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Abstract
The green synthesis of silver nanoparticles (AgNPs) has recently gained prominence as a sustainable and 
eco-friendly alternative to conventional physical and chemical methods. Utilizing biological entities such as 
plant extracts, bacteria, fungi, and biomolecules, the method acts by both reducing and stabilizing 
mechanisms. It does not use any harmful chemical substances, thus proving to be eco-friendly. Green-
synthesized AgNPs exhibit enhanced biocompatibility, stability, and targeted delivery of the drug due to the 
use of naturally derived surface capping agents. These unique characteristics allow selective interference 
with cancer cells. The mechanism involved is the generation of reactive oxygen species (ROS), the induction 
of apoptosis, DNA damage, and cell cycle arrest. Green AgNPs also possess broad-spectrum antimicrobial, 
catalytic, antiparasitic, and anti-inflammatory properties, supporting the fact that they can be utilised in 
biomedical fields such as drug delivery, bioimaging, biosensing, tissue engineering, and regenerative 
medicine. Recent advancements have focused on controlling NP size, shape, and surface functionality to 
maximize efficacy while simultaneously minimizing cytotoxicity. This review provides a comprehensive 
analysis of the latest green synthesis strategies, their characterizations, and the molecular mechanisms by 
which they exert anticancer effects. Recent patents highlight the clinical potential of AgNPs in cancer 
therapy. US Patent 12201650 (2025) describes green synthesis using Caralluma sinaica, while other 
patents (WO2007001453, US7462753) outline adaptable biomedical formulations. Studies on biogenic 
AgNPs also show significant tumor inhibition and selective cytotoxicity against cancer cells. Furthermore, 
the article discusses current biomedical applications and critically evaluates the limitations, such as 
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reproducibility, toxicity concerns, and scalability for clinical translation. Addressing these challenges is 
essential for the integration of green AgNPs into mainstream cancer therapeutics. The convergence of 
nanotechnology and biologically derived synthesis opens promising avenues for the development of safe, 
effective, and environmentally sustainable medical innovations.
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Introduction
Nanotechnology is now recognized as one of the critical research endeavors of the early 21st century. This 
field attracted more interest at the beginning of the 21st century, and scientists have taken advantage of the 
unique features of atomic and molecular assemblages produced at nanometer scales [1]. Richard 
Zsigmondy first proposed the concept of a “nanometer” and was awarded the Nobel Prize for this in 
chemistry in 1925. He studied nanomaterials and then characterized their particle size, shape, and 
morphology with the help of a microscope. Nanoparticles (NPs) are the most essential components for the 
development of nanostructures. NPs are regulated by Newton’s laws of motion, and quantum mechanics 
shows that subjects are larger than an atom or simple molecules [2]. A technique that is applied at the 
nanoscale is called nanotechnology and has unique phenomena, making it suitable for different 
applications. Its size ranges from 1 to 100 nm of matter at the atomic and molecular scale [3, 4]. Compared 
to materials with a larger scale, they have different properties. Nanomaterials have been used in different 
physical and chemical methods to achieve novel commercial applications, and societal benefits are also 
possible. At the end of the 20th century, new openings were sought for the development of innovative 
nanomaterials and nanosystems. The novel discovery is of nanoscale materials, processes, and phenomena, 
as well as new experimental and theoretical study methods. This field is enhancing scientific and 
technological possibilities [5]. Nanotechnology encompasses the usage of nanomaterials, as well as many 
methods for synthesizing, such as physical, chemical, and biological, at scales ranging from a single atom or 
molecule to submicron dimensions. Similar effects on society and the economy were seen in the 20th 
century with the development of semiconductors, information, and cellular and molecular biology 
technologies [6]. Nanotechnology has the potential to have a significant impact on the synthesis of novel 
materials for the development of new products, the replacement of existing manufacturing equipment, the 
reformulation of novel materials and chemicals for improved performance, and the use of novel materials 
and chemicals for the remediation of the environment [7]. Normally, bioentities such as enzymes, amino 
acids, dietary fibers, RNA, DNA, and viruses occur naturally as components of biological structures, but 
nanotechnology can be used to synthesize, mimic, or manipulate them for various applications [8].

Metallic NPs (MNPs)

In the field of nanotechnology, MNPs were able to show a variety of properties and have demonstrated 
various novel opportunities in the field of NPs. The presence of suitable functional groups differentiates 
MNPs. They can be synthesized and modified to bind with medications, antibodies, and ligands [9]. MNPs 
play a significant role because they have the potential to be used in new fields of nanoscience and 
technology [10, 11]. Many researchers have shown that MNPs can be synthesized using biological sources 
such as algae, fungi, and bacteria, as well as metals like gold (Au), silver (Ag), titanium (Ti), cadmium (Cd), 
iron (Fe), zinc (Zn), and magnesium (Mg), among others, for diverse biomedical and industrial applications 
[12].

Silver NPs

Silver NPs (AgNPs) exhibit a wide array of biological activities, including anti-inflammatory, antiseptic, and 
pro-healing effects, making them ideal for healthcare applications like wound dressings, medical coatings, 
and surgical instruments. They also find use in cosmetics, food packaging, and textile industries [13–15].
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Silver and its compounds have recently gained renewed attention in microbiology, medicine, and 
biomedicine due to their broad-spectrum antimicrobial potential. AgNPs are particularly valued for their 
antibacterial properties and are widely used in medical applications such as catheters, dental procedures, 
and burn treatments [16–18]. Compared to silver ions (Ag⁺), AgNPs offer similar antimicrobial efficacy 
while mitigating side effects associated with ionic silver or silver nitrate [19]. Their mode of action, 
primarily involving direct interaction with bacterial membranes, allows them to overcome many traditional 
antibiotic resistance mechanisms [20]. Their antimicrobial effect is influenced by their small size and high 
surface area, which enable better interaction with microbial cells and gradual Ag⁺ release under biological 
conditions [21].

AgNPs are synthesized through various techniques, including chemical, photochemical, 
electrochemical, and green methods. Among them, chemical reduction using agents like sodium citrate and 
borohydride is common, though it poses toxicity concerns [22–24]. Green synthesis has emerged as a safer, 
eco-friendly alternative using plant extracts, microbes, and natural polymers [25]. Additionally, AgNPs are 
employed in bio and electrochemical sensors due to their excellent catalytic and electronic properties [26, 
27]. While their antibacterial potential is well-documented, uncertainties remain regarding their toxicity 
and mechanisms at the cellular level [28]. These NPs can interfere with cellular proteins, nucleic acids, and 
membranes, causing microbial death, but their safety as an antibiotic substitute is still debated [29, 30].

