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Abstract
Fibroblast growth factor receptor 1 (FGFR1) plays a critical role in the progression of various cancers 
through its involvement in cell proliferation, survival, and differentiation. More recently, FGFR1 has been 
implicated in the mechanisms of immune evasion, particularly its role in resistance to immune checkpoint 
inhibitors (ICIs) such as pembrolizumab and nivolumab. Targeting FGFR1 with monoclonal antibodies and 
tyrosine kinase inhibitors has emerged as a promising therapeutic strategy to enhance ICI efficacy by 
altering the tumor microenvironment and countering immune suppression. Preclinical studies demonstrate 
that combining FGFR1 inhibitors, such as the novel monoclonal antibody OM-RCA-01, with ICIs significantly 
improves antitumor activity, enhancing T cell responses and cytokine production. This article explores the 
role of FGFR1 in cancer biology, its contribution to immunotherapy resistance, and the therapeutic 
potential of targeting FGFR1 to enhance the efficacy of ICIs.
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Introduction
The introduction of immune checkpoint inhibitors (ICIs) has revolutionized cancer treatment, particularly 
for tumors that evade the immune system by expressing proteins such as programmed death-ligand 1 (PD-
L1) and inhibiting T cell activity [1]. However, a significant subset of patients does not respond to ICIs due 
to intrinsic resistance mechanisms including the tumor microenvironment (TME) [2, 3].

Among the various molecular players in cancer progression, fibroblast growth factor receptor 1 
(FGFR1) has emerged as a critical target for therapeutic intervention [4]. FGFR1 belongs to the FGFR family 
of receptor tyrosine kinases, which are involved in numerous biological processes. Dysregulation of FGFR1 
has been observed in several cancers, including lung cancer, breast cancer, renal cell carcinoma (RCC), and 
head and neck tumors, where its overexpression is often associated with poor prognosis [5–8]. 
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Furthermore, FGFR1 has been implicated in promoting resistance to ICIs by modulating the immune 
microenvironment and enabling immune evasion [9].

Given the pivotal role of FGFR1 in tumor biology and immune evasion, targeting FGFR1 represents a 
promising approach to enhance the efficacy of immunotherapy. This perspective will explore the biological 
significance of FGFR1 in cancer progression, the mechanisms by which it contributes to immunotherapy 
resistance, and the emerging evidence supporting FGFR1-targeting therapies in combination with ICIs.

FGFR1-mediated mechanisms in cancer progression and immunotherapy 
resistance
Role of FGFR1 in tumor growth and progression

In normal tissues, FGFR1 plays an essential role in embryonic development and tissue homeostasis [10]. 
However, in cancer, dysregulation of FGFR1 signaling, often due to gene amplification or overexpression, 
leads to uncontrolled cell proliferation and tumorigenesis [11, 12]. FGFR1 is one of the four members of the 
FGFR family, which includes FGFR1, FGFR2, FGFR3, and FGFR4. Activation of FGFR1 by its ligands, 
fibroblast growth factors (FGFs), leads to the phosphorylation of the tyrosine kinase and downstream 
signaling through the Ras-MAPK, PI3K-Akt, and JAK/STAT pathways (Figure 1) [10]. These signaling 
cascades promote cell survival, proliferation, and angiogenesis, contributing to tumor growth. FGFR1 
amplification or overexpression has been identified in a variety of cancers, where it drives oncogenic 
processes. In non-small cell lung cancer (NSCLC), for example, FGFR1 amplification has been reported in 
approximately 20% of cases, and its overexpression of up to 13% is associated with a more aggressive 
tumor phenotype [5, 13].

Figure 1. A scientific diagram illustrating the mechanism of FGFR1 signaling, showing key pathways like PI3K-Akt-
mTOR and RAS-RAF-MEK-MAPK for cell survival and proliferation. Adapted with permission from [https://sciencefeatured.
com/2024/11/28/a-drug-candidate-an-anti-fgfr1-humanized-antibody-offers-fresh-approach-to-battling-aggressive-lung-cancer/], 
cited 2025 May 10, © 2021 Science Featured is an entity of Science Bridges, a non-profit Canadian corporation

https://sciencefeatured.com/2024/11/28/a-drug-candidate-an-anti-fgfr1-humanized-antibody-offers-fresh-approach-to-battling-aggressive-lung-cancer/
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FGFR1 involvement in angiogenesis is also significant, as it further contributes to tumor proliferation 
and the spread of metastases [4]. Cross-activation of FGFR with other cell surface proteins has also been 
described [14, 15].

