The author thanks Graphic Era (Deemed to be University), Dehradun, India. We would like to thank Paperpal (https://paperpal.com/), Cactus Communications Services Pte Ltd., Singapore, for their invaluable online assistance in refining the language and grammar of our manuscript.
Author contributions
RK: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. The author read and approved the submitted version.
Conflicts of interest
The author declares that there are no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Coque TM, Cantón R, Pérez-Cobas AE, Fernández-de-Bobadilla MD, Baquero F. Antimicrobial Resistance in the Global Health Network: Known Unknowns and Challenges for Efficient Responses in the 21st Century.Microorganisms. 2023;11:1050. [DOI] [PubMed] [PMC]
Kumar R, Adeyemi NO, Chattaraj S, Alloun W, Thamarsha AKANWMRK, Anđelković S, et al. Antimicrobial resistance in Salmonella: One Health perspective on global food safety challenges.Sci One Health. 2025;4:100117. [DOI] [PubMed] [PMC]
Salam MA, Al-Amin MY, Salam MT, Pawar JS, Akhter N, Rabaan AA, et al. Antimicrobial Resistance: A Growing Serious Threat for Global Public Health.Healthcare (Basel). 2023;11:1946. [DOI] [PubMed] [PMC]
Erdem Büyükkiraz M, Kesmen Z. Antimicrobial peptides (AMPs): A promising class of antimicrobial compounds.J Appl Microbiol. 2022;132:1573–96. [DOI] [PubMed]
Pirtskhalava M, Vishnepolsky B, Grigolava M, Managadze G. Physicochemical Features and Peculiarities of Interaction of AMP with the Membrane.Pharmaceuticals (Basel). 2021;14:471. [DOI] [PubMed] [PMC]
Klobucar K, Brown ED. New potentiators of ineffective antibiotics: Targeting the Gram-negative outer membrane to overcome intrinsic resistance.Curr Opin Chem Biol. 2022;66:102099. [DOI] [PubMed]
Tang Z, Ma Q, Chen X, Chen T, Ying Y, Xi X, et al. Recent Advances and Challenges in Nanodelivery Systems for Antimicrobial Peptides (AMPs).Antibiotics (Basel). 2021;10:990. [DOI] [PubMed] [PMC]
Pandidan S, Mechler A. Latest developments on the mechanism of action of membrane disrupting peptides.Biophys Rep. 2021;7:173–84. [DOI] [PubMed] [PMC]
Sarkar T, Chetia M, Chatterjee S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond.Front Chem. 2021;9:691532. [DOI] [PubMed] [PMC]
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides.Curr Med Chem. 2019;26:5924–46. [DOI] [PubMed]
Geitani R, Ayoub Moubareck C, Touqui L, Karam Sarkis D. Cationic antimicrobial peptides: alternatives and/or adjuvants to antibiotics active against methicillin-resistant Staphylococcus aureus and multidrug-resistant Pseudomonas aeruginosa.BMC Microbiol. 2019;19:54. [DOI] [PubMed] [PMC]
Patrulea V, Borchard G, Jordan O. An Update on Antimicrobial Peptides (AMPs) and Their Delivery Strategies for Wound Infections.Pharmaceutics. 2020;12:840. [DOI] [PubMed] [PMC]
Lahiri D, Nag M, Dutta B, Sarkar T, Pati S, Basu D, et al. Bacteriocin: A natural approach for food safety and food security.Front Bioeng Biotechnol. 2022;10:1005918. [DOI] [PubMed] [PMC]
Tolos Vasii AM, Moisa C, Dochia M, Popa C, Copolovici L, Copolovici DM. Anticancer Potential of Antimicrobial Peptides: Focus on Buforins.Polymers (Basel). 2024;16:728. [DOI] [PubMed] [PMC]
Zheng S, Tu Y, Li B, Qu G, Li A, Peng X, et al. Antimicrobial peptide biological activity, delivery systems and clinical translation status and challenges.J Transl Med. 2025;23:292. [DOI] [PubMed] [PMC]
Kosikowska P, Lesner A. Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015).Expert Opin Ther Pat. 2016;26:689–702. [DOI] [PubMed]
Vineeth Kumar TV, Sanil G. A Review of the Mechanism of Action of Amphibian Antimicrobial Peptides Focusing on Peptide—Membrane Interaction and Membrane Curvature.Curr Protein Pept Sci. 2017;18:1263–72. [DOI] [PubMed]
Mojsoska B, Jenssen H. Peptides and Peptidomimetics for Antimicrobial Drug Design.Pharmaceuticals (Basel). 2015;8:366–415. [DOI] [PubMed] [PMC]
Kumar R, Ali SA, Singh SK, Bhushan V, Mathur M, Jamwal S, et al. Antimicrobial Peptides in Farm Animals: An Updated Review on Its Diversity, Function, Modes of Action and Therapeutic Prospects.Vet Sci. 2020;7:206. [DOI] [PubMed] [PMC]
Abdel Monaim SAH, Somboro AM, El-Faham A, de la Torre BG, Albericio F. Bacteria Hunt Bacteria through an Intriguing Cyclic Peptide.ChemMedChem. 2019;14:24–51. [DOI] [PubMed]
Ledger EVK, Sabnis A, Edwards AM. Polymyxin and lipopeptide antibiotics: membrane-targeting drugs of last resort.Microbiology (Reading). 2022;168:001136. [DOI] [PubMed] [PMC]
Petkovic M, Mouritzen MV, Mojsoska B, Jenssen H. Immunomodulatory Properties of Host Defence Peptides in Skin Wound Healing.Biomolecules. 2021;11:952. [DOI] [PubMed] [PMC]
McMillan KAM, Coombs MRP. Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin.Molecules. 2020;25:5436. [DOI] [PubMed] [PMC]