Comparative advantages and disadvantages of AgNPs over other nanocarriers
Advantages

AgNPs have garnered significant attention as nanocarriers due to their unique physicochemical and 
biological properties. Compared to other metallic and polymeric nanocarriers, AgNPs exhibit intrinsic 
antimicrobial, anticancer, anti-inflammatory, and antioxidant activities, making them suitable for 
multifunctional biomedical applications without the need for additional active agents [31, 32]. Their ability 
to generate reactive oxygen species (ROS) and induce apoptosis in cancer cells provides a dual benefit of 
acting as a therapeutic agent and a carrier simultaneously [33, 34].

Unlike liposomes or polymeric NPs, AgNPs possess a high surface area-to-volume ratio and strong 
surface plasmon resonance effects, allowing for enhanced drug loading, targeted delivery, and optical 
tracking capabilities [35, 36]. Their surface can be readily functionalized with a wide range of biomolecules, 
targeting ligands, or polymers to enhance biocompatibility and specificity [37, 38]. Green synthesis 
methods, in particular, offer eco-friendly, cost-effective, and scalable routes to fabricate AgNPs with 
enhanced biocompatibility compared to chemically synthesized ones [39, 40].

Disadvantages

However, AgNPs also present several limitations when compared to other nanocarriers. One of the major 
concerns is their potential cytotoxicity, which is largely dose-, size-, and shape-dependent [41, 42]. In 
contrast, liposomes and biodegradable polymeric NPs such as poly lactic-co-glycolic acid (PLGA) often show 
better in vivo biocompatibility and reduced immune clearance rates [43, 44]. Moreover, the long-term 
toxicity, accumulation in vital organs, and lack of uniform regulatory guidelines for AgNPs pose challenges 
for clinical translation [45, 46].

In addition, while AgNPs exhibit strong antimicrobial activity, this can also disrupt normal microbiota if 
not carefully targeted, unlike more specific nanocarrier systems [47]. Furthermore, their stability in 
physiological environments can be limited, requiring stabilizers or surface coatings to maintain 
functionality, which adds complexity to their design [48, 49]. On the other hand, polymeric micelles and 
dendrimers offer controlled release profiles and pH-responsive behaviour, which are areas where AgNPs 
may require further optimization [50, 51].

Despite these challenges, ongoing research is directed toward combining AgNPs with other 
nanocarriers (e.g., core-shell systems or hybrid nanosystems) to mitigate toxicity while leveraging their 
therapeutic benefits [52, 53]. Advances in biofunctionalization, green synthesis, and targeting strategies are 
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expected to improve the clinical viability of AgNP-based nanocarriers in the future [54–56]. In summary, 
while AgNPs hold distinct advantages in multifunctionality and simplicity, careful engineering and safety 
assessment are essential to address their limitations and establish them as competitive alternatives to 
conventional nanocarriers [57–65].

Synthesis of MNPs

Two alternative methods can be used for the synthesis of MNPs, namely (i) the top-down approach and (ii) 
the bottom-up approach [64, 65]. The “top-down” method is based on building structures from the parts of 
much bigger devices by monolithic processing, which is more readily possible with current technology. 
Consumer electronics semiconductor devices have demonstrated the usefulness of this technique, as well as 
the “bottom-up” method, which involves the methodical self-assembly of molecules, atoms, or other 
fundamental building blocks of matter to create device structures [66]. Furthermore, the synthesis of NPs 
involves the use of three distinct techniques: physical, chemical, and biological processes Figure 1.

Figure 1. Synthesis of metallic nanoparticles.

Physical methods use top-down techniques, whereas chemical and biological methods use bottom-up 
techniques for the synthesis of MNPs. Several chemical and physical processes are used to synthesize MNPs 
that try to regulate the physical characteristics of the particles. Most of these technologies are used in early 
stages of development, and issues with NP preparation stability, crystal growth control, toxicity, and 
particle aggregation are common [67–70].

Physical methods for NPs synthesis (top-down approach)

Multiple techniques are used in the physical synthesis of NPs, including vapor phase: Arc discharge, 
hydrogen plasma, laser pyrolysis, and chemical vapor condensation. Solid phase: Ball mill [71]. The high 
quantity of energy requirement is one of the main drawbacks associated with these approaches, as well as 
the substantial period needed to complete the entire process (for example, costly, limited manufacturing 
rate, enormous energy consumption for maintaining high pressure and temperature) [72].
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Chemical methods for NP synthesis (bottom-up approach)

The chemical substances that are most frequently used in the synthesis of MNPs include chemical 
reductants: Alcohol, molecular hydrogen, hydrazine, sodium tetrahydroborate, citrate, N,N-dimethyl 
formamide, polyols, ethylene glycol, and cyclodextrin are some of the ingredients in lithium aluminum 
hydrate. Sources of energy: Light, ultraviolet/visible light, electricity, heat, sonochemical energy, and X-rays 
are examples of photo energy. However, they are not considered green chemical reagents due to their 
potential environmental harm. Sodium borohydride is a well-known reducing agent that has numerous 
applications in chemical synthesis. As a result, it has been widely utilized to convert metal salts into NPs. 
The Brust-Schiffrin two-phase technique is one of the most widely used synthesis processes [73]. Chemical 
reduction occurs at an oil-water interface, followed by thiolated molecule adsorption and stabilization in 
the organic phase. This method has been widely used because of its simplicity and efficiency in expanding 
the understanding and applications of gold and AgNPs [74]. The use of sodium borohydride and colloidal 
stabilization is combined with capping molecules. Although occasionally mild compounds are used, such as 
derivatives of β-cyclodextrin [75] or clays [76], Citrate ions are used as both reducing and stabilizing 
agents, which is a common technique for the synthesis of spherical Au and AgNPs [77]. Carboxylic acids, 
polymers, aromatic and halogenated organic compounds, as well as surfactants, have been characterized as 
capping molecules and are relevant to the development of MNPs that have various morphologies [78, 79].