Numerous sequencing studies have revealed a wide range of FGFR1 abnormalities across tumor 
patients, with prevalence rates spanning 1.9% to 98% [16]. Among these abnormalities, gene amplifications 
are the most frequent (53.7–66%), followed by mutations (26–38.8%) and rearrangements or fusions 
(5.6–8%). Table 1 summarizes the prevalence and notable FGFR1 abnormalities in various tumor types.

Table 1. Prevalence of FGFR1 abnormalities in various tumor types

Tumor type Amplifications 
(%)

Mutations (%) Gene rearrangements (%) Overexpression (%)

Lung cancer (squamous cell 
carcinoma)

10–56.8 N546K, K656E, 
V561M (varied)

FGFR1-TACC1 (not quantified) 4.4–13

Breast cancer 7–15 S125L, K566R 
(0.19)

NR 6.1–58

Glioma/glioblastoma 2–66.7 N546K, K656E 
(3–21)

FGFR1-TACC1 (2–4) Rare

Prostate cancer NR NR NR 20–40
Head and neck tumors 6–17 NR NR 10.6–82
Renal cell carcinoma NR NR NR 98 (primary), 82.5 

(metastatic)
Myeloproliferative disorders NR NR BCR-FGFR1, FGFR1OP-RET, 

FGFR1OP-FGFR1 (common)
Rare

NR: not reported; FGFR1: fibroblast growth factor receptor 1

FGFR1 aberrations occur at frequencies of 49–56.8%, with FGFR1 amplification linked to unfavorable 
clinical outcomes [16]. For instance, patients with squamous cell lung cancer and FGFR1 amplification 
demonstrate significantly reduced overall survival (OS) compared to those without amplification 
(58.6 months vs. 80.0 months) [17]. FGFR1 amplification also appears in approximately 10% of breast 
cancers, driving increased ligand-dependent signaling, suppressing progesterone receptor expression, and 
correlating with poor prognosis [18].

FGFR1 mutations, such as N546K, K656E, and V561M, typically occur within the kinase domain, leading 
to aberrant receptor activation and persistent pathway signaling [16, 19]. These mutations are implicated 
in various malignancies, including H3K27M-mutant diffuse midline gliomas (DMGs), where FGFR1 point 
mutations (N546K and K656E) are found in 21% of cases. This subset is more prevalent among older 
individuals with diencephalic tumors and is associated with increased malignancy, reduced sensitivity to 
FGFR inhibitors, and spontaneous hemorrhage. Similar findings have been reported in other central 
nervous system cancers, further highlighting their role in aggressive tumor behavior.

Gene rearrangements, involving the rearrangement of genes on chromosomes, also impact FGFR1 
function. FGFR1 fusions with various partner genes have been identified in several tumor types [16]. For 
example, the FGFR1-TACC1 fusion in glioblastoma and squamous cell lung cancer leads to FGFR1 
hyperactivation, enhancing cell proliferation and inhibiting apoptosis. This fusion may increase FGFR1 
tyrosine kinase activity or alter its intracellular localization. Other notable fusions, such as BCR-FGFR1, 
FGFR1OP-RET, and FGFR1OP-FGFR1, are associated with myeloproliferative disorders, contributing to 
disease onset and progression by promoting cell cycle progression and suppressing apoptosis.

