The authors acknowledge Dr. Chandru Subramani, who provided valuable insights during the manuscript preparation.
Author contributions
RD and GKC: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. N Priyadarshi and MB: Validation, Writing—review & editing. N Parmar: Writing—review & editing. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Wang Y, Guo D, He J, Song L, Chen H, Zhang Z, et al. Inhibition of fatty acid synthesis arrests colorectal neoplasm growth and metastasis: Anti-cancer therapeutical effects of natural cyclopeptide RA-XII.Biochem Biophys Res Commun. 2019;512:819–24. [DOI] [PubMed]
Kang HK, Seo CH, Luchian T, Park Y. Pse-T2, an Antimicrobial Peptide with High-Level, Broad-Spectrum Antimicrobial Potency and Skin Biocompatibility against Multidrug-Resistant Pseudomonas aeruginosa Infection.Antimicrob Agents Chemother. 2018;62:e01493–18. [DOI] [PubMed] [PMC]
Lei J, Sun L, Huang S, Zhu C, Li P, He J, et al. The antimicrobial peptides and their potential clinical applications.Am J Transl Res. 2019;11:3919–31. [PubMed] [PMC]
Shi G, Kang X, Dong F, Liu Y, Zhu N, Hu Y, et al. DRAMP 3.0: an enhanced comprehensive data repository of antimicrobial peptides.Nucleic Acids Res. 2022;50:D488–96. [DOI] [PubMed] [PMC]
Mattick ATR, Hirsch A, Berridge NJ. Further observations on an inhibitory substance (nisin) from lactic streptococci.Lancet. 1947;2:5–8. [DOI] [PubMed]
Wang R, Yu S, Huang Y, Liu Y. Synthesis, high yield strategy and application of nisin: A review.Int J Food Sci Technol. 2023;58:2829–41. [DOI]
Arumugam P, Arunachalam K, Chunlei S, Davoodbasha M. In vitro studies on a natural lantibiotic: paenibacillin.In: Lantibiotics as Alternative Therapeutics. New York: Elsevier; 2023. pp. 191–203.
Chatterjee S, Lad SJ, Phansalkar MS, Rupp RH, Ganguli BN, Fehlhaber HW, et al. Mersacidin, a new antibiotic from Bacillus. Fermentation, isolation, purification and chemical characterization.J Antibiot (Tokyo). 1992;45:832–8. [DOI] [PubMed]
Steiner H, Hultmark D, Engström A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity.Nature. 1981;292:246–8. [DOI] [PubMed]
Okada M, Natori S. Purification and characterization of an antibacterial protein from haemolymph of Sarcophaga peregrina (flesh-fly) larvae.Biochem J. 1983;211:727–34. [DOI] [PubMed] [PMC]
Tam JP, Wang S, Wong KH, Tan WL. Antimicrobial Peptides from Plants.Pharmaceuticals (Basel). 2015;8:711–57. [DOI] [PubMed] [PMC]
Stotz HU, Thomson JG, Wang Y. Plant defensins: defense, development and application.Plant Signal Behav. 2009;4:1010–2. [DOI] [PubMed] [PMC]
Hancock REW, Brown KL, Mookherjee N. Host defence peptides from invertebrates–emerging antimicrobial strategies.Immunobiology. 2006;211:315–22. [DOI] [PubMed]
Bachère E, Gueguen Y, Gonzalez M, de Lorgeril J, Garnier J, Romestand B. Insights into the anti-microbial defense of marine invertebrates: the penaeid shrimps and the oyster Crassostrea gigas.Immunol Rev. 2004;198:149–68. [DOI] [PubMed]
Iwanaga S, Kawabata S. Evolution and phylogeny of defense molecules associated with innate immunity in horseshoe crab.Front Biosci. 1998;3:D973–84. [DOI] [PubMed]
Tincu JA, Taylor SW. Antimicrobial peptides from marine invertebrates.Antimicrob Agents Chemother. 2004;48:3645–54. [DOI] [PubMed] [PMC]
Masuda M, Nakashima H, Ueda T, Naba H, Ikoma R, Otaka A, et al. A novel anti-HIV synthetic peptide, T-22 ([Tyr5,12,Lys7]-polyphemusin II).Biochem Biophys Res Commun. 1992;189:845–50. [DOI] [PubMed]