Wojda I, Cytryńska M, Zdybicka-Barabas A, Kordaczuk J. Insect Defense Proteins and Peptides.Subcell Biochem. 2020;94:81–121. [DOI] [PubMed]
Nguyen TTM, Ha-Tran DM, Van Tran B, Hung SHW, Huang CC. Plant-Derived Antimicrobial Peptides: A Plant Defense Weapon against Biotic and Abiotic Stresses.Preprints 2023111458 [Preprint]. 2023 [cited 2025 Oct 8]. Available from: https://www.preprints.org/manuscript/202311.1458
Aljohani A, AL-HEJIN AM, SHORI AB. Bacteriocins as promising antimicrobial peptides, definition, classification, and their potential applications in cheeses.Food Sci Technol. 2023;43:e118021. [DOI]
Zeth K, Sancho-Vaello E. The Human Antimicrobial Peptides Dermcidin and LL-37 Show Novel Distinct Pathways in Membrane Interactions.Front Chem. 2017;5:86. [DOI] [PubMed] [PMC]
K R G, Balenahalli Narasingappa R, Vishnu Vyas G. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption.Heliyon. 2024;10:e38079. [DOI] [PubMed] [PMC]
Mihaylova-Garnizova R, Davidova S, Hodzhev Y, Satchanska G. Antimicrobial Peptides Derived from Bacteria: Classification, Sources, and Mechanism of Action against Multidrug-Resistant Bacteria.Int J Mol Sci. 2024;25:10788. [DOI] [PubMed] [PMC]
Bartels EJH, Dekker D, Amiche M. Dermaseptins, Multifunctional Antimicrobial Peptides: A Review of Their Pharmacology, Effectivity, Mechanism of Action, and Possible Future Directions.Front Pharmacol. 2019;10:1421. [DOI] [PubMed] [PMC]
Jabeen M, Biswas P, Islam MT, Paul R. Antiviral Peptides in Antimicrobial Surface Coatings—From Current Techniques to Potential Applications.Viruses. 2023;15:640. [DOI] [PubMed] [PMC]
El-Dirany R, Shahrour H, Dirany Z, Abdel-Sater F, Gonzalez-Gaitano G, Brandenburg K, et al. Activity of Anti-Microbial Peptides (AMPs) against Leishmania and Other Parasites: An Overview.Biomolecules. 2021;11:984. [DOI] [PubMed] [PMC]
Proaño-Bolaños C, Morán-Marcillo G, Espinosa de Los Monteros-Silva N, Bermúdez-Puga S, Salazar MA, Blasco-Zúñiga A, et al. Bioactivity of synthetic peptides from Ecuadorian frog skin secretions against Leishmania mexicana, Plasmodium falciparum, and Trypanosoma cruzi.Microbiol Spectr. 2024;12:e0333923. [DOI] [PubMed] [PMC]
Pandey P, Khan F, Khan MA, Kumar R, Upadhyay TK. An Updated Review Summarizing the Anticancer Efficacy of Melittin from Bee Venom in Several Models of Human Cancers.Nutrients. 2023;15:3111. [DOI] [PubMed] [PMC]
Benfield AH, Henriques ST. Mode-of-Action of Antimicrobial Peptides: Membrane Disruption vs. Intracellular Mechanisms.Front Med Technol. 2020;2:610997. [DOI] [PubMed] [PMC]
Has C, Das SL. The Functionality of Membrane-Inserting Proteins and Peptides: Curvature Sensing, Generation, and Pore Formation.J Membr Biol. 2023;256:343–72. [DOI] [PubMed]
Sharma P, Sharma S, Joshi S, Barman P, Bhatt A, Maan M, et al. Design, characterization and structure-function analysis of novel antimicrobial peptides based on the N-terminal CATH-2 fragment.Sci Rep. 2022;12:12058. [DOI] [PubMed] [PMC]
Huang X, Li G. Antimicrobial Peptides and Cell-Penetrating Peptides: Non-Antibiotic Membrane-Targeting Strategies Against Bacterial Infections.Infect Drug Resist. 2023;16:1203–19. [DOI] [PubMed] [PMC]
Shai Y. Mode of action of membrane active antimicrobial peptides.Biopolymers. 2002;66:236–48. [DOI] [PubMed]
Kondrashov OV, Akimov SA. The Possibility of Pore Formation in Lipid Membranes by Several Molecules of Amphipathic Peptides.Biochem (Mosc) Suppl A: Membr Cell Biol. 2022;16:338–50. [DOI]
Kulma M, Anderluh G. Beyond pore formation: reorganization of the plasma membrane induced by pore-forming proteins.Cell Mol Life Sci. 2021;78:6229–49. [DOI] [PubMed] [PMC]
Alzain M, Daghistani H, Shamrani T, Almoghrabi Y, Daghistani Y, Alharbi OS, et al. Antimicrobial Peptides: Mechanisms, Applications, and Therapeutic Potential.Infect Drug Resist. 2025;18:4385–426. [DOI] [PubMed] [PMC]
Zhang T, Jin Q, Ji J. Antimicrobial Peptides and Their Mimetics: Promising Candidates of Next-Generation Therapeutic Agents Combating Multidrug-Resistant Bacteria.Adv Biol (Weinh). 2025;9:e2400461. [DOI] [PubMed]
Alfei S, Schito AM. Positively Charged Polymers as Promising Devices against Multidrug Resistant Gram-Negative Bacteria: A Review.Polymers (Basel). 2020;12:1195. [DOI] [PubMed] [PMC]
Yang L, Harroun TA, Weiss TM, Ding L, Huang HW. Barrel-stave model or toroidal model?Biophys J. 2001;81:1475–85. [DOI] [PubMed] [PMC]
Rossetti P, Trollmann MFW, Wichmann C, Gutsmann T, Eggeling C, Böckmann RA. From Membrane Composition to Antimicrobial Strategies: Experimental and Computational Approaches to AMP Design and Selectivity.Small. 2025;e2411476. [DOI] [PubMed]
Ma X, Chen Z, Long M. Mechanisms of Action, Biological Characteristics, and Future Prospects: A Review of Antimicrobial Peptides (A Review).Appl Biochem Microbiol. 2024;60:1044–60. [DOI]