Finally, FGFR1 overexpression is also critical in tumor pathogenesis [5, 7]. For example, in RCC, FGFR1 
expression is detected in 98% of primary tumor cells and 82.5% of metastatic cells in lymph nodes [4]. 
Expression rates in other tumor types vary widely, including lung cancer (4.4–13%) [5, 20], breast cancer 
(6.1–58%) [21, 22], prostate cancer (20–40%) [23, 24] and head and neck tumors (10.6–82%) [25]. In all 
these cancers, FGFR1 plays a significant role in driving tumor development and progression.
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FGFR1 and immunotherapy resistance

Several studies have investigated the effects of FGFR on tumor immunity. FGFR1 has been shown to modify 
the TME in a manner that favors immune evasion, particularly by upregulating immune checkpoint 
molecules such as PD-L1, which inhibits cytotoxic T cell function and allows tumors to escape immune 
surveillance (Figure 2) [15, 26, 27]. Additionally, FGFR1 signaling can recruit immunosuppressive cells, 
such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), further promoting an 
immune-permissive environment that protects the tumor from immune attack [28, 29]. FGFR1 signaling 
may also promote the secretion of immunosuppressive cytokines like transforming growth factor-beta 
(TGF-β), which further dampens the immune response [30–32]. FGFR1 is a component of the 
microenvironment in bone metastases, enhances osteoclast activity and cytokine release as well as 
contributes to the formation of metastatic lesions [33–35]. These interactions between FGFR1 and the 
immune system highlight the need for novel therapeutic strategies that can target FGFR1 while 
simultaneously enhancing the efficacy of immunotherapy.

Figure 2. Interactions between the PD-1/programmed death-ligand 1 (PD-L1), fibroblast growth factor receptor 1 
(FGFR1) pathways, and chemokines. (A) Activation of the FGF/FGFR signaling pathway has been shown to upregulate PD-1 
expression on effector T cells, while simultaneously suppressing the secretion of key cytotoxic mediators such as interferon-
gamma (IFNγ) and granzyme B (GZMB). This dual effect contributes to diminished T cell-mediated antitumor immune 
responses, highlighting a potential mechanism of immune evasion in FGFR-driven tumors. In addition, FGFR1 activation 
facilitates macrophage recruitment to the tumor microenvironment by inducing the expression of the chemokine CX3CL1, 
thereby contributing to an immunosuppressive milieu that supports tumor progression; (B) FGF/FGFR signaling has been 
shown to suppress IFN-induced immune activation by downregulating the expression of MHC class I molecules, PD-L1, and the 
chemokine CXCL10. This immunosuppressive effect is mediated, in part, through the induction of suppressor of cytokine 
signaling 1 (SOCS1), which interferes with downstream IFN signaling. Conversely, FGF/FGFR signaling can also enhance PD-
L1 expression via alternative pro-tumorigenic pathways. Specifically, activation of the JAK/STAT signaling cascade leads to 
transcriptional upregulation of PD-L1, while concurrent stimulation of the Hippo pathway effector YAP further promotes PD-L1 
transcription. Together, these mechanisms contribute to tumor immune evasion by inhibiting antigen presentation and 
suppressing effector T cell recruitment and function. Conversely, FGFR1 signaling has also been implicated in the post-
translational regulation of PD-L1 stability. Specifically, FGFR1 promotes the phosphorylation of the E3 ubiquitin ligase NEDD4, 
which in turn facilitates the ubiquitin-mediated proteasomal degradation of PD-L1. This mechanism may act as a counterbalance 
to transcriptional upregulation pathways, potentially modulating PD-L1 expression levels in a context-dependent manner and 
influencing tumor immune escape dynamics

The TME can be altered to reduce immunosuppression, potentially reversing resistance to ICIs. Finally, 
we have previously shown that FGFR expression occurs in human lymphocytes [12]. Therefore, it cannot be 
ruled out that targeting FGER1 affects the antitumor effect of cytotoxic T cells. This opens avenues for 
combination therapies where FGFR1-targeted treatments with ICIs [36].

Targeting FGFR1: a promising therapeutic strategy
FGFR1 has been explored as a therapeutic target in oncology for over a decade. Multiple strategies have 
emerged to block FGFR1 activity, including the use of tyrosine kinase inhibitors (TKIs) and monoclonal 
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antibodies (Table 2). Various TKIs targeting FGFR1 have undergone clinical evaluation in patients with 
FGFR1-amplified malignancies. Despite some promise, these agents often encounter hurdles such as 
acquired resistance and unintended interactions that undermine their long-term effectiveness. Examples of 
broad-spectrum FGFR inhibitors include BGJ398, AZD4547, and JNJ-42756493, all of which act on FGFR1–3 
[37–39]. Though preclinical outcomes were encouraging, translation into clinical benefit has been limited. 
For instance, in a phase I study, only 11% of FGFR1-amplified NSCLC patients exhibited partial responses to 
BGJ398.