McMillan KAM, Coombs MRP. Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin.Molecules. 2020;25:5436. [DOI] [PubMed] [PMC]
Kaur N, Dilawari R, Kaur A, Sahni G, Rishi P. Recombinant expression, purification and PEGylation of Paneth cell peptide (cryptdin-2) with value added attributes against Staphylococcus aureus.Sci Rep. 2020;10:12164. [DOI] [PubMed] [PMC]
Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ. Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense.Annu Rev Immunol. 2004;22:181–215. [DOI] [PubMed]
Bowdish DM, Davidson DJ, Lau YE, Lee K, Scott MG, Hancock RE. Impact of LL-37 on anti-infective immunity.J Leukoc Biol. 2005;77:451–9. [DOI] [PubMed]
Yang D, Biragyn A, Kwak LW, Oppenheim JJ. Mammalian defensins in immunity: more than just microbicidal.Trends Immunol. 2002;23:291–6. [DOI] [PubMed]
Dhiman A, Talukdar S, Chaubey GK, Dilawari R, Modanwal R, Chaudhary S, et al. Regulation of Macrophage Cell Surface GAPDH Alters LL-37 Internalization and Downstream Effects in the Cell.J Innate Immun. 2023;15:581–98. [DOI] [PubMed] [PMC]
Roudi R, Syn NL, Roudbary M. Antimicrobial Peptides As Biologic and Immunotherapeutic Agents against Cancer: A Comprehensive Overview.Front Immunol. 2017;8:1320. [DOI] [PubMed] [PMC]
Hancock RE, Haney EF, Gill EE. The immunology of host defence peptides: beyond antimicrobial activity.Nat Rev Immunol. 2016;16:321–34. [DOI] [PubMed]
Pfalzgraff A, Brandenburg K, Weindl G. Antimicrobial Peptides and Their Therapeutic Potential for Bacterial Skin Infections and Wounds.Front Pharmacol. 2018;9:281. [DOI] [PubMed] [PMC]
Munita JM, Arias CA. Mechanisms of antibiotic resistance.Microbiol Spectr. 2016;4. [DOI] [PubMed] [PMC]
Hiltunen T, Virta M, Laine A. Antibiotic resistance in the wild: an eco-evolutionary perspective.Philos Trans R Soc Lond B Biol Sci. 2017;372:20160039. [DOI] [PubMed] [PMC]
Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria.J Microbiol Immunol Infect. 2017;50:405–10. [DOI] [PubMed]
Mwangi J, Hao X, Lai R, Zhang Z. Antimicrobial peptides: new hope in the war against multidrug resistance.Zool Res. 2019;40:488–505. [DOI] [PMC]
Groisman EA. How bacteria resist killing by host-defense peptides.Trends Microbiol. 1994;2:444–9. [DOI] [PubMed]
Yazici A, Ortucu S, Taskin M, Marinelli L. Natural-based Antibiofilm and Antimicrobial Peptides from Microorganisms.Curr Top Med Chem. 2018;18:2102–7. [DOI] [PubMed]
Moyer TB, Heil LR, Kirkpatrick CL, Goldfarb D, Lefever WA, Parsley NC, et al. PepSAVI-MS Reveals a Proline-rich Antimicrobial Peptide in Amaranthus tricolor.J Nat Prod. 2019;82:2744–53. [DOI] [PubMed] [PMC]
Lee JH, Seo M, Lee HJ, Baek M, Kim IW, Kim SY, et al. Anti-Inflammatory Activity of Antimicrobial Peptide Allomyrinasin Derived from the Dynastid Beetle, Allomyrina dichotoma.J Microbiol Biotechnol. 2019;29:687–95. [DOI] [PubMed]
Kim SY, Zhang F, Gong W, Chen K, Xia K, Liu F, et al. Copper regulates the interactions of antimicrobial piscidin peptides from fish mast cells with formyl peptide receptors and heparin.J Biol Chem. 2018;293:15381–96. [DOI] [PubMed] [PMC]
Li S, Hao L, Bao W, Zhang P, Su D, Cheng Y, et al. A novel short anionic antibacterial peptide isolated from the skin of Xenopus laevis with broad antibacterial activity and inhibitory activity against breast cancer cell.Arch Microbiol. 2016;198:473–82. [DOI] [PubMed]
van Hoek ML, Prickett MD, Settlage RE, Kang L, Michalak P, Vliet KA, et al. The Komodo dragon (Varanus komodoensis) genome and identification of innate immunity genes and clusters.BMC Genomics. 2019;20:684. [DOI] [PubMed] [PMC]