Paterson DJ, Tassieri M, Reboud J, Wilson R, Cooper JM. Lipid topology and electrostatic interactions underpin lytic activity of linear cationic antimicrobial peptides in membranes.Proc Natl Acad Sci U S A. 2017;114:E8324–32. [DOI] [PubMed] [PMC]
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides.Cells. 2023;12:1700. [DOI] [PubMed] [PMC]
Yap PSX, Yusoff K, Lim SHE, Chong CM, Lai KS. Membrane Disruption Properties of Essential Oils—A Double-Edged Sword?Processes. 2021;9:595. [DOI]
Seyfi R, Kahaki FA, Ebrahimi T, Montazersaheb S, Eyvazi S, Babaeipour V, et al. Antimicrobial Peptides (AMPs): Roles, Functions and Mechanism of Action.Int J Pept Res Thers. 2020;26:1451–63. [DOI]
Travkova OG, Moehwald H, Brezesinski G. The interaction of antimicrobial peptides with membranes.Adv Colloid Interface Sci. 2017;247:521–32. [DOI] [PubMed]
Chan DI, Prenner EJ, Vogel HJ. Tryptophan- and arginine-rich antimicrobial peptides: structures and mechanisms of action.Biochim Biophys Acta. 2006;1758:1184–202. [DOI] [PubMed]
Luo Y, Song Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities.Int J Mol Sci. 2021;22:11401. [DOI] [PubMed] [PMC]
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, et al. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections.Med Res Rev. 2022;42:1377–422. [DOI] [PubMed]
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions.Chem Soc Rev. 2021;50:7820–80. [DOI] [PubMed] [PMC]
Khemaissa S, Walrant A, Sagan S. Tryptophan, more than just an interfacial amino acid in the membrane activity of cationic cell-penetrating and antimicrobial peptides.Q Rev Biophys. 2022;55:e10. [DOI] [PubMed]
Hsu CH, Chen C, Jou ML, Lee AYL, Lin YC, Yu YP, et al. Structural and DNA-binding studies on the bovine antimicrobial peptide, indolicidin: evidence for multiple conformations involved in binding to membranes and DNA.Nucleic Acids Res. 2005;33:4053–64. [DOI] [PubMed] [PMC]
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, et al. Chemically Modified Platforms for Better RNA Therapeutics.Chem Rev. 2024;124:929–1033. [DOI] [PubMed]
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions.Adv Mater. 2023;35:e2208309. [DOI] [PubMed]
Hassan M, Flanagan TW, Kharouf N, Bertsch C, Mancino D, Haikel Y. Antimicrobial Proteins: Structure, Molecular Action, and Therapeutic Potential.Pharmaceutics. 2022;15:72. [DOI] [PubMed] [PMC]
Arenz S, Wilson DN. Blast from the Past: Reassessing Forgotten Translation Inhibitors, Antibiotic Selectivity, and Resistance Mechanisms to Aid Drug Development.Mol Cell. 2016;61:3–14. [DOI] [PubMed]
Hurtado-Rios JJ, Carrasco-Navarro U, Almanza-Pérez JC, Ponce-Alquicira E. Ribosomes: The New Role of Ribosomal Proteins as Natural Antimicrobials.Int J Mol Sci. 2022;23:9123. [DOI] [PubMed] [PMC]
Münch D, Sahl HG. Structural variations of the cell wall precursor lipid II in Gram-positive bacteria - Impact on binding and efficacy of antimicrobial peptides.Biochim Biophys Acta. 2015;1848:3062–71. [DOI] [PubMed]
Nikolic P, Mudgil P. The Cell Wall, Cell Membrane and Virulence Factors of Staphylococcus aureus and Their Role in Antibiotic Resistance.Microorganisms. 2023;11:259. [DOI] [PubMed] [PMC]
Scherer K, Wiedemann I, Ciobanasu C, Sahl HG, Kubitscheck U. Aggregates of nisin with various bactoprenol-containing cell wall precursors differ in size and membrane permeation capacity.Biochim Biophys Acta. 2013;1828:2628–36. [DOI] [PubMed]
Matos GM, Garcia-Teodoro B, Martins CP, Schmitt P, Guzmán F, de Freitas ACO, et al. Antimicrobial Spectrum of Activity and Mechanism of Action of Linear Alpha-Helical Peptides Inspired by Shrimp Anti-Lipopolysaccharide Factors.Biomolecules. 2023;13:150. [DOI] [PubMed] [PMC]
Hollmann A, Martínez M, Noguera ME, Augusto MT, Disalvo A, Santos NC, et al. Role of amphipathicity and hydrophobicity in the balance between hemolysis and peptide-membrane interactions of three related antimicrobial peptides.Colloids Surf B Biointerfaces. 2016;141:528–36. [DOI] [PubMed]
Memariani H, Memariani M. Antibiofilm properties of cathelicidin LL-37: an in-depth review.World J Microbiol Biotechnol. 2023;39:99. [DOI] [PubMed]
Girdhar M, Sen A, Nigam A, Oswalia J, Kumar S, Gupta R. Antimicrobial peptide-based strategies to overcome antimicrobial resistance.Arch Microbiol. 2024;206:411. [DOI] [PubMed]
Ahmed TAE, Hammami R. Recent insights into structure-function relationships of antimicrobial peptides.J Food Biochem. 2019;43:e12546. [DOI] [PubMed]
Guha S, Ghimire J, Wu E, Wimley WC. Mechanistic Landscape of Membrane-Permeabilizing Peptides.Chem Rev. 2019;119:6040–85. [DOI] [PubMed] [PMC]
Falanga A, Nigro E, De Biasi MG, Daniele A, Morelli G, Galdiero S, et al. Cyclic Peptides as Novel Therapeutic Microbicides: Engineering of Human Defensin Mimetics.Molecules. 2017;22:1217. [DOI] [PubMed] [PMC]