Table 2. Potential therapeutic strategy of FGFR1 inhibition

Strategy Agent(s) Target/Mechanism Key outcomes Limitations/Notes

Non-selective 
FGFR TKIs

BGJ398, 
AZD4547, JNJ-
42756493

FGFR1–3 inhibition 
(intracellular TK 
domain)

Limited efficacy; e.g., 11% PR in 
FGFR1-amplified NSCLC 
(BGJ398)

Resistance, off-target 
toxicity, limited durable 
responses

Pemigatinib FGFR1 rearrangement 
(hematologic 
malignancies)

78% CR in relapsed/refractory 
MLNs (FIGHT-203 study); FDA 
approved

High efficacy in specific 
FGFR1-fusion-driven 
hematologic cancers

Alofanib Selective extracellular 
FGFR inhibitor

Promising preclinical and clinical 
data

FGFR2-specific

Selective FGFR 
TKIs

Futibatinib Pan-FGFR inhibitor Ongoing trials in FGFR1-
positive tumors

Still under clinical 
investigation

Monoclonal 
antibodies

OM-RCA-01 Binds FGFR1 
extracellular domain

Decrease proliferation in 
lung/RCC cells; tumor growth 
inhibition in vivo; decrease 
FGFR1 phosphorylation, high 
specificity

Ineffective in low-FGFR1 
phosphorylation models 
(e.g., melanoma); still under 
clinical investigation

Combination with 
ICIs

OM-RCA-01 + 
nivolumab

FGFR1 inhibition + 
PD-1 blockade

Increase IFNγ (33%), increase 
IL-2 (74%); synergistic tumor 
suppression in FGFR1+/PD-L1+ 
lung cancer model

Lack of monotherapy control 
arm; mechanism of synergy 
not fully understood

CAF-targeted 
immunotherapy 
combination

OM-RCA-01 + 
nivolumab in 
CAF-positive 
TME

Immune evasion 
reversal via FGFR1 
inhibition

Decrease tumor growth; 
restored IFNγ/IL-2 secretion; 
mitigated CAF-driven resistance

Further mechanistic 
exploration needed

FGFR: fibroblast growth factor receptor; TKIs: tyrosine kinase inhibitors; PR: partial response; NSCLC: non-small cell lung 
cancer; CR: complete response; MLNs: myeloid/lymphoid neoplasms; RCC: renal cell carcinoma; ICIs: immune checkpoint 
inhibitors; IFNγ: interferon-gamma; PD-L1: programmed death-ligand 1; CAF: cancer-associated fibroblast; TME: tumor 
microenvironment

Conversely, treatments have shown greater promise in relapsed or refractory myeloid/lymphoid 
neoplasms (MLNs) with FGFR1 rearrangement. The efficacy of pemigatinib was assessed in the multicenter 
FIGHT-203 trial, which included 28 such patients [40], with 78% achieving durable complete responses—
supporting subsequent FDA approval [41]. Another approach gaining traction is the development of more 
selective FGFR inhibitors. Alofanib, targeting FGFR2 specifically, has demonstrated strong activity in both 
preclinical and early-phase clinical studies [42, 43]. Similarly, futibatinib, a selective pan-FGFR blocker, is 
being studied in FGFR1-positive cohorts [44].

Monoclonal antibodies that bind the extracellular portion of FGFR1 represent a more targeted 
modality. One example, OM-RCA-01, is a humanized antibody designed to inhibit FGFR1 activation and 
downstream signaling cascades. In our investigation, we evaluated the capacity of OM-RCA-01 to suppress 
tumor cell proliferation in vitro and impede tumor progression in vivo. We further hypothesized that 
combining this antibody with ICIs could improve treatment responses, particularly by addressing 
resistance mechanisms tied to the TME.

