human epidermal growth factor-receptor 2 negative (HER2–) BC patients after surgery. This is a retrospective analysis to investigate the correlation between histopathological parameters and recurrence score (RS), accounting for menopausal status.
Data on HR+/HER2– early BC patients who underwent Oncotype DX were collected using an institutional database. Clinico-pathological characteristics were retrieved. Linear regression was used with RS as a continuous outcome, while logistic regression was performed for pre- and post-menopausal patients, dichotomizing RS at thresholds of 16 and 25, respectively.
A total of 180 women were included (35% pre-menopausal, 65% post-menopausal). Median age was 57.5 years. Most patients had pT1, pN0, G2 BC, with median estrogen receptor (ER) expression of 95% and a median Ki67 of 25%. Median RS was 16 [interquartile range (IQR) 12–22] in the overall cohort, 15 in pre-menopausal, and 17 in post-menopausal women. In the entire cohort, RS significantly correlated with G3 (P = 0.01), Ki67% (P < 0.0001), ER% (P = 0.03), and progesterone receptor (PgR)% (P < 0.0001). In pre-menopausal patients, only Ki67% (P = 0.02), ER% (P = 0.01), and PgR% (P < 0.0001) showed significant correlations, while in post-menopausal patients, G3 (P = 0.03), Ki67% (P = 0.001), and PgR% (P < 0.0001) achieved statistical significance. Logistic regression analysis showed that in pre-menopausal patients, PgR% predicted RS > 16 [odds ratio (OR) 0.95, P = 0.001]. In post-menopausal women, Ki67% (OR 1.08, P = 0.031) and PgR% (OR 0.95, P < 0.0001) predicted RS > 25.
In this patient cohort, classical clinico-pathological features showed varying correlations with RS, depending on menopausal status. These findings highlight the complexity of risk stratification, suggesting that further research is needed to better understand the factors influencing RS and its clinical utility.
Clinico-pathological features have traditionally guided prognosis and adjuvant therapy for breast cancer (BC) patients. In the past decade, genomic tests such as Oncotype DX entered clinical practice to refine risk stratification and predict chemotherapy benefit for hormone-receptor positive (HR+)/human epidermal growth factor-receptor 2 negative (HER2–) BC patients after surgery. This is a retrospective analysis to investigate the correlation between histopathological parameters and recurrence score (RS), accounting for menopausal status.
Data on HR+/HER2– early BC patients who underwent Oncotype DX were collected using an institutional database. Clinico-pathological characteristics were retrieved. Linear regression was used with RS as a continuous outcome, while logistic regression was performed for pre- and post-menopausal patients, dichotomizing RS at thresholds of 16 and 25, respectively.
A total of 180 women were included (35% pre-menopausal, 65% post-menopausal). Median age was 57.5 years. Most patients had pT1, pN0, G2 BC, with median estrogen receptor (ER) expression of 95% and a median Ki67 of 25%. Median RS was 16 [interquartile range (IQR) 12–22] in the overall cohort, 15 in pre-menopausal, and 17 in post-menopausal women. In the entire cohort, RS significantly correlated with G3 (P = 0.01), Ki67% (P < 0.0001), ER% (P = 0.03), and progesterone receptor (PgR)% (P < 0.0001). In pre-menopausal patients, only Ki67% (P = 0.02), ER% (P = 0.01), and PgR% (P < 0.0001) showed significant correlations, while in post-menopausal patients, G3 (P = 0.03), Ki67% (P = 0.001), and PgR% (P < 0.0001) achieved statistical significance. Logistic regression analysis showed that in pre-menopausal patients, PgR% predicted RS > 16 [odds ratio (OR) 0.95, P = 0.001]. In post-menopausal women, Ki67% (OR 1.08, P = 0.031) and PgR% (OR 0.95, P < 0.0001) predicted RS > 25.
In this patient cohort, classical clinico-pathological features showed varying correlations with RS, depending on menopausal status. These findings highlight the complexity of risk stratification, suggesting that further research is needed to better understand the factors influencing RS and its clinical utility.
This study aimed at the identification of new druggable alterations in non-small cell lung carcinomas (NSCLCs).
RNA next generation sequencing (NGS) analysis for 650 protein kinase genes was performed for 89 NSCLCs obtained from young-onset and/or female non-smokers, who were negative for activating events involving EGFR, ALK, ROS1, RET, MET, NTRK1/2/3, BRAF, HER2, KRAS, or NRAS genes.