Green/Biological synthesis of NPs (bottom-up approach)

Nowadays, for the production of NPs, the use of biological synthesis has become a popular alternative to 
conventional techniques. Biosynthesis involves using unicellular and multicellular organisms such as 
actinomycetes [80], bacteria [81], fungi [82], plants [83], viruses [84], and yeast [85], entities in an 
environment-friendly green chemistry-based method. It is a non-toxic and eco-friendly method of NPs 
formation with a wide range of shapes, sizes, compositions, and physicochemical properties utilizing living 
organisms [86]. Green or biological NP synthesis prevents toxicity by using low pressure, temperature, and 
pH at a substantially lower cost [87]. Alkaloids, proteins, flavonoids, reducing sugars, polyphenols, and 
other compounds that are present in biomaterials work as capping and reducing agent for NPs from their 
metal salt predecessors [88]. Initial confirmation of the reduction of the metal salt precursor to its eventual 
NPs is aided by visualizing the color shift in the colloidal solution. Recently, several organisms, including 
unicellular and multicellular, have been employed for the green synthesis of NPs. The biological elements, 
including primary and secondary metabolites, perform as catalysts to promote metal ion reduction and the 
development of MNPs. On the surface of MNPs, these same reducing agents or other molecules may form a 
stabilizing layer, preventing or at least decreasing the capacity to assemble or become disordered 
throughout the production process [89]. Additionally, the production of MNPs made via biological methods 
can be influenced by experimental conditions such as temperature, pH, and reagent concentration [90].

Green synthesis of MNPs by plants

Green synthesis of MNPs can utilize organisms from all biological kingdoms. Fortunately, a lot of these 
creatures that are suitable for green synthesis are also species that contribute to biodiversity and are raised 
for food and feed. Researchers investigating the green synthesis of MNPs were the first to choose plants 
because of their large biomass, variety of species availability [91]. These chemicals are the same 
responsible for the plant's status as a significant bioreactor and molecular supplier, also used in green 
synthesis methods [92]. In reality, it is now generally acknowledged that plants produce several 
metabolites that can interact to stabilize the surface of MNPs and/or transform metal ions into their 
metallic equivalents [93]. Amino acids are thought to be the main compounds that cause plants to reduce 
metal ions [94], citric acid [95], flavonoids [96], phenolic compounds [97], terpenoids [98], tannins [99], 
enzymes [100], peptides [101], saponins [102], polysaccharides [103], heterocyclic compounds [104], 
among others. The green synthesis of MNPs, which is mediated by plants, utilizes entire organisms as well 
as organ and tissue extracts [105]. It uses different parts of the plant, such as root, leaves, seeds, barks, 
fruits, and others, which may create nano-objects with a variety of features [106]. Therefore, they ought to 
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be taken into account separately. Depending on the requirements of each part of the plant and the types of 
abiotic or biotic stress that a plant may be exposed to, each plant component has a distinct phytochemical 
profile with a different composition or concentration.

NP synthesis using fungi

Extracellular synthesis of MNPs, such as AgNPs, utilizing fungi is also a promising option due to their cost-
effective, large-scale manufacturing. Fungal strains are preferred over bacterial species due to their higher 
tolerance and metal-bioaccumulation ability [107]. It has been shown that the fungus Fusarium oxysporum 
is capable of synthesizing AgNPs with diameters ranging from 5 to 15 nm that have been stabilized by 
fungal protein capping. The fungus Fusarium oxysporum can produce NPs outside of cells [108]. This study 
reported the intracellular production of Ag, Au, cadmium sulphide (CdS), lead sulphide (PbS), molybdenum 
sulphide (MoS), and zinc sulphide (ZnS) NPs [109]. Fungi have certain advantages over bacteria when it 
comes to producing NPs, including simpler scaling up and downstream processing, better economics, and a 
bigger surface area offered by fungal mycelia [110]. Although the rate of synthesis of NPs should rise due to 
the increased amount of proteins released by fungi, quality is compromised as some fungi are 
Phytopathogenic and may pose a threat to human health [111].

NP synthesis using algae

Algae, which could be used to produce MNPs naturally, have been determined to accumulate heavy metals. 
Algae, a wide range of aquatic microorganisms, have been extensively employed to synthesize AgNPs, and 
their sizes range from microscopic to macroscopic (Rhodophyta). Chlorella vulgaris is a type of unicellular 
algae that can develop NPs in a variety of shapes, including tetrahedral, decahedral, and icosahedral 
particles that gather close to the surface [112]. Algal extractʼs proteins, in particular, function as a 
stabilizing, reducing, and shape-controlling agent [113]. The AuNPsʼ actual yield, kinetics, and colloidal 
stability were studied in micro-algal cells of Euglena gracilis grown in mixotrophic (exposed to light and 
produced in a culture medium enriched with organic carbon) or autotrophic conditions [114].

Bacterial-mediated NPs synthesis

Bacteria are typically used for NPs synthesis due to the low conditions required, ease of purification, and 
high yield. As a result, bacteria have become the most widely studied microorganism, receiving the title of 
“the factory of nanomaterials”. Bacillus thuringiensis has recently been applied to synthesize AgNPs with 
sizes ranging from 43.52 to 142.97 nm [115]. Bacteria can be utilized as a biocatalyst for the production of 
inorganic materials, as a bioscaffold for mineralization, or as an active participant in NPs synthesis [116]. 
Bacteria can synthesize nanomaterials in broth media as extracellular or intracellular during an incubation 
period. Because of this feature, bacterial biosynthesis of NPs is a reasonable, versatile, and acceptable 
technology for large-scale manufacturing.

Polymer-mediated MNPs

Various polymers were used to synthesize AgNPs, such as Gum Acacia [117], Gum Arabic [118], 
Chitosan/Guar gum/Gum Ghatti [119], Tara Gum [120], Aloe Vera [121], κ-carrageenan [122], for different 
biomedical applications.

Characterization techniques

NPs are synthesized by shrinking their size through physical or chemical methods [123]. Importantly, 
processing frequently introduces imperfections on the surface because the shape, size, and surface 
structure of NPs are heavily dependent on each other. These surface defects can have a major impact on the 
overall surface and physicochemical characteristics [124].