Kalimuthu K, Srinivasan NR, Govindarajan G. Antibiotic-Peptide Conjugation Against Multi-drug Resistant Pathogens: A Comprehensive Review for Therapeutics and Drug Delivery Strategies.Int J Pept Res Ther. 2023;29:91. [DOI]
Decker AP, Mechesso AF, Wang G. Expanding the Landscape of Amino Acid-Rich Antimicrobial Peptides: Definition, Deployment in Nature, Implications for Peptide Design and Therapeutic Potential.Int J Mol Sci. 2022;23:12874. [DOI] [PubMed] [PMC]
Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, et al. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets.Int J Mol Sci. 2019;20:4877. [DOI] [PubMed] [PMC]
Yang J, Zhang J, Feng Z, Ma Y. The Role and Mechanisms of Antimicrobial Peptides in Overcoming Multidrug-Resistant Bacteria.Molecules. 2024;30:128. [DOI] [PubMed] [PMC]
Dwivedi R, Aggarwal P, Bhavesh NS, Kaur KJ. Design of therapeutically improved analogue of the antimicrobial peptide, indolicidin, using a glycosylation strategy.Amino Acids. 2019;51:1443–60. [DOI] [PubMed]
Balleza D, Alessandrini A, Beltrán García MJ. Role of Lipid Composition, Physicochemical Interactions, and Membrane Mechanics in the Molecular Actions of Microbial Cyclic Lipopeptides.J Membr Biol. 2019;252:131–57. [DOI] [PubMed]
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance—the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence.FEMS Microbiol Rev. 2022;46:fuac025. [DOI] [PubMed] [PMC]
Solanki SS, Singh P, Kashyap P, Sansi MS, Ali SA. Promising role of defensins peptides as therapeutics to combat against viral infection.Microb Pathog. 2021;155:104930. [DOI] [PubMed] [PMC]
Bechinger B, Gorr SU. Antimicrobial Peptides: Mechanisms of Action and Resistance.J Dent Res. 2017;96:254–60. [DOI] [PubMed] [PMC]
Frimodt-Møller J, Campion C, Nielsen PE, Løbner-Olesen A. Translocation of non-lytic antimicrobial peptides and bacteria penetrating peptides across the inner membrane of the bacterial envelope.Curr Genet. 2022;68:83–90. [DOI] [PubMed] [PMC]
Adnan SB, Maarof M, Fauzi MB, Md Fadilah NI. Antimicrobial Peptides in Wound Healing and Skin Regeneration: Dual Roles in Immunity and Microbial Defense.Int J Mol Sci. 2025;26:5920. [DOI] [PubMed] [PMC]
Guryanova SV, Ovchinnikova TV. Immunomodulatory and Allergenic Properties of Antimicrobial Peptides.Int J Mol Sci. 2022;23:2499. [DOI] [PubMed] [PMC]
Zhang J, Liu Z, Zhou Z, Huang Z, Yang Y, Wu J, et al. HNP-1: From Structure to Application Thanks to Multifaceted Functions.Microorganisms. 2025;13:458. [DOI] [PubMed] [PMC]
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Human β-Defensin 2 and Its Postulated Role in Modulation of the Immune Response.Cells. 2021;10:2991. [DOI] [PubMed] [PMC]
Panteleev PV, Balandin SV, Ivanov VT, Ovchinnikova TV. A Therapeutic Potential of Animal β-hairpin Antimicrobial Peptides.Curr Med Chem. 2017;24:1724–46. [DOI] [PubMed]
Abd El-Baky N, Amara AAAF. Antimicrobials in Pharmaceutical and Medicinal Research.In: Natural Antimicrobial Therapeutic Peptides. Boca Raton: CRC Press; 2023. pp. 19–47.
Rizzetto G, De Simoni E, Molinelli E, Busignani C, Tagliati C, Gambini D, et al. Protegrin-1 and Analogues Against Acinetobacter baumannii: A Narrative Review.Pharmaceuticals (Basel). 2025;18:289. [DOI] [PubMed] [PMC]
Lenin KLD, Antony SP. In silico molecular and functional characterization of a dual function antimicrobial peptide, hepcidin (GIFT-Hep), isolated from genetically improved farmed tilapia (GIFT, Oreochromis niloticus).J Genet Eng Biotechnol. 2023;21:130. [DOI] [PubMed] [PMC]
Shin SY, Kang JH, Jang SY, Kim Y, Kim KL, Hahm KS. Effects of the hinge region of cecropin A(1–8)-magainin 2(1–12), a synthetic antimicrobial peptide, on liposomes, bacterial and tumor cells.Biochim Biophys Acta. 2000;1463:209–18. [DOI] [PubMed]
Hasan M, Moghal MMR, Saha SK, Yamazaki M. The role of membrane tension in the action of antimicrobial peptides and cell-penetrating peptides in biomembranes.Biophys Rev. 2019;11:431–48. [DOI] [PubMed] [PMC]
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential.Nat Rev Drug Discov. 2020;19:311–32. [DOI] [PubMed]
Volovik MV, Batishchev OV. Membrane Activity of Melittin and Magainin-I at Low Peptide-to-Lipid Ratio: Different Types of Pores and Translocation Mechanisms.Biomolecules. 2024;14:1118. [DOI] [PubMed] [PMC]
Chen Q, Cheng P, Ma C, Xi X, Wang L, Zhou M, et al. Evaluating the Bioactivity of a Novel Broad-Spectrum Antimicrobial Peptide Brevinin-1GHa from the Frog Skin Secretion of Hylarana guentheri and Its Analogues.Toxins (Basel). 2018;10:413. [DOI] [PubMed] [PMC]
Chen D, Zhou X, Chen X, Huang L, Xi X, Ma C, et al. Evaluating the Bioactivity of a Novel Antimicrobial and Anticancer Peptide, Dermaseptin-PS4(Der-PS4), from the Skin Secretion of Phyllomedusa sauvagii.Molecules. 2019;24:2974. [DOI] [PubMed] [PMC]
D’Andrea LD, Romanelli A. Temporins: Multifunctional Peptides from Frog Skin.Int J Mol Sci. 2023;24:5426. [DOI] [PubMed] [PMC]