RNA sequencing identified 32 in-frame rearrangements, including 9 instances of fully preserved and 8 tumors with partially preserved tyrosine kinase domains. These 17 translocations were further analyzed in 1,059 mutation-negative NSCLCs, which resulted in the identification of two additional tumors with ADK::KAT6B rearrangement and one carcinoma carrying RPS6KB1::VMP1 fusion. The recently reported CLIP1::LTK gene fusion was tested in 2,754 NSCLCs, which were negative for all known actionable mutations, however, no new instances of this translocation have been observed. We further analyzed RNA sequencing results of 89 NSCLCs for mutations affecting the kinase domain of the involved gene. There were 53 substitutions with a combined annotation dependent depletion (CADD) score above 25; all these lesions turned out to be unique, as the analysis of 551 additional NSCLCs revealed no recurrent alterations. ROS1, LTK, and FGFR4 high-level overexpression was observed in 1 out of 89 tumors each.
This study demonstrates the scarcity of yet unknown kinase-activating alterations in NSCLCs.
This study aimed at the identification of new druggable alterations in non-small cell lung carcinomas (NSCLCs).
RNA next generation sequencing (NGS) analysis for 650 protein kinase genes was performed for 89 NSCLCs obtained from young-onset and/or female non-smokers, who were negative for activating events involving EGFR, ALK, ROS1, RET, MET, NTRK1/2/3, BRAF, HER2, KRAS, or NRAS genes.
RNA sequencing identified 32 in-frame rearrangements, including 9 instances of fully preserved and 8 tumors with partially preserved tyrosine kinase domains. These 17 translocations were further analyzed in 1,059 mutation-negative NSCLCs, which resulted in the identification of two additional tumors with ADK::KAT6B rearrangement and one carcinoma carrying RPS6KB1::VMP1 fusion. The recently reported CLIP1::LTK gene fusion was tested in 2,754 NSCLCs, which were negative for all known actionable mutations, however, no new instances of this translocation have been observed. We further analyzed RNA sequencing results of 89 NSCLCs for mutations affecting the kinase domain of the involved gene. There were 53 substitutions with a combined annotation dependent depletion (CADD) score above 25; all these lesions turned out to be unique, as the analysis of 551 additional NSCLCs revealed no recurrent alterations. ROS1, LTK, and FGFR4 high-level overexpression was observed in 1 out of 89 tumors each.
This study demonstrates the scarcity of yet unknown kinase-activating alterations in NSCLCs.
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States. Emerging evidence highlights the significant role of gut microbiota dysbiosis, characterized by a reduction in beneficial bacteria and an increase in pro-inflammatory and pro-carcinogenic bacteria, in CRC pathogenesis. Both genetic and environmental factors, including diet, antibiotic use, physical activity, aging, and obesity, contribute to this microbial imbalance. Dysbiosis promotes chronic inflammation and immune dysregulation, which facilitates tumor initiation and progression. This review examines the intricate interactions between gut microbiota, immune modulation, and CRC development. It explores current and emerging therapeutic strategies that target the microbiome to enhance treatment efficacy, discusses interventions aimed at restoring healthy microbiota in CRC patients, and outlines future directions for microbiome-based therapies to improve clinical outcomes.
Colorectal cancer (CRC) is the third leading cause of cancer-related death in the United States. Emerging evidence highlights the significant role of gut microbiota dysbiosis, characterized by a reduction in beneficial bacteria and an increase in pro-inflammatory and pro-carcinogenic bacteria, in CRC pathogenesis. Both genetic and environmental factors, including diet, antibiotic use, physical activity, aging, and obesity, contribute to this microbial imbalance. Dysbiosis promotes chronic inflammation and immune dysregulation, which facilitates tumor initiation and progression. This review examines the intricate interactions between gut microbiota, immune modulation, and CRC development. It explores current and emerging therapeutic strategies that target the microbiome to enhance treatment efficacy, discusses interventions aimed at restoring healthy microbiota in CRC patients, and outlines future directions for microbiome-based therapies to improve clinical outcomes.
Biliary tract cancers (BTCs) are aggressive malignancies associated with poor prognosis and limited treatment options. Advances in precision oncology, notably the identification of recurrent molecular alterations such as fibroblast growth factor receptor 2 (FGFR2) fusions, isocitrate dehydrogenase 1 (IDH1) mutations, ERBB2 amplifications, and v-Raf murine sarcoma viral oncogene homolog B (BRAF) V600E mutations, have introduced new therapeutic avenues and modest survival benefits for patients with advanced disease. However, the practical implementation of targeted therapies remains hampered by challenges in tumor tissue acquisition and molecular testing, highlighting the need for alternative genomic profiling strategies. This comprehensive review examines the role of liquid biopsy as a non-invasive strategy for molecular profiling in BTCs, with a focus on the clinical applications of plasma and bile-derived circulating tumor DNA (ctDNA). We synthesized findings from recent clinical studies evaluating mutation detection rates, concordance between liquid biopsy and tissue-based assays, and the comparative performance of plasma versus bile ctDNA. Liquid biopsy demonstrates high rates of mutation detection and good concordance with tissue analyses. Bile-derived ctDNA, owing to its proximity to the tumor, consistently shows higher sensitivity and mutant allele frequencies (MAFs) than plasma ctDNA. Nevertheless, challenges remain, including lower sensitivity for detecting structural alterations (e.g., gene fusions), variability in ctDNA yield depending on disease status, and a lack of assay standardization across platforms. Liquid biopsy, particularly through bile ctDNA analysis, emerges as a promising adjunct to tissue biopsy for molecular profiling in BTCs. It offers opportunities for earlier, less invasive, and more personalized treatment decisions. Future directions should aim at developing tumor-informed liquid biopsy strategies that increase precision, reduce costs, and ultimately improve patient outcomes. Prospective studies are needed to confirm its clinical utility and survival impact.