Braun MS, Sporer F, Zimmermann S, Wink M. Birds, feather-degrading bacteria and preen glands: the antimicrobial activity of preen gland secretions from turkeys (Meleagris gallopavo) is amplified by keratinase.FEMS Microbiol Ecol. 2018;94. [DOI] [PubMed]
Wang X, Sun Y, Wang F, You L, Cao Y, Tang R, et al. A novel endogenous antimicrobial peptide CAMP211-225 derived from casein in human milk.Food Funct. 2020;11:2291–8. [DOI] [PubMed]
Gharsallaoui A, Oulahal N, Joly C, Degraeve P. Nisin as a food preservative: part 1: physicochemical properties, antimicrobial activity, and main uses.Crit Rev Food Sci Nutr. 2016;56:1262–74. [DOI] [PubMed]
Kitagawa N, Otani T, Inai T. Nisin, a food preservative produced by Lactococcus lactis, affects the localization pattern of intermediate filament protein in HaCaT cells.Anat Sci Int. 2019;94:163–71. [DOI] [PubMed]
Garcia-Gutierrez E, Mayer MJ, Cotter PD, Narbad A. Gut microbiota as a source of novel antimicrobials.Gut Microbes. 2019;10:1–21. [DOI] [PubMed] [PMC]
Pushpanathan P, Mathew GS, Selvarajan S, Seshadri KG, Srikanth P. Gut microbiota and its mysteries.Indian J Med Microbiol. 2019;37:268–77. [DOI] [PubMed]
Essig A, Hofmann D, Münch D, Gayathri S, Künzler M, Kallio PT, et al. Copsin, a novel peptide-based fungal antibiotic interfering with the peptidoglycan synthesis.J Biol Chem. 2014;289:34953–64. [DOI] [PubMed] [PMC]
Tang S, Prodhan ZH, Biswas SK, Le C, Sekaran SD. Antimicrobial peptides from different plant sources: Isolation, characterisation, and purification.Phytochemistry. 2018;154:94–105. [DOI] [PubMed]
Gourbal B, Pinaud S, Beckers GJM, Van Der Meer JWM, Conrath U, Netea MG. Innate immune memory: An evolutionary perspective.Immunol Rev. 2018;283:21–40. [DOI] [PubMed]
Loch G, Zinke I, Mori T, Carrera P, Schroer J, Takeyama H, et al. Antimicrobial peptides extend lifespan in Drosophila.PLoS One. 2017;12:e0176689. [DOI] [PubMed] [PMC]
Muncaster S, Kraakman K, Gibbons O, Mensink K, Forlenza M, Jacobson G, et al. Antimicrobial peptides within the Yellowtail Kingfish (Seriola lalandi).Dev Comp Immunol. 2018;80:67–80. [DOI] [PubMed]
Patocka J, Nepovimova E, Klimova B, Wu Q, Kuca K. Antimicrobial Peptides: Amphibian Host Defense Peptides.Curr Med Chem. 2019;26:5924–46. [DOI] [PubMed]
Wei L, Yang J, He X, Mo G, Hong J, Yan X, et al. Structure and function of a potent lipopolysaccharide-binding antimicrobial and anti-inflammatory peptide.J Med Chem. 2013;56:3546–56. [DOI] [PubMed]
Ageitos JM, Sánchez-Pérez A, Calo-Mata P, Villa TG. Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria.Biochem Pharmacol. 2017;133:117–38. [DOI] [PubMed]
Pérez-Peinado C, Dias SA, Domingues MM, Benfield AH, Freire JM, Rádis-Baptista G, et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom.J Biol Chem. 2018;293:1536–49. [DOI] [PubMed] [PMC]
van Harten RM, van Woudenbergh E, van Dijk A, Haagsman HP. Cathelicidins: Immunomodulatory Antimicrobials.Vaccines (Basel). 2018;6:63. [DOI] [PubMed] [PMC]
Nagaoka I, Tamura H, Reich J. Therapeutic Potential of Cathelicidin Peptide LL-37, an Antimicrobial Agent, in a Murine Sepsis Model.Int J Mol Sci. 2020;21:5973. [DOI] [PubMed] [PMC]
Fruitwala S, El-Naccache DW, Chang TL. Multifaceted immune functions of human defensins and underlying mechanisms.Semin Cell Dev Biol. 2019;88:163–72. [DOI] [PubMed] [PMC]
Pace BT, Lackner AA, Porter E, Pahar B. The Role of Defensins in HIV Pathogenesis.Mediators Inflamm. 2017;2017:5186904. [DOI] [PubMed] [PMC]