The NPs are characterized by using a variety of techniques to determine factors like size distribution, 
particle size, shape, and surface area. These are especially important if homogeneous NPs characterization 
is required for a specific application. Numerous common spectroscopy and microscopy methods are used to 
characterize NPs, including UV-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier transform 
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infrared spectroscopy (FTIR), dynamic light scattering (DLS), atomic force microscope (AFM), transmission 
electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and 
Raman spectroscopy, which are all common spectroscopy and microscopy techniques. These techniques, 
based on microscopy, are considered direct methods used for acquiring data from images of NPs, and are 
widely utilized to determine the size and morphological properties of NPs (see Figure 2) [125–127].

Figure 2. Characterization of metallic nanoparticles.

UV-Vis spectrophotometry

UV-Vis is the most used method to characterize MNPs [128]. When synthesized from its specific metal, it 
produces a distinctive peak with significant visible-range absorptions [129]. The surface plasmon response 
(SPR) peak is well known for a range of MNPs, ranging in size, and various synthesized NPs have 
demonstrated that it is ideal for characterizing particles in the absorption band with a wavelength of about 
200–800 nm [130]. In AgNPs, the valence and conduction bands are very close together. These bands 
provide a SPR absorption band by enabling unlimited electron migration. Particle size, dielectric medium, 
and the chemical environment all have an impact on how well AgNPs are absorbed. The stability of 
biologically generated AgNPs was studied for almost a year, and a SPR peak at the same wavelength was 
found using UV-Vis spectrophotometry [131].

XRD analysis

XRD analysis methods are used for analyzing the structure of NPs, where MNPs show amorphous and 
crystalline nature, identified with the help of X-rays, which can penetrate deeply into the material [132]. 
The formation of crystalline NPs is verified by the diffraction pattern [133].

The Debye-Scherrer equation is used to quantify particle size from XRD data by estimating the width of 
the Bragg reflection peak according to the equation [134].

t = kλ
βcosθ

Where, t = Crystallite size, k = shape factor, λ = wavelength of the radiation, θ = Bragg’s angle, β = full 
width at half maximum.

To explore the structural characteristics of many materials, including polymers, glasses, biomolecules, 
and superconductors, XRD can be used. Additionally, XRD is an effective technique for researching 
nanomaterials [135].
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FTIR

FTIR can be used to analyze different capping agents, the involvement of biomolecules in the synthesis of 
MNPs, and the surface chemistry of synthesized MNPs [136]. In FTIR, the sample transmits photons; some 
of them are absorbed by the sample, and the rest pass through it. The resulting spectra show the 
transmission and absorption properties of the sample material [137]. It is affordable, appropriate, simple, 
and non-intrusive to evaluate the role of biological molecules in the conversion of silver nitrate to silver 
[138].

TEM

TEM is a particularly significant tool for characterizing by giving detailed information about their shape, 
size, internal morphology, and crystallographic structure [139]. TEM operates by transmitting a beam of 
electrons through an ultra-thin specimen; the interactions between the electrons and the atoms in the 
sample generate high-resolution images. Compared to SEM, TEM offers nearly 1,000 times higher 
resolution, allowing visualization at the atomic or molecular scale [140]. This makes it especially useful for 
observing the internal lattice structure, defects, and particle dispersion in nanomaterials. Additionally, TEM 
images yield more precise insights into the crystallinity, orientation, and morphological variations of NPs, 
making it an essential technique in nanoscience and biomedical research [141].

DLS

The particle size and its size distribution can be determined widely using the technique of DLS. In DLS 
parameters, zeta sizer and zeta potential have been used to describe NPs frequently and have been used to 
gauge the size. Additionally, DLS is also widely used to size MNPs in liquid form [142]. Its role in 
characterizing distinct types of NPs has been established. Because of Brownian motion, the size of NPs 
obtained through DLS is often larger than that determined by TEM; it is possible to estimate the average 
size of NPs in liquids using this technique [143].

AFM

In 1986, Binning, Quate, and Gerber developed the technology of the AFM to improve upon the drawbacks 
of the scanning tunnelling microscope (STM) [144]. AFM can provide three-dimensional (3D) topographic 
images with nanoscale resolution, and it makes the most efficient approach for morphological and 
structural investigation of polymeric nanocomposites under AFM [145]. The most significant development 
in AFM has been its ability to assess non-conductive samples' surface topography at sub-nanometer 
resolution [146]. Additionally, the AFM is useful since it requires less sample preparation and may be 
utilized in fields of natural settings. The sample does not need to be conductive or metallized before being 
subjected to morphological analysis. This characteristic method is an extraordinary tool for the direct 
characterization of a variety of samples with complex morphological structures. By moving a tip attached to 
a flexible cantilever across the sample surface, an atomic-scale measurement of surface morphology is 
accomplished using AFM. The deflection of cantilevers during scanning is used to determine the force acting 
between the tip and the sample [147].

MNPs in cancer therapy

MNPs have gained significant attention in cancer therapy due to their exceptional physicochemical 
properties. These include a high surface-area-to-volume ratio, ease of functionalization, and the ability to 
penetrate biological membranes efficiently [148]. MNPs are typically composed of elements like gold (Au), 
silver (Ag), iron oxide (Fe₃O₄), and platinum (Pt), each offering unique characteristics suited for biomedical 
applications [149–157]. In cancer treatment, MNPs are being utilized for various purposes such as targeted 
drug delivery, photothermal therapy, tumor imaging, and immunotherapy. Their nanoscale size allows 
them to circulate through the bloodstream and accumulate preferentially in tumor tissues, thereby offering 
an advanced strategy to overcome the limitations of conventional chemotherapy [158].
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MNPs for tumor targeting

One of the most important advantages of MNPs is their ability to selectively accumulate in tumor tissues 
while sparing normal, healthy cells. This property not only increases the efficacy of the therapy but also 
minimizes systemic toxicity and side effects associated with non-specific drug distribution. Tumor targeting 
by MNPs occurs through two fundamental mechanisms: passive targeting and active targeting [159]. 
Passive targeting exploits the abnormal architecture of tumor blood vessels, thus enhancing permeability 
and retention (EPR) effect. Tumors generally have leaky vasculature and inefficient lymphatic drainage, 
which allow NPs to passively accumulate in the tumor interstitial space over time. This forms the basic 
foundation for NPs-mediated drug delivery systems [160]. Active targeting, on the other hand, takes tumor 
specificity a step further by modifying the surface of NPs with specific ligands such as antibodies, aptamers, 
peptides, or small molecules. These ligands recognize and bind to receptors that are overexpressed on the 
surface of cancer cells, ensuring that the therapeutic agent is delivered precisely where it is needed. This 
strategy improves drug localization, enhances cellular uptake, and boosts the therapeutic index [161].