Biliary tract cancers (BTCs) are aggressive malignancies associated with poor prognosis and limited treatment options. Advances in precision oncology, notably the identification of recurrent molecular alterations such as fibroblast growth factor receptor 2 (FGFR2) fusions, isocitrate dehydrogenase 1 (IDH1) mutations, ERBB2 amplifications, and v-Raf murine sarcoma viral oncogene homolog B (BRAF) V600E mutations, have introduced new therapeutic avenues and modest survival benefits for patients with advanced disease. However, the practical implementation of targeted therapies remains hampered by challenges in tumor tissue acquisition and molecular testing, highlighting the need for alternative genomic profiling strategies. This comprehensive review examines the role of liquid biopsy as a non-invasive strategy for molecular profiling in BTCs, with a focus on the clinical applications of plasma and bile-derived circulating tumor DNA (ctDNA). We synthesized findings from recent clinical studies evaluating mutation detection rates, concordance between liquid biopsy and tissue-based assays, and the comparative performance of plasma versus bile ctDNA. Liquid biopsy demonstrates high rates of mutation detection and good concordance with tissue analyses. Bile-derived ctDNA, owing to its proximity to the tumor, consistently shows higher sensitivity and mutant allele frequencies (MAFs) than plasma ctDNA. Nevertheless, challenges remain, including lower sensitivity for detecting structural alterations (e.g., gene fusions), variability in ctDNA yield depending on disease status, and a lack of assay standardization across platforms. Liquid biopsy, particularly through bile ctDNA analysis, emerges as a promising adjunct to tissue biopsy for molecular profiling in BTCs. It offers opportunities for earlier, less invasive, and more personalized treatment decisions. Future directions should aim at developing tumor-informed liquid biopsy strategies that increase precision, reduce costs, and ultimately improve patient outcomes. Prospective studies are needed to confirm its clinical utility and survival impact.
Fibroblast growth factor receptor 1 (FGFR1) plays a critical role in the progression of various cancers through its involvement in cell proliferation, survival, and differentiation. More recently, FGFR1 has been implicated in the mechanisms of immune evasion, particularly its role in resistance to immune checkpoint inhibitors (ICIs) such as pembrolizumab and nivolumab. Targeting FGFR1 with monoclonal antibodies and tyrosine kinase inhibitors has emerged as a promising therapeutic strategy to enhance ICI efficacy by altering the tumor microenvironment and countering immune suppression. Preclinical studies demonstrate that combining FGFR1 inhibitors, such as the novel monoclonal antibody OM-RCA-01, with ICIs significantly improves antitumor activity, enhancing T cell responses and cytokine production. This article explores the role of FGFR1 in cancer biology, its contribution to immunotherapy resistance, and the therapeutic potential of targeting FGFR1 to enhance the efficacy of ICIs.
Fibroblast growth factor receptor 1 (FGFR1) plays a critical role in the progression of various cancers through its involvement in cell proliferation, survival, and differentiation. More recently, FGFR1 has been implicated in the mechanisms of immune evasion, particularly its role in resistance to immune checkpoint inhibitors (ICIs) such as pembrolizumab and nivolumab. Targeting FGFR1 with monoclonal antibodies and tyrosine kinase inhibitors has emerged as a promising therapeutic strategy to enhance ICI efficacy by altering the tumor microenvironment and countering immune suppression. Preclinical studies demonstrate that combining FGFR1 inhibitors, such as the novel monoclonal antibody OM-RCA-01, with ICIs significantly improves antitumor activity, enhancing T cell responses and cytokine production. This article explores the role of FGFR1 in cancer biology, its contribution to immunotherapy resistance, and the therapeutic potential of targeting FGFR1 to enhance the efficacy of ICIs.
BRCA1/2-associated breast and ovarian carcinomas are often regarded as a single entity, assuming that BRCA1 and BRCA2 genes are almost equivalent with regard to their clinical significance. However, BRCA1 and BRCA2 genes differ in their function; therefore, a comparison of treatment outcomes in BRCA1 vs. BRCA2 carriers is warranted.