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity.Dev Comp Immunol. 2020;104:103556. [DOI] [PubMed]
Pasupuleti M, Schmidtchen A, Malmsten M. Antimicrobial peptides: key components of the innate immune system.Crit Rev Biotechnol. 2012;32:143–71. [DOI] [PubMed]
Wang R, Ma D, Lin L, Zhou C, Han Z, Shao Y, et al. Identification and characterization of an avian beta-defensin orthologue, avian beta-defensin 9, from quails.Appl Microbiol Biotechnol. 2010;87:1395–405. [DOI] [PubMed]
Pei J, Jiang L. Antimicrobial peptide from mucus of Andrias davidianus: screening and purification by magnetic cell membrane separation technique.Int J Antimicrob Agents. 2017;50:41–6. [DOI] [PubMed]
Li T, Liu Q, Wang D, Li J. Characterization and antimicrobial mechanism of CF-14, a new antimicrobial peptide from the epidermal mucus of catfish.Fish Shellfish Immunol. 2019;92:881–8. [DOI] [PubMed]
Chang Y, Wang Z, Igawa S, Choi JE, Werbel T, Nardo AD. Lipocalin 2: A New Antimicrobial in Mast Cells.Int J Mol Sci. 2019;20:2380. [DOI] [PubMed] [PMC]
Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC. Human defensins.J Mol Med (Berl). 2005;83:587–95. [DOI] [PubMed]
da Silva FP, Machado MC. The dual role of cathelicidins in systemic inflammation.Immunol Lett. 2017;182:57–60. [DOI] [PubMed]
Casanova YV, Guerra JAR, Pérez YAU, Castro ALL, Reina GA, Castañeda JEG, et al. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines.Molecules. 2017;22:1641. [DOI] [PubMed] [PMC]
Hui C, Guo Y, Zhang W, Yang X, Gao C, Yang X. Isolation and characterization of antimicrobial peptides from healthy male urine.Pak J Pharm Sci. 2017;30:363–7. [PubMed]
Wu C, Liu Z. Proteomic Profiling of Sweat Exosome Suggests its Involvement in Skin Immunity.J Invest Dermatol. 2018;138:89–97. [DOI] [PubMed]
Correia A, Weimann A. Protein antibiotics: mind your language.Nat Rev Microbiol. 2021;19:7. [DOI] [PubMed]
Somma AD, Moretta A, Canè C, Cirillo A, Duilio A. Antimicrobial and Antibiofilm Peptides.Biomolecules. 2020;10:652. [DOI] [PubMed] [PMC]
Pirtskhalava M, Amstrong AA, Grigolava M, Chubinidze M, Alimbarashvili E, Vishnepolsky B, et al. DBAASP v3: database of antimicrobial/cytotoxic activity and structure of peptides as a resource for development of new therapeutics.Nucleic Acids Res. 2021;49:D288–97. [DOI] [PubMed] [PMC]
Klüver E, Schulz-Maronde S, Scheid S, Meyer B, Forssmann W, Adermann K. Structure-activity relation of human beta-defensin 3: influence of disulfide bonds and cysteine substitution on antimicrobial activity and cytotoxicity.Biochemistry. 2005;44:9804–16. [DOI] [PubMed]
Dennison SR, Harris F, Mura M, Phoenix DA. An Atlas of Anionic Antimicrobial Peptides from Amphibians.Curr Protein Pept Sci. 2018;19:823–38. [DOI] [PubMed]
Almarwani B, Phambu N, Hamada YZ, Sunda-Meya A. Interactions of an Anionic Antimicrobial Peptide with Zinc(II): Application to Bacterial Mimetic Membranes.Langmuir. 2020;36:14554–62. [DOI] [PubMed]
de Haën C, Neurath H, Teller DC. The phylogeny of trypsin-related serine proteases and their zymogens. New methods for the investigation of distant evolutionary relationships.J Mol Biol. 1975;92:225–59. [DOI] [PubMed]
Miller A, Matera-Witkiewicz A, Mikołajczyk A, Wątły J, Wilcox D, Witkowska D, et al. Zn-Enhanced Asp-Rich Antimicrobial Peptides: N-Terminal Coordination by Zn(II) and Cu(II), Which Distinguishes Cu(II) Binding to Different Peptides.Int J Mol Sci. 2021;22:6971. [DOI] [PubMed] [PMC]