Targeting mechanisms and surface functionalization of MNPs

The surface of MNPs can be engineered to enhance their functionality and compatibility with the biological 
environment. Surface modification not only prolongs the circulation time of NPs in the bloodstream but also 
facilitates their recognition and binding to target cells. One of the most used stabilizing agents is 
polyethylene glycol (PEG), which helps to reduce immune system recognition and opsonization by serum 
proteins, thereby enhancing their half-life [162]. Further functionalization involves conjugating targeting 
moieties that bind selectively to tumor-associated receptors. Among these, the matrix metalloproteinase-2 
(MMP-2) receptor has been a notable focus. MMP-2 is an enzyme overexpressed in many invasive and 
metastatic tumors. NPs functionalized with MMP-2-sensitive peptides can undergo enzyme-mediated 
degradation, releasing their therapeutic payload precisely in the tumor microenvironment (TME) where 
MMP-2 activity is elevated [163]. Another popular targeting strategy involves the folate receptor, which is 
abundantly expressed in a range of cancers, including breast, ovarian, and lung cancers. Folic acid, a small 
molecule with high affinity for the folate receptor, can be conjugated to the surface of MNPs to achieve 
receptor-mediated endocytosis into tumor cells. This method is particularly beneficial because folate is a 
vitamin that does not trigger immunogenic responses, making it a safe and effective targeting ligand [164]. 
HER2/neu, a receptor tyrosine kinase commonly found in aggressive breast cancers, is another important 
biomarker for targeted therapy. NPs can be functionalized with monoclonal antibodies such as trastuzumab 
to selectively target HER2-positive tumors. These antibody-coated MNPs can carry chemotherapeutic drugs 
or photosensitizers to the tumor site and, in the case of AuNPs, can even be used for photothermal ablation 
by converting light into heat, thereby killing cancer cells [165].

Passive and active targeting of MNPs

Targeting strategies using MNPs can be broadly divided into basic (passive) and active approaches. As 
discussed, basic targeting utilizes the natural tendency of NPs to accumulate in tumor tissues due to the 
EPR effect. While this method improves drug delivery compared to systemic administration, it does not 
provide the level of precision required to completely spare healthy tissues [166]. Active MNPs, in contrast, 
are designed to respond to internal or external stimuli for controlled drug release. These stimuli can 
include pH changes, redox gradients, enzyme activity, temperature shifts, or the application of external 
magnetic fields. For example, pH-sensitive AuNPs release their drug payload only in the acidic environment 
typical of tumors, thus minimizing off-target effects. Similarly, MNPs such as iron oxide (Fe₃O₄) can be 
guided to tumor sites using external magnets and can also be heated under alternating magnetic fields for 
hyperthermia-based cancer therapy [167]. These advanced MNPs offer multiple levels of control, 
combining targeting, therapy, and real-time imaging into a single theranostics platform.

Cancer immunotherapy using MNPs

Beyond direct targeting of cancer cells, MNPs are playing a transformative role in the field of cancer 
immunotherapy, which seeks to harness the body’s immune system to identify and destroy cancer cells. 
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MNPs can serve as delivery vehicles for a wide range of immunomodulatory agents such as cytokines, 
immune checkpoint inhibitors, and tumor-associated antigens [168]. One of the promising applications 
involves using NPs as cancer vaccines. AuNPs, for instance, can be loaded with tumor antigens and 
adjuvants to activate dendritic cells, which in turn prime T-cells to recognize and kill cancer cells. This 
approach shows potential in generating a strong and long-lasting anti-tumor immune response [169]. Iron 
oxide NPs are also gaining traction in immunotherapy. They can be taken up by macrophages and help 
polarize them from the M2 (tumor-supporting) phenotype to the M1 (tumor-fighting) phenotype. By 
reprogramming the TEM, these MNPs reduce immunosuppression and facilitate the infiltration and activity 
of cytotoxic immune cells [170]. Additionally, MNPs can be engineered to block immune checkpoint 
pathways, such as PD-1/PD-L1 and CTLA-4, either by delivering antibodies or RNA-based inhibitors 
directly into tumor sites, thereby restoring immune function and enabling T-cells to eliminate cancer cells 
more effectively in Table 1 [171].

Table 1. Overview of cancer types and experimental models in AgNPs-based anticancer studies.

Plant source Characterization In vitro model Mechanism References

Pinus 
roxburghii

UV-Vis, FTIR, XRD, EDX, 
SAED, FESEM, and HRTEM

Lung adenocarcinomas 
(A549), prostatic small cell 
carcinomas (PC-3)

Apoptosis via mitochondrial 
depolarization, DNA damage, 
ROS, cell cycle arrest, and 
caspase-3 activation

[172]

Phyllanthus 
emblica

UV-Vis, TEM, FTIR, SEM-
EDX, XRD, DLS-Zeta 
potential, TGA, and HRTEM

Lung cancer cell line (A549) Elevated ROS levels, enhanced 
DNA damage, and cell death

[173]

Cynara 
scolymus

(Artichoke)

UV-Vis, FTIR, SEM, DLS, 
and EDX

Breast cancer cells (MCF-7) Reduce cell migration, expression 
of Bax, and suppression of Bcl-2

[174]

Moringa 
oleifera

XRD, FTIR, HRTEM, EDX, 
and PL

In-vitro cytotoxicity and cell 
viability of human cancer cell 
HT-29

Induce apoptosis [175]

Tamarindus 
indica

UV-Vis, FTIR, EDS, SEM, 
and TEM

MCF-7 human breast cancer 
cell line

Induce apoptosis [176]

Achillea 
biebersteinii

UV-Vis, FTIR, TEM, DLS, 
and EDX

MCF-7 human breast cancer 
cell line

Triggered apoptosis through 
caspase activation and 
modulation of Bax and Bcl-2 
expression

[177]