Chen X, Liu S, Fang J, Zheng S, Wang Z, Jiao Y, et al. Peptides Isolated from Amphibian Skin Secretions with Emphasis on Antimicrobial Peptides.Toxins (Basel). 2022;14:722. [DOI] [PubMed] [PMC]
Xiao S, Tian M, Liao H, Xie J, Chai J, Li J, et al. The first Ranatuerin antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo.Life Sci. 2025;363:123375. [DOI] [PubMed]
Zhou L, Meng G, Zhu L, Ma L, Chen K. Insect Antimicrobial Peptides as Guardians of Immunity and Beyond: A Review.Int J Mol Sci. 2024;25:3835. [DOI] [PubMed] [PMC]
Brady D, Grapputo A, Romoli O, Sandrelli F. Insect Cecropins, Antimicrobial Peptides with Potential Therapeutic Applications.Int J Mol Sci. 2019;20:5862. [DOI] [PubMed] [PMC]
Molina-Hernandez JB, Aceto A, Bucciarelli T, Paludi D, Valbonetti L, Zilli K, et al. The membrane depolarization and increase intracellular calcium level produced by silver nanoclusters are responsible for bacterial death.Sci Rep. 2021;11:21557. [DOI] [PubMed] [PMC]
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review.Microorganisms. 2024;12:1259. [DOI] [PubMed] [PMC]
Stączek S, Cytryńska M, Zdybicka-Barabas A. Unraveling the Role of Antimicrobial Peptides in Insects.Int J Mol Sci. 2023;24:5753. [DOI] [PubMed] [PMC]
Wang J, Ma K, Ruan M, Wang Y, Li Y, Fu YV, et al. A novel cecropin B-derived peptide with antibacterial and potential anti-inflammatory properties.PeerJ. 2018;6:e5369. [DOI] [PubMed] [PMC]
Koehbach J. Structure-Activity Relationships of Insect Defensins.Front Chem. 2017;5:45. [DOI] [PubMed] [PMC]
Dutta A, Das M. Evolution of Antimicrobial Peptides. In: Baindara P, Mandal SM, editors. Antimicrobial Peptides from Silkworm and Their Therapeutic Application. Cham: Springer Cham; 2024. pp. 275–303.
Dinata R, Arati C, Manikandan B, Abinash G, Pori B, Saeed-Ahmed L, et al. Evolution of Antimicrobial Peptides. In: Baindara P, Mandal SM, editors. Insect Antimicrobial Peptides in Host Defense and Their Therapeutic Application. Cham: Springer Cham; 2024. pp. 103–35.
Gao B, Zhu S. The drosomycin multigene family: three-disulfide variants from Drosophila takahashii possess antibacterial activity.Sci Rep. 2016;6:32175. [DOI] [PubMed] [PMC]
Dhanjal DS, Chopra C, Bhardwaj S, Sharma P, Nepovimova E, Singh R, et al. Antimicrobial Peptides. In: Ajesh K, Sreejith K, editors. Insect peptides with antimicrobial effects. Oxford: Academic Press; 2023. pp. 117–38.
Saberi Riseh R, Fathi F, Vatankhah M, Kennedy JF. Thionins: potential use in plant defense against pathogens.Plant Mol Biol. 2025;115:77. [DOI] [PubMed]
Zou F, Tan C, Shinali TS, Zhang B, Zhang L, Han Z, et al. Plant antimicrobial peptides: a comprehensive review of their classification, production, mode of action, functions, applications, and challenges.Food Funct. 2023;14:5492–515. [DOI] [PubMed]
Farvardin A, González-Hernández AI, Llorens E, Camañes G, Scalschi L, Vicedo B. The Dual Role of Antimicrobial Proteins and Peptides: Exploring Their Direct Impact and Plant Defense-Enhancing Abilities.Plants (Basel). 2024;13:2059. [DOI] [PubMed] [PMC]
Pandey R, Srivastava S. Integrative Approaches to Biotechnology. In: Bhargava A, Srivastava S, editors. Plant Thionins: The Green Antimicrobial Agents. Boca Raton: CRC Press; 2023. pp. 93–110.
Azmi S, Hussain MK. Analysis of structures, functions, and transgenicity of phytopeptides defensin and thionin: a review.Beni-Suef Univ J Basic Appl Sci. 2021;10:5. [DOI]
Dos Santos-Silva CA, Zupin L, Oliveira-Lima M, Vilela LMB, Bezerra-Neto JP, Ferreira-Neto JR, et al. Plant Antimicrobial Peptides: State of the Art, In Silico Prediction and Perspectives in the Omics Era.Bioinform Biol Insights. 2020;14:1177932220952739. [DOI] [PubMed] [PMC]
Attah FA, Lawal BA, Yusuf AB, Adedeji OJ, Folahan JT, Akhigbe KO, et al. Nutritional and Pharmaceutical Applications of Under-Explored Knottin Peptide-Rich Phytomedicines.Plants (Basel). 2022;11:3271. [DOI] [PubMed] [PMC]
Iqbal A, Khan RS. Snakins: antimicrobial potential and prospects of genetic engineering for enhanced disease resistance in plants.Mol Biol Rep. 2023;50:8683–90. [DOI] [PubMed]
Simons A, Alhanout K, Duval RE. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria.Microorganisms. 2020;8:639. [DOI] [PubMed] [PMC]
Kumar N, Bhagwat P, Singh S, Pillai S. A review on the diversity of antimicrobial peptides and genome mining strategies for their prediction.Biochimie. 2024;227:99–115. [DOI] [PubMed]
Panina I, Krylov N, Nolde D, Efremov R, Chugunov A. Environmental and dynamic effects explain how nisin captures membrane-bound lipid II.Sci Rep. 2020;10:8821. [DOI] [PubMed] [PMC]
Dougherty PG, Sahni A, Pei D. Understanding Cell Penetration of Cyclic Peptides.Chem Rev. 2019;119:10241–87. [DOI] [PubMed] [PMC]