In vitro data showed that OM-RCA-01 significantly diminished FGF-driven proliferation in lung and 
renal carcinoma cell lines [45, 46], accompanied by a dose-dependent reduction in FGFR1 phosphorylation. 
In melanoma cells, where baseline FGFR1 phosphorylation was low, the antibody exhibited limited 
antiproliferative effects. Other studies have similarly linked FGFR1 phosphorylation to cellular proliferation 
[47–49], reinforcing the notion that extracellular receptor blockade impairs intracellular kinase signaling. 
Future work should examine downstream kinase phosphorylation in response to OM-RCA-01. Prior 
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findings from other FGFR-targeted agents indicate that extracellular domain inhibition can also disrupt 
intracellular signaling proteins [50, 51].

These findings were corroborated in vivo using a lung cancer xenograft model [45]. Mice treated with 
non-specific IgG developed rapidly growing tumors that reached approximately 2,000 mm3, whereas OM-
RCA-01 monotherapy substantially curtailed tumor expansion—achieving a twofold size reduction by day 
31. This likely resulted from both direct tumor suppression and reduced angiogenesis. Supporting this, OM-
RCA-01 previously outperformed bevacizumab in a Matrigel-based angiogenesis assay [46].

The next phase of our study focused on exploring the potential of combining immunotherapy with anti-
FGFR1 targeting. Immune checkpoint blockade has revolutionized cancer treatment, yet resistance remains 
a significant clinical obstacle. For instance, only about 30% of metastatic lung cancer patients and 48% of 
kidney cancer patients reach a five-year survival benchmark following checkpoint inhibitor combinations 
such as pembrolizumab or nivolumab with ipilimumab [52, 53].

This emphasizes the need for novel strategies to enhance immunotherapy durability and counteract 
resistance. While early-phase investigations have tested FGFR TKIs alongside PD-1 inhibitors [54, 55], no 
completed studies have evaluated monoclonal FGFR1 antibody combinations. This represents a promising 
area for further exploration. One current trial, FORTITUDE-102, is assessing the combination of anti-FGFR2 
antibody bemarituzumab with nivolumab and chemotherapy in metastatic gastric cancer patients [56].

Our in vitro experiments confirmed that nivolumab augments T cell activation, consistent with prior 
reports showing elevated interferon-gamma (IFNγ) and IL-2 levels in co-cultures treated with nivolumab or 
nivolumab/ipilimumab [57, 58]. Notably, adding OM-RCA-01 further increased IFNγ release by 33% and IL-
2 by 74%. The underlying mechanisms are still unclear. Previous work from our lab found FGFR expression 
on human lymphocytes [12], implying a possible direct immunomodulatory effect. Although a nonspecific 
immunoglobulin response cannot be ruled out, OM-RCA-01 alone did not elicit significant cytokine release, 
and preclinical toxicology studies did not identify any notable immune stimulation.

In vivo, the OM-RCA-01 plus checkpoint inhibitor combination enhanced therapeutic efficacy in a 
patient-derived xenograft (PDX) lung cancer model overexpressing FGFR1. While pembrolizumab 
monotherapy is standard for metastatic NSCLC with ≥ 50% PD-L1 expression, the interplay between PD-L1 
and FGFR1 co-expression remains underexplored. A phase 2 study (NIVOFGFR2) in gastric cancer showed 
diminished nivolumab efficacy when tumors co-expressed PD-L1 and FGFR2 [59]. Our PDX model featured 
high levels of both FGFR1 and PD-L1, and tumor growth in the control group was aggressive. By contrast, 
dual treatment with OM-RCA-01 and pembrolizumab achieved a twofold tumor volume reduction 
compared to checkpoint inhibitor monotherapy. The absence of a treatment arm using OM-RCA-01 alone is 
a limitation, but comparative results suggest that its therapeutic impact is magnified when combined with 
pembrolizumab.