Punica 
granatum

UV-Vis, FTIR, DLS, EDX, 
SEM, and XRD

Human cervical cancer cells 
(HeLa)

Reduce cell viability [178]

Gloriosa 
superba

UV-Vis, HRTEM, EDX, DLS, 
and XRD

MCF-7 cell line High cytotoxicity due to 
interactions with cellular proteins 
and DNA, leading to cell death

[179]

Teucrium 
polium

UV-Vis, FTIR, SEM, and 
XRD

MNK45 human gastric 
cancer cell line

Cytotoxic activity induces 
apoptosis

[180]

Melia dubia UV-Vis, XRD, EDS, and 
SEM

Human breast cancer (KB) 
cell line

Show activity against the KB cell 
line

[181]

Ulva lactuca UV-Vis, FTIR, TEM, and 
EDX

Human colon cancer HCT-
116 cells

Higher levels of P53, Bax, and 
P21, along with lower Bcl-2, point 
to cell death driven by p53-related 
apoptosis

[182]

Cucumis 
prophetarum

UV-Vis, FTIR, DLS, XRD, 
SEM, and EDX

A549, MDA-MB-231, 
hepatocellular carcinoma 
(HepG2), and MCF-7 cell line

Antiproliferative potential against 
selected cancer cell lines

[183]

Rosa 
damascena

UV-Vis, FTIR, DLS, SEM, 
HRTEM, XRD, and EDX

Human lung adenocarcinoma 
(A549)

Inducing apoptosis, generating 
ROS, and disrupting mitochondrial 
membrane potential lead to cell 
death

[184]

Gossypium 
hirsutum

UV-Vis, FTIR, LS, SEM, 
TEM, and XRD

Human lung cancer cells 
(A549)

Activate apoptosis in cancer cells 
by mitochondria-mediated 
pathways

[185]

Syzygium 
aromaticum

UV-Vis, HRTEM, and EDX MCF-7 breast and A549 lung 
cell lines

Induced apoptosis via oxidative 
stress mechanisms

[186]
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Table 1. Overview of cancer types and experimental models in AgNPs-based anticancer studies. (continued)

Plant source Characterization In vitro model Mechanism References

Podophyllum 
hexandrum

TEM, XRD, and FTIR Human cervical cancer cell 
line (HeLa)

Decrease cell proliferation, 
increase intracellular ROS, DNA 
damage, and apoptosis

[187]

Heliotropium 
indicum

SEM, EDX HeLa cervical cancer cell line Inhibits cell growth in a dose and 
time-dependent manner

[188]

Azadirachta 
indica

FTIR, TEM, and DLS MCF-7 and HeLa cell lines; in 
vivo model (Balb/C mice)

Alter pro-inflammatory cytokine 
levels and pro-apoptotic protein 
expressions

[189]

Gum arabic UV-Vis, TEM Oral tongue squamous cell 
carcinoma (CAL-127 cells)

Inhibits hypoxia through its 
suppressive effect on the HIF-1α 
protein, and its regulators miR-
210 and miR-21

[190]

Alternanthera 
sessilis

UV-Vis, EDX, SAED, FTIR, 
HRTEM, and AFM

Cervical cancer cell line 
(HeLa)

Induce apoptosis [191]

AgNPs: silver nanoparticles; UV-Vis: UV-visible spectroscopy; FTIR: Fourier transform infrared spectroscopy; XRD: X-ray 
diffraction; EDX: energy dispersive X-ray; SAED: selected area electron diffraction; FESEM: field emission scanning electron 
microscopy; HRTEM: high-resolution transmission electron microscopy; TEM: transmission electron microscopy; TGA: 
thermogravimetric analysis; SEM: scanning electron microscopy; DLS: dynamic light scattering; PL: photoluminescence; EDS: 
energy dispersive X-ray spectroscopy; LS: light scattering; AFM: atomic force microscope; ROS: reactive oxygen species; HIF-
1α: hypoxia-inducible factor 1-alpha.

Mechanistic approach of MNPs for tumor targeting

MNPs, including AuNPs, AgNPs, iron oxide, zinc oxide, and copper oxide, exhibit multifaceted mechanisms 
for tumor-specific targeting and theranostics [192]. Engineered with precise size, shape, and surface 
chemistry, MNPs exploit the EPR effect for passive accumulation in tumor tissues due to aberrant 
vasculature and impaired lymphatic drainage. Smaller particle sizes further improve tumor penetration and 
therapeutic efficacy in cancer [193]. Particle size plays a critical role in the anticancer efficacy of NPs, as 
smaller particles exhibit greater cellular uptake and deeper tumor penetration. Studies have shown that 
NPs below 50 nm induce higher levels of apoptosis in cancer cells due to enhanced ROS generation and 
DNA damage. Thus, reducing particle size significantly improves the therapeutic potential of nanocarriers 
against cancer [194]. For active targeting, their surfaces are functionalized with monoclonal antibodies, 
peptides, or aptamers that selectively bind overexpressed tumor-associated antigens or receptors [195]. 
AuNPs, in particular, are utilized in photothermal therapy owing to their strong surface plasmon resonance 
in the NIR region, enabling efficient photo-induced hyperthermia and tumor ablation (see Figure 3) [196]. 
AgNPs exhibit potent cytotoxicity via redox imbalance, mitochondrial dysfunction, and DNA damage 
through excessive ROS production [197]. Superparamagnetic iron oxide NPs (SPIONPs) allow magnetic 
field-guided delivery, real-time MRI tracking, and local hyperthermia induction [198]. Other MNPs like ZnO 
and CuO trigger endosomal escape and initiate intrinsic apoptotic cascades by disrupting redox 
homeostasis [199]. Additionally, MNPs serve as nanocarriers for chemotherapeutics, siRNA, or CRISPR 
systems, enabling TME-responsive, site-specific delivery to minimize systemic exposure [200]. 
Functionalization with pH- or enzyme-sensitive linkers ensures stimuli-triggered release within acidic or 
protease-rich TMEs. MNPs further enhance imaging modalities such as MRI, CT, and photoacoustic imaging, 
facilitating image-guided therapy [201]. These integrated diagnostic and therapeutic capabilities position 
MNPs as next-generation nanotheranostic platforms for precision oncology [202].