Mishra SK, Akter T, Urmi UL, Enninful G, Sara M, Shen J, et al. Harnessing Non-Antibiotic Strategies to Counter Multidrug-Resistant Clinical Pathogens with Special Reference to Antimicrobial Peptides and Their Coatings.Antibiotics (Basel). 2025;14:57. [DOI] [PubMed] [PMC]
Bahrami S, Andishmand H, Pilevar Z, Hashempour-Baltork F, Torbati M, Dadgarnejad M, et al. Innovative perspectives on bacteriocins: advances in classification, synthesis, mode of action, and food industry applications.J Appl Microbiol. 2024;135:lxae274. [DOI] [PubMed]
Bierbaum G, Sahl HG. Lantibiotics: mode of action, biosynthesis and bioengineering.Curr Pharm Biotechnol. 2009;10:2–18. [DOI] [PubMed]
Telhig S, Ben Said L, Zirah S, Fliss I, Rebuffat S. Bacteriocins to Thwart Bacterial Resistance in Gram Negative Bacteria.Front Microbiol. 2020;11:586433. [DOI] [PubMed] [PMC]
Zhang J, Yang X, Qiu J, Zhang W, Yang J, Han J, et al. The Characterization, Biological Activities, and Potential Applications of the Antimicrobial Peptides Derived from Bacillus spp.: A Comprehensive Review.Probiotics Antimicrob Proteins. 2025;17:1624–47. [DOI] [PubMed]
Ayoub Moubareck C. Polymyxins and Bacterial Membranes: A Review of Antibacterial Activity and Mechanisms of Resistance.Membranes (Basel). 2020;10:181. [DOI] [PubMed] [PMC]
Kobras CM, Piepenbreier H, Emenegger J, Sim A, Fritz G, Gebhard S. BceAB-Type Antibiotic Resistance Transporters Appear To Act by Target Protection of Cell Wall Synthesis.Antimicrob Agents Chemother. 2020;64:e02241–19. [DOI] [PubMed] [PMC]
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens.Pathogens. 2021;10:1310. [DOI] [PubMed] [PMC]
Elshobary ME, Badawy NK, Ashraf Y, Zatioun AA, Masriya HH, Ammar MM, et al. Combating Antibiotic Resistance: Mechanisms, Multidrug-Resistant Pathogens, and Novel Therapeutic Approaches: An Updated Review.Pharmaceuticals (Basel). 2025;18:402. [DOI] [PubMed] [PMC]
Teixeira MC, Carbone C, Sousa MC, Espina M, Garcia ML, Sanchez-Lopez E, et al. Nanomedicines for the Delivery of Antimicrobial Peptides (AMPs).Nanomaterials (Basel). 2020;10:560. [DOI] [PubMed] [PMC]
Chong KJ, Feng H, Letchumanan V, Arip M, Fatokun O, Mochamad L, et al. Tackling Microbial Resistance and Emerging Pathogens with Next-Generation Antibiotics.Prog Microbes Mol Biol. 2024;7:1. [DOI]
Annunziato G. Strategies to Overcome Antimicrobial Resistance (AMR) Making Use of Non-Essential Target Inhibitors: A Review.Int J Mol Sci. 2019;20:5844. [DOI] [PubMed] [PMC]
Lima SMF, Freire MS, Gomes ALO, Cantuária APC, Dutra FRP, Magalhães BS, et al. Antimicrobial and immunomodulatory activity of host defense peptides, clavanins and LL-37, in vitro: An endodontic perspective.Peptides. 2017;95:16–24. [DOI] [PubMed]
Biswas D, Ambalavanan P, Ravins M, Anand A, Sharma A, Lim KXZ, et al. LL-37-mediated activation of host receptors is critical for defense against group A streptococcal infection.Cell Rep. 2021;34:108766. [DOI] [PubMed]
Iosageanu A, Stefan LM, Craciunescu O, Cimpean A. Anti-Inflammatory and Wound Healing Properties of Different Honey Varieties from Romania and Correlations to Their Composition.Life (Basel). 2024;14:1187. [DOI] [PubMed] [PMC]
Firdous SO, Sagor MMH, Arafat MT. Advances in Transdermal Delivery of Antimicrobial Peptides for Wound Management: Biomaterial-Based Approaches and Future Perspectives.ACS Appl Bio Mater. 2024;7:4923–43. [DOI] [PubMed]
Dang GP, Gu JT, Song JH, Li ZT, Hao JX, Wan YZ, et al. Multifunctional polyurethane materials in regenerative medicine and tissue engineering.Cell Rep Phys Sci. 2024;5:102053. [DOI]
Caldara M, Belgiovine C, Secchi E, Rusconi R. Environmental, Microbiological, and Immunological Features of Bacterial Biofilms Associated with Implanted Medical Devices.Clin Microbiol Rev. 2022;35:e0022120. [DOI] [PubMed] [PMC]
Tripathi AK, Singh J, Trivedi R, Ranade P. Shaping the Future of Antimicrobial Therapy: Harnessing the Power of Antimicrobial Peptides in Biomedical Applications.J Funct Biomater. 2023;14:539. [DOI] [PubMed] [PMC]
Sani MA, Separovic F. How Membrane-Active Peptides Get into Lipid Membranes.Acc Chem Res. 2016;49:1130–8. [DOI] [PubMed]
Drayton M, Deisinger JP, Ludwig KC, Raheem N, Müller A, Schneider T, et al. Host Defense Peptides: Dual Antimicrobial and Immunomodulatory Action.Int J Mol Sci. 2021;22:11172. [DOI] [PubMed] [PMC]
Costa F, Teixeira C, Gomes P, Martins MCL. Clinical Application of AMPs.Adv Exp Med Biol. 2019;1117:281–98. [DOI] [PubMed]
Asghar MU, Ain NU, Tariq M, Zaidi AH. Antimicrobial Peptides as Next-Generation Disinfectants: Tackling Biocide and Antimicrobial Resistance in Hospital Hygiene—A Narrative Review.Probiotics Antimicrob Proteins. 2025;[Epub ahead of print]. [DOI] [PubMed]
Fernandes A, Jobby R. Bacteriocins from lactic acid bacteria and their potential clinical applications.Appl Biochem Biotechnol. 2022;194:4377–99. [DOI] [PubMed]