This study focused on consecutive patients treated with neoadjuvant chemotherapy (NACT), given that these subjects are treatment-naive and accessible for immediate assessment of pathological and clinical outcomes.
BRCA2-associated high-grade serous ovarian carcinomas (HGSOCs) demonstrated significantly higher rates of pathologic complete response (pCR) as compared to BRCA1-related cancers [8/15 (53%) vs. 7/48 (15%), P = 0.004]. In contrast, HER2-negative breast cancer (BC) patients showed a numerically higher rate of pCR in BRCA1 vs. BRCA2 mutation carriers [38/69 (55%) vs. 13/36 (36%), P = 0.1]. However, the comparison with BRCA-wild-type (WT) tumors revealed that this tendency was mainly attributed to the increased prevalence of hormone receptor (HR)-negative disease in the former group. When BC patients were stratified according to the tumor receptor status, the response rates in triple-negative patients were consistently higher than in HR+/HER2– patients across all analyzed subgroups [BRCA1: 35/59 (59%) vs. 3/10 (30%); BRCA2: 5/10 (50%) vs. 8/26 (31%); WT: 31/76 (41%) vs. 12/74 (16%); Mantel-Haenzsel P < 0.001]. Logistic regression analysis revealed that the odds ratio (OR) for achieving pCR was higher for receptor status (triple-negative vs. HR+: OR = 3.4, 95% CI 1.9–6.0, P < 0.001) than for BRCA status (any mutation vs. WT: OR = 2.1, 95% CI 1.2–3.6, P = 0.008). The addition of carboplatin did not improve pCR rates in BRCA1- or BRCA2-associated BCs, while there was a numerically higher efficacy of carboplatin-containing regimens in patients with WT triple-negative tumors [14/26 (54%) vs. 15/44 (34%), P = 0.13].
Hereditary ovarian carcinomas demonstrate better NACT outcomes in BRCA2 vs. BRCA1 mutation carriers. The opposite trend is observed in BC, which is likely to be attributed to a high frequency of triple-negative disease in BRCA1- but not BRCA2-associated BCs. Triple-negative receptor status rather than BRCA1/2 status is the strongest predictor of response to NACT in BC.
BRCA1/2-associated breast and ovarian carcinomas are often regarded as a single entity, assuming that BRCA1 and BRCA2 genes are almost equivalent with regard to their clinical significance. However, BRCA1 and BRCA2 genes differ in their function; therefore, a comparison of treatment outcomes in BRCA1 vs. BRCA2 carriers is warranted.
This study focused on consecutive patients treated with neoadjuvant chemotherapy (NACT), given that these subjects are treatment-naive and accessible for immediate assessment of pathological and clinical outcomes.
BRCA2-associated high-grade serous ovarian carcinomas (HGSOCs) demonstrated significantly higher rates of pathologic complete response (pCR) as compared to BRCA1-related cancers [8/15 (53%) vs. 7/48 (15%), P = 0.004]. In contrast, HER2-negative breast cancer (BC) patients showed a numerically higher rate of pCR in BRCA1 vs. BRCA2 mutation carriers [38/69 (55%) vs. 13/36 (36%), P = 0.1]. However, the comparison with BRCA-wild-type (WT) tumors revealed that this tendency was mainly attributed to the increased prevalence of hormone receptor (HR)-negative disease in the former group. When BC patients were stratified according to the tumor receptor status, the response rates in triple-negative patients were consistently higher than in HR+/HER2– patients across all analyzed subgroups [BRCA1: 35/59 (59%) vs. 3/10 (30%); BRCA2: 5/10 (50%) vs. 8/26 (31%); WT: 31/76 (41%) vs. 12/74 (16%); Mantel-Haenzsel P < 0.001]. Logistic regression analysis revealed that the odds ratio (OR) for achieving pCR was higher for receptor status (triple-negative vs. HR+: OR = 3.4, 95% CI 1.9–6.0, P < 0.001) than for BRCA status (any mutation vs. WT: OR = 2.1, 95% CI 1.2–3.6, P = 0.008). The addition of carboplatin did not improve pCR rates in BRCA1- or BRCA2-associated BCs, while there was a numerically higher efficacy of carboplatin-containing regimens in patients with WT triple-negative tumors [14/26 (54%) vs. 15/44 (34%), P = 0.13].
Hereditary ovarian carcinomas demonstrate better NACT outcomes in BRCA2 vs. BRCA1 mutation carriers. The opposite trend is observed in BC, which is likely to be attributed to a high frequency of triple-negative disease in BRCA1- but not BRCA2-associated BCs. Triple-negative receptor status rather than BRCA1/2 status is the strongest predictor of response to NACT in BC.
Previous