Figure 3 shows AgNPs functionalized with peptides, genes, or chemotherapeutic drugs like gemcitabine 
for targeted cancer therapy. Exploiting the EPR effect, AgNPs accumulate in tumor tissues and are 
internalized by cancer cells. This leads to efficient drug uptake and induction of apoptosis, enhancing 
anticancer efficacy.

Patents

Several patents and recent studies highlight the potential of AgNPs in cancer therapy. A recent patent 
describes the green synthesis of AgNPs using Caralluma sinaica, offering biocompatible particles with 
potential anticancer activity [203]. Patent reviews on nanotheranostic silver systems emphasize their dual 
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Figure 3. Cancer treatment by silver nanoparticles.

role in imaging and therapy, enabling targeted tumor treatment [204]. In vivo studies on biogenic 
silver/silver chloride NPs demonstrated significant inhibition of Ehrlich ascites carcinoma in mice, 
improving survival by approximately 75% [205]. Foundational patents, such as WO2007001453 and 
US7462753, cover synthesis and biomedical formulations of AgNPs, forming the basis for anticancer 
adaptations. Additionally, plant-derived AgNPs reported in recent literature show selective cytotoxicity 
toward cancer cells while sparing normal tissues, reinforcing their promise as eco-friendly and effective 
anticancer agents [206, 207].

Biomedical applications of AgNPs
Antibacterial activity of AgNPs

In the current scenario, plants are used to synthesize AgNPs. It is simple to synthesize using plant extracts 
or even the entire plant [207, 208]. In the health sector, AgNPs are frequently used as antibacterial agents, 
for food preservation, textile coatings, and with significant environmental applications (see Table 2) [208, 
209]. AgNPs are used against antibacterial activity, the ability of AgNPs to reduce silver ions, to more 
frequently attach to thiol groups in bacterial proteins, interrupting their physiological activity, and causing 
cell death. According to many researchers, AgNPs penetrate and then destroy the bacterial membrane, 
preventing proper cell function, which causes structural damage and finally cell death, as shown in Figure 4 
[210].

Table 2. Antibacterial activity of AgNPs.

Polymer type Characterization Application Reference

Sodium alginate UV-Vis, TEM, and XRD Antibacterial activity against Gram-negative and Gram-positive 
bacteria

[211]
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Table 2. Antibacterial activity of AgNPs. (continued)

Polymer type Characterization Application Reference

Pine gum SPR, EDX, FTIR, TEM, 
and XRD

Against odor- or skin infection-causing bacteria, also 
Brevibacterium linens

[212]

Gum ghatti UV-Vis, TEM, and XRD The AgNPs can be easily integrated for a variety of biological 
applications (both Gram-positive and Gram-negative)

[213]

Chitosan/Guar 
gum/Gum ghatti

UV-Vis, XRD, and SEM Due to the synergistic interaction of AgNPs used against 
Staphylococcus aureus and Escherichia coli bacteria suggested 
promising antibacterial efficacy

[214]

Piyar gum UV-Vis, FTIR, DLS, SEM, 
TEM, and AFM

Against both Gram-negative bacterial strains, i.e., Escherichia 
coli and Avibacterium avium

[215]

Neem gum UV-Vis, FTIR, TEM, and 
AFM

Antibacterial activity against clinical isolates of Salmonella 
enteritidis and Bacillus cereus

[216]

Aloe barbadensis 
Miller

UV-Vis Antibacterial activity against Gram-negative and Gram-positive 
bacteria

[217]

Starch-gelatin UV-Vis, TEM, SEM, XRD, 
and thermal method

Antibacterial activity against Gram-negative and Gram-positive 
bacteria

[218]

AgNPs: silver nanoparticles; UV-Vis: UV-visible spectroscopy; TEM: transmission electron microscopy; XRD: X-ray diffraction; 
SPR: surface plasmon response; EDX: energy dispersive X-ray; FTIR: Fourier transform infrared spectroscopy; SEM: scanning 
electron microscopy; DLS: dynamic light scattering; AFM: atomic force microscope.

Figure 4. Biomedical applications of silver nanoparticles.

Catalytic activity of AgNPs

In chemistry and materials science, the creation of reliable, recyclable, environmentally friendly catalysts is 
considered an enormous challenge. Understanding this fieldʼs potency, while using MNPs, is now important 
due to the fieldʼs reliable development. More importantly, the creation of biodegradable, reusable catalysts 
helps to reduce the amount of waste that must be disposed of, and these catalysts are seen as essential 
[219–221]. The significance of environmental protection for humans has increased in recent years, and 
some poisonous dye molecules, like Methylene orange, Methylene blue, Congo red, 4-nitrophenol, and eosin 
Y, are hazardous to the environment. Hazardous dyes can be used to reduce smaller organic molecules and 
non-toxic species by reductants like NaBH4; however, the rate of reduction is particularly slow (see 
Table 3). High reactivity, as well as the particular surface area of AgNPs, can accelerate the reduction of 
dyes, improving the efficiency of the reduction process [222].
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Table 3. Catalytic activity of silver nanoparticles.

Polymer Characterization Application References

Salvia officinalis leaf 
extract

UV-Vis, FTIR, DLS, SEM, 
TEM, EDS, and TGA

Against toxic dye shows significant catalytic activity in the 
degradation of CR dye.

[223]

Gum acacia UV-Vis, FTIR, TEM, and 
XRD

Used against toxic dye (4NP to 4AP). [224]

Gum arabic UV-Vis, TEM, and SWV The technology was used to find MB in samples of river 
Water since its ability to recover values was beneficial.

[225]

Acacia nilotica gum 
extract

UV-Vis, FTIR, TEM, and 
XRD

Studies have been carried out into the reduction 4NP to 
4AP by NaBH4 (reducing agents) catalyzed using AgNPs.

[226]

Chitin FTIR, XRD, XPS, SEM, and 
TGA

Used to 4NP reduced to 4AP in catalyst activity. [227]

Crocus haussknechtii 
extract

UV-Vis, FTIR, XRD, and 
SEM

The degradation of a Congo Red dye was used to 
evaluate the catalytic activity of synthesized NPs in the 
presence of NaBH4.

[228]

Trigonella foenum-
graecum seeds

UV-Vis, FTIR, and XRD Used against toxic dye such as hazardous dyes, methyl 
orange, methylene blue and eosin Y.