Sheridan MS, Pandey P, Hansmann UHE. In Bacterial Membranes Lipid II Changes the Stability of Pores Formed by the Antimicrobial Peptide Nisin.J Phys Chem B. 2024;128:4741–50. [DOI] [PubMed] [PMC]
Chakraborty S, Dutta H. Use of nature-derived antimicrobial substances as safe disinfectants and preservatives in food processing industries: A review.J Food Process Preserv. 2021;46:e15999. [DOI]
Andaluz-Mejía L, Ruiz-De Anda D, Ozuna C. Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review.Processes. 2022;10:995. [DOI]
Mehraj I, Hamid A, Gani U, Iralu N, Manzoor T, Saleem Bhat S. Combating Antimicrobial Resistance by Employing Antimicrobial Peptides: Immunomodulators and Therapeutic Agents against Infectious Diseases.ACS Appl Bio Mater. 2024;7:2023–35. [DOI] [PubMed]
Yenkoidiok-Douti L, Jewell CM. Integrating Biomaterials and Immunology to Improve Vaccines Against Infectious Diseases.ACS Biomater Sci Eng. 2020;6:759–78. [DOI] [PubMed] [PMC]
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides’ immune modulation role in intracellular bacterial infection.Front Immunol. 2023;14:1119574. [DOI] [PubMed] [PMC]
Kumar R, Madan A, Mitra D, Chandravanshi JS. Stem Cell Therapeutics. In: Madan A, Ashique S, Arora D, Satapathy MK, editors. Ethical Considerations in Stem Cell Therapeutics: Striking a Balance. Beverly: Scrivener Publishing LLC; 2025. pp. 739–55.
Kamboj N, Kumar R, Mitra D. Stem Cell Therapeutics. In: Madan A, Ashique S, Arora D, Satapathy MK, editors. Immunomodulation in Autoimmune Disorders: Harnessing the Power of Stem Cell. Beverly: Scrivener Publishing LLC; 2025. pp. 409–62.
Yan Y, Yao D, Li X. Immunological Mechanism and Clinical Application of PAMP Adjuvants.Recent Pat Anticancer Drug Discov. 2021;16:30–43. [DOI] [PubMed]
Ren H, Jia W, Xie Y, Yu M, Chen Y. Adjuvant physiochemistry and advanced nanotechnology for vaccine development.Chem Soc Rev. 2023;52:5172–254. [DOI] [PubMed]
Tornesello AL, Borrelli A, Buonaguro L, Buonaguro FM, Tornesello ML. Antimicrobial Peptides as Anticancer Agents: Functional Properties and Biological Activities.Molecules. 2020;25:2850. [DOI] [PubMed] [PMC]
Baxter AA, Lay FT, Poon IKH, Kvansakul M, Hulett MD. Tumor cell membrane-targeting cationic antimicrobial peptides: novel insights into mechanisms of action and therapeutic prospects.Cell Mol Life Sci. 2017;74:3809–25. [DOI] [PubMed] [PMC]
Parchebafi A, Tamanaee F, Ehteram H, Ahmad E, Nikzad H, Haddad Kashani H. The dual interaction of antimicrobial peptides on bacteria and cancer cells; mechanism of action and therapeutic strategies of nanostructures.Microb Cell Fact. 2022;21:118. [DOI] [PubMed] [PMC]
Mahaki H, Saeed Modaghegh MH, Nasr Isfahani Z, Amir Daddost R, Molaei P, Ahmadyousefi Y, et al. The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review.Int J Pept Res Ther. 2021;27:2527–42. [DOI]
Zare-Zardini H, Saberian E, Jenča A, Ghanipour-Meybodi R, Jenča A, Petrášová A, et al. From defense to offense: antimicrobial peptides as promising therapeutics for cancer.Front Oncol. 2024;14:1463088. [DOI] [PubMed] [PMC]
Mueller AL, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, et al. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment.Biomedicines. 2022;10:832. [DOI] [PubMed] [PMC]
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as Therapeutics for Viral Infections.Viruses. 2019;11:704. [DOI] [PubMed] [PMC]
Pahar B, Madonna S, Das A, Albanesi C, Girolomoni G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections.Vaccines (Basel). 2020;8:517. [DOI] [PubMed] [PMC]
Bahar A, Porbaran M, Khazaei M, Tahmasebi H. Antimicrobial peptides for anticancer and antiviral therapy: last promising update.Discov Oncol. 2025;16:1991. [DOI] [PubMed] [PMC]
da Cunha NB, Cobacho NB, Viana JFC, Lima LA, Sampaio KBO, Dohms SSM, et al. The next generation of antimicrobial peptides (AMPs) as molecular therapeutic tools for the treatment of diseases with social and economic impacts.Drug Discov Today. 2017;22:234–48. [DOI] [PubMed] [PMC]
Duong L, Gross SP, Siryaporn A. Developing Antimicrobial Synergy With AMPs.Front Med Technol. 2021;3:640981. [DOI] [PubMed] [PMC]
Barreto C, Cardoso-Jaime V, Dimopoulos G. A novel broad-spectrum antibacterial and anti-malarial Anopheles gambiae Cecropin promotes microbial clearance during pupation.PLoS Pathog. 2024;20:e1012652. [DOI] [PubMed] [PMC]
Hagemann CL, Macedo AJ, Tasca T. Therapeutic potential of antimicrobial peptides against pathogenic protozoa.Parasitol Res. 2024;123:122. [DOI] [PubMed]
Madhavan M, Sumodan PK, Dhanya CR, Mary AS, Mustafa S. Natural Product Based Drug Discovery Against Human Parasites. In: Singh A, Rathi B, Verma AK, Singh IK, editors. Antimicrobial Peptides (AMPs): Current State and Future Prospects for the Treatment of Human Parasitic Diseases. Singapore: Springer Singapore; 2023. pp. 203–28.