As discussed earlier, TME is pivotal in ICI resistance, with cancer-associated fibroblasts (CAFs) playing 
a central role [60]. CAFs support metastasis through extracellular matrix remodeling, growth factor 
production, and modulation of angiogenesis, tumor rigidity, and drug response [61]. Various approaches 
are under development to neutralize CAF-mediated resistance, including altering their composition or 
activity. In our model, tumor progression accelerated in the presence of CAFs, with nivolumab efficacy 
markedly reduced [45]. However, the introduction of OM-RCA-01 upon onset of resistance delayed tumor 
expansion. Tumors in the CAF-positive cohort did not exceed 2,000 mm3, in contrast to controls treated 
with non-specific IgG. Furthermore, cytokine levels such as IFNγ and IL-2 surged again with OM-RCA-01 
therapy. Although these data are not sufficient to draw definitive conclusions about OM-RCA-01’s role in 
modulating the TME, the results suggest potential direct and indirect antitumor effects. Importantly, OM-
RCA-01 was well tolerated, showing no adverse events at or above therapeutic dosages. Pharmacokinetic 
profiles indicated prolonged clearance and sustained plasma levels, pointing to favorable bioavailability 
and drug persistence.
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Challenges and future directions
Despite the first promising data on FGFR1-targeted therapies, several challenges must be addressed before 
these therapies can be fully integrated into clinical practice. One of the primary challenges is the 
development of resistance to FGFR1 inhibitors. Similar to other targeted therapies, cancer cells may 
develop mutations in the FGFR1 pathway or activate alternative signaling pathways to bypass FGFR1 
inhibition, ultimately leading to therapeutic resistance. Understanding these mechanisms is critical for 
developing strategies to sustain long-term efficacy.

Another challenge lies in the complexity of the TME. While FGFR1 inhibition can reduce immune 
suppression and enhance ICI efficacy, the TME remains a dynamic and heterogeneous environment. Other 
immunosuppressive factors, such as Tregs, MDSCs, and immunosuppressive cytokines like TGF-β, may still 
limit the effectiveness of combination therapies. Therefore, therapeutic strategies that target not only 
FGFR1 but also additional components of the TME may be necessary to achieve optimal outcomes.

To overcome these challenges, several emerging strategies are being explored. One approach involves 
developing next-generation FGFR inhibitors with enhanced specificity and reduced toxicity. These novel 
agents aim to minimize off-target effects and mitigate resistance mechanisms, making them better suited 
for long-term combination with ICIs. Another area of active research is the identification of predictive 
biomarkers to guide patient selection as FGFR1 amplification, FGFR1 mutations, and FGFR1 expression 
levels are being studied to help identify patients most likely to benefit from FGFR1-targeted therapies as 
single agents or combined with ICIs. The development of reliable biomarkers will be critical for 
personalizing treatment approaches and improving clinical outcomes. Furthermore, researchers are 
exploring the use of circulating tumor DNA and other liquid biopsy techniques to dynamically monitor 
FGFR1 mutations and treatment response over time.

An emerging strategy could be exploring the efficacy of chimeric antigen receptor (CAR) T cell therapy 
targeting FGFR1. Such approach could further enhance antitumor efficacy by targeting FGFR1-
overexpressing tumor cells [62].

Notably, FGFR TKIs augmented the antitumor effect of FGFR1-reactive T cells against human head and 
neck cancers [63]. These results suggest that FGFR TKIs are potential immune adjuvants for T cell-based 
immunotherapy. Combination therapy with TKIs and cancer vaccines or ICI could be a novel and potent 
immunotherapeutic approach to treat aggressive cancers with FGFR expression.

Finally, a new concept is to use the FGFR as a substrate for the attachment of the antibody-drug 
conjugate to the cancer cell. So far, attempts to create such conjugates have not been successful due to poor 
tolerability, however, further developments are underway [64, 65].

Large-scale clinical trials are needed to confirm the efficacy and safety of FGFR1-targeted therapies 
alone or in combination with ICIs. While early-phase trials have shown promising results, larger, 
randomized studies are required to validate these findings across different cancer types and patient 
populations. These trials should also explore variations in treatment protocols, such as different dosing 
regimens and the sequencing of FGFR1 inhibitors and ICIs. The results of these studies will provide crucial 
insights into how best to implement FGFR1-targeted therapies in clinical practice.
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