[229]

UV-Vis: UV-visible spectroscopy; FTIR: Fourier transform infrared spectroscopy; DLS: dynamic light scattering; SEM: scanning 
electron microscopy; TEM: transmission electron microscopy; EDS: energy dispersive X-ray spectroscopy; TGA: 
thermogravimetric analysis; XRD: X-ray diffraction; SWV: square wave voltammetry; XPS: X-ray photoelectron spectroscopy; 
4NP: 4-nitro phenol; 4AP: 4-aminophenol; AgNPs: silver nanoparticles.

Anti-parasitic activity of AgNPs

Leishmaniasis is a parasitic disease caused by parasites of the genus Leishmania [230]. AgNPs were found 
to exhibit larvicidal action against sandfly bites in Table 4. The current scenario causes concern due to the 
costly nature and limited supply of antileishmanial medications, as well as the development of resistance to 
these drugs. However, due to the formation of ROS, this parasite is extremely sensitive to AgNPs. Under UV 
light, NPs have a combinatory detrimental impact on Leishmania tropica [231–233].

Table 4. Anti-parasitic activity of silver nanoparticles.

Polymer Characterization Application Reference

Ginger 
extract

UV-Vis spectroscopy, MTT test, 
TEM

Leishmania majorʼs in vitro promastigotes and amastigote 
forms are positively impacted

[234]

Fusarium 
oxysporum

UV-Vis, TEM Promastigotes and amastigote forms were used in in vivo 
investigations against Leishmania amazonensis as a possible 
treatment for American Cutaneous Leishmaniasis (ACL)

[235]

Chitosan UV-Vis, FTIR, DLS, AFM, and 
TEM. Resazurin and MTT 
colorimetric tests

More active against Leishmania amazonensis [236, 237]

UV-Vis: UV-visible spectroscopy; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; TEM: transmission electron 
microscopy; FTIR: Fourier transform infrared spectroscopy; DLS: dynamic light scattering; AFM: atomic force microscope.

Discussion
Recent advancements in the green synthesis of AgNPs have led to a paradigm shift in biomedical 
applications, with particular emphasis on their potent anticancer, antimicrobial, catalytic, and oxidative 
stress-inducing properties. Numerous studies demonstrate that biologically synthesized AgNPs, using plant 
extracts, bacteria, fungi, and algae, possess enhanced bioactivity and safety profiles compared to their 
chemically synthesized counterparts. In cancer-related research, green AgNPs have shown promising 
cytotoxic effects against a wide range of human cancer cell lines, including breast, lung, liver, cervical, and 
colorectal cancers. These NPs selectively induce apoptosis in cancer cells while sparing healthy cells, 
primarily through mitochondrial disruption, overproduction of ROS, and activation of intrinsic apoptotic 
pathways such as caspase-3 and -9. Furthermore, they interfere with key cell signaling mechanisms like 
PI3K/Akt and MAPK, leading to reduced cell viability, DNA fragmentation, and inhibition of cell 
proliferation. In the microbial domain, green AgNPs have demonstrated significant inhibitory effects against 
both Gram-positive and Gram-negative bacteria, including multidrug-resistant strains like Staphylococcus 
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aureus, Escherichia coli, and Pseudomonas aeruginosa. Their antimicrobial action is mainly attributed to 
disruption of microbial membranes, oxidative stress induction, and binding with microbial DNA and 
proteins, ultimately leading to cell death. From a catalytic perspective, green AgNPs have exhibited efficient 
activity in degrading organic dyes and environmental pollutants under mild conditions, suggesting their 
dual utility in biomedical and environmental domains. The natural phytochemicals involved in their 
synthesis provide a stabilizing shell, enhancing electron transfer capabilities and improving NP dispersion, 
which contributes to their catalytic efficiency. Additionally, the oxidative stress-inducing nature of green 
AgNPs plays a central role in both cancer and antimicrobial mechanisms, as controlled ROS generation 
leads to oxidative damage in targeted cells without affecting surrounding healthy tissues when dosed 
appropriately. These findings support the multifunctionality of green AgNPs and highlight their role as 
oxidative mediators, selective cytotoxic agents, and efficient nano-catalysts. However, variability in 
synthesis conditions, such as source material, temperature, pH, and reaction time, can lead to differences in 
size, shape, and surface charge of the NPs, which in turn affect their biological performance. As a result, a 
major challenge remains in the standardization and reproducibility of green synthesis protocols. Moreover, 
although in vitro and some in vivo studies have confirmed the therapeutic potential of green AgNPs, further 
investigation is needed to evaluate their long-term toxicity, pharmacokinetics, and biodistribution in 
human systems. Safety and regulatory concerns also pose limitations to their clinical translation. 
Nonetheless, the integration of nanotechnology with sustainable biosynthesis techniques presents a viable 
and promising approach for developing next-generation therapeutic agents. With continued 
interdisciplinary research and optimization of synthesis strategies, green AgNPs hold significant promise as 
effective tools for cancer treatment, antimicrobial interventions, catalytic applications, and oxidative 
therapeutics, offering a multifaceted platform for future medical and biotechnological innovations.

Conclusions
MNPs offer a highly promising platform for integrating diagnostics and therapy—an emerging approach 
known as “theranostics”. By fusing targeting, therapeutic, and imaging capabilities into a single nano-
system, MNPs are paving the way for personalized and precision medicine in oncology. Among them, AgNPs 
stand out due to their strong antimicrobial, anticancer, and anti-inflammatory properties, as well as their 
ease of functionalization. However, several critical challenges remain. These include concerns related to 
toxicity, long-term colloidal and physiological stability, immune system clearance, and regulatory approval 
pathways. To overcome these hurdles, ongoing research is focused on enhancing the biocompatibility, 
specificity, and biodegradability of MNPs through surface modifications, green synthesis techniques, and 
targeted ligand conjugation. Successful clinical translation of these technologies also demands standardized 
manufacturing protocols, batch-to-batch consistency, and rigorous preclinical safety evaluations. The 
ability to combine multiple therapeutic strategies—such as immunotherapy, photothermal therapy, gene 
delivery, and chemotherapy—within a single nanoplatform opens exciting avenues for next-generation 
cancer treatments. With continued innovation and collaboration across disciplines, AgNPs and other MNPs 
are expected to play a pivotal role in the evolution of integrated and individualized cancer therapy.
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