Rojas-Pirela M, Kemmerling U, Quiñones W, Michels PAM, Rojas V. Antimicrobial Peptides (AMPs): Potential Therapeutic Strategy against Trypanosomiases?Biomolecules. 2023;13:599. [DOI] [PubMed] [PMC]
Zolin GVS, Fonseca FHd, Zambom CR, Garrido SS. Histatin 5 Metallopeptides and Their Potential against Candida albicans Pathogenicity and Drug Resistance.Biomolecules. 2021;11:1209. [DOI] [PubMed] [PMC]
Ceron MCM, Vitale RG, Giudicessi SL. Recent Discoveries of Antifungal Activity in Plant Antimicrobial Peptides.Int J Pept Res Ther. 2024;31:4. [DOI]
Schneider T, Kruse T, Wimmer R, Wiedemann I, Sass V, Pag U, et al. Plectasin, a fungal defensin, targets the bacterial cell wall precursor Lipid II.Science. 2010;328:1168–72. [DOI] [PubMed]
Shaban S, Patel M, Ahmad A. Fungicidal activity of human antimicrobial peptides and their synergistic interaction with common antifungals against multidrug-resistant Candida auris.Int Microbiol. 2023;26:165–77. [DOI] [PubMed]
Bilagi S, Masareddy R, Patil AS, Gaude Y. Host Immune Modulation: A Strategy to Enhance the Efficacy of Antifungal Therapy.IJSAT-Int J Sci Technol. 2025;16:1–14. [DOI]
Hemshekhar M, Choi KG, Mookherjee N. Host Defense Peptide LL-37-Mediated Chemoattractant Properties, but Not Anti-Inflammatory Cytokine IL-1RA Production, Is Selectively Controlled by Cdc42 Rho GTPase via G Protein-Coupled Receptors and JNK Mitogen-Activated Protein Kinase.Front Immunol. 2018;9:1871. [DOI] [PubMed] [PMC]
Conceição-Silva F, Reis CSM, De Luca PM, Leite-Silva J, Santiago MA, Morrot A, et al. The Immune System Throws Its Traps: Cells and Their Extracellular Traps in Disease and Protection.Cells. 2021;10:1891. [DOI] [PubMed] [PMC]
Akbari-Lasboo S, Ebrahimian-Hosseinabadi M, Zare-Zardini H. Antimicrobial Peptides (AMPs): A Breakthrough Approach for Wound Healing and Infection Control.Int J Pept Res Ther. 2025;31:89. [DOI]
Modarresi Chahardehi A, Barati M, Navaderi M, Velashjerdi Z, Zare I, Mostafavi E. Antibacterial and Antiviral Functional Material. In: Deshmukh K, Hussain CM, editors. Antibacterial and Antiviral Functional Materials: Design Strategies, Classifications, Mechanisms, Advantages, Challenges, and Future Perspectives. Washington, D.C.: ACS Publications; 2023. pp. 1–32.
Pei H, Bao K, Han T, Cao X. Comprehensive insights into microbial-derived antimicrobial peptides (AMPs): classification, mechanisms, applications, and purification strategies.Crit Rev Biotechnol. 2025;45:1652–79. [DOI] [PubMed]
Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms.Int J Mol Sci. 2022;23:545. [DOI] [PubMed] [PMC]
Mylonakis E, Podsiadlowski L, Muhammed M, Vilcinskas A. Diversity, evolution and medical applications of insect antimicrobial peptides.Philos Trans R Soc Lond B Biol Sci. 2016;371:20150290. [DOI] [PubMed] [PMC]
Cardoso P, Glossop H, Meikle TG, Aburto-Medina A, Conn CE, Sarojini V, et al. Molecular engineering of antimicrobial peptides: microbial targets, peptide motifs and translation opportunities.Biophys Rev. 2021;13:35–69. [DOI] [PubMed] [PMC]
Haidari H, Melguizo-Rodríguez L, Cowin AJ, Kopecki Z. Therapeutic potential of antimicrobial peptides for treatment of wound infection.Am J Physiol Cell Physiol. 2023;324:C29–38. [DOI] [PubMed]
Zhong C, Zhang L, Yu L, Huang J, Huang S, Yao Y. A Review for Antimicrobial Peptides with Anticancer Properties: Re-purposing of Potential Anticancer Agents.BIO Integr. 2021;1:156–67. [DOI]
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells.Cancers (Basel). 2024;16:2478. [DOI] [PubMed] [PMC]
Miao F, Li Y, Tai Z, Zhang Y, Gao Y, Hu M, et al. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing.Macromol Biosci. 2021;21:e2100103. [DOI] [PubMed]
Lee MF, Poh CL. Strategies to improve the physicochemical properties of peptide-based drugs.Pharm Res. 2023;40:617–32. [DOI] [PubMed]
Musin K, Asyanova E. How Machine Learning Helps in Combating Antimicrobial Resistance: A Review of AMP Analysis and Generation Methods.Int J Pept Res Ther. 2025;31:1–14. [DOI]
Niazi SK, Magoola M. Advances in Escherichia coli-based therapeutic protein expression: Mammalian conversion, continuous manufacturing, and cell-free production.Biologics. 2023;3:380–401. [DOI]
Ciardiello F, Arnold D, Casali PG, Cervantes A, Douillard JY, Eggermont A, et al. Delivering precision medicine in oncology today and in future-the promise and challenges of personalised cancer medicine: a position paper by the European Society for Medical Oncology (ESMO).Ann Oncol. 2014;25:1673–8. [DOI] [PubMed]
Alamri AM, Assiri AA, Khan B, Khan NU. Next-generation oncology: integrative therapeutic frontiers at the crossroads of precision genomics, immuno-engineering, and tumor microenvironment modulation.Med Oncol. 2025;42:482. [DOI] [PubMed]