Teixeira V, Feio MJ, Bastos M. Role of lipids in the interaction of antimicrobial peptides with membranes.Prog Lipid Res. 2012;51:149–77. [DOI] [PubMed]
Gennaro R, Zanetti M. Structural features and biological activities of the cathelicidin-derived antimicrobial peptides.Biopolymers. 2000;55:31–49. [DOI] [PubMed]
Lewies A, Wentzel JF, Jacobs G, Plessis LHD. The Potential Use of Natural and Structural Analogues of Antimicrobial Peptides in the Fight against Neglected Tropical Diseases.Molecules. 2015;20:15392–433.Erratum in: Molecules. 2015;20:16757. [DOI] [PubMed] [PMC]
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential.Nat Rev Drug Discov. 2020;19:311–32. [DOI] [PubMed]
Aidoukovitch A, Dahl S, Fält F, Nebel D, Svensson D, Tufvesson E, et al. Antimicrobial peptide LL-37 and its pro-form, hCAP18, in desquamated epithelial cells of human whole saliva.Eur J Oral Sci. 2020;128:1–6. [DOI] [PubMed]
Fabisiak A, Murawska N, Fichna J. LL-37: Cathelicidin-related antimicrobial peptide with pleiotropic activity.Pharmacol Rep. 2016;68:802–8. [DOI] [PubMed]
Johansson J, Gudmundsson GH, Rottenberg ME, Berndt KD, Agerberth B. Conformation-dependent antibacterial activity of the naturally occurring human peptide LL-37.J Biol Chem. 1998;273:3718–24. [DOI] [PubMed]
Koehbach J, Craik DJ. The Vast Structural Diversity of Antimicrobial Peptides.Trends Pharmacol Sci. 2019;40:517–28. [DOI] [PubMed]
Zhao H, Kinnunen PKJ. Modulation of the activity of secretory phospholipase A2 by antimicrobial peptides.Antimicrob Agents Chemother. 2003;47:965–71. [DOI] [PubMed] [PMC]
Mattar EH, Almehdar HA, Yacoub HA, Uversky VN, Redwan EM. Antimicrobial potentials and structural disorder of human and animal defensins.Cytokine Growth Factor Rev. 2016;28:95–111. [DOI] [PubMed]
Lehrer RI, Lu W. α-Defensins in human innate immunity.Immunol Rev. 2012;245:84–112. [DOI] [PubMed]
Tai KP, Le VV, Selsted ME, Ouellette AJ. Hydrophobic determinants of α-defensin bactericidal activity.Infect Immun. 2014;82:2195–202. [DOI] [PubMed] [PMC]
Guyot N, Meudal H, Trapp S, Iochmann S, Silvestre A, Jousset G, et al. Structure, function, and evolution of Gga-AvBD11, the archetype of the structural avian-double-β-defensin family.Proc Natl Acad Sci U S A. 2020;117:337–45. [DOI] [PubMed] [PMC]
Sitaram N. Antimicrobial peptides with unusual amino acid compositions and unusual structures.Curr Med Chem. 2006;13:679–96. [DOI] [PubMed]
Selsted ME. Theta-defensins: cyclic antimicrobial peptides produced by binary ligation of truncated alpha-defensins.Curr Protein Pept Sci. 2004;5:365–71. [DOI] [PubMed]
Conibear AC, Rosengren KJ, Daly NL, Henriques ST, Craik DJ. The cyclic cystine ladder in θ-defensins is important for structure and stability, but not antibacterial activity.J Biol Chem. 2013;288:10830–40. [DOI] [PubMed] [PMC]
Smirnova MP, Kolodkin NI, Kolobov AA, Afonin VG, Afonina IV, Stefanenko LI, et al. Indolicidin analogs with broad-spectrum antimicrobial activity and low hemolytic activity.Peptides. 2020;132:170356. [DOI] [PubMed]
Khurshid Z, Najeeb S, Mali M, Moin SF, Raza SQ, Zohaib S, et al. Histatin peptides: Pharmacological functions and their applications in dentistry.Saudi Pharm J. 2017;25:25–31. [DOI] [PubMed] [PMC]
Holani R, Shah C, Haji Q, Inglis GD, Uwiera RRE, Cobo ER. Proline-arginine rich (PR-39) cathelicidin: Structure, expression and functional implication in intestinal health.Comp Immunol Microbiol Infect Dis. 2016;49:95–101. [DOI] [PubMed]
Hernandez-Flores JL, Rodriguez MC, Arellanez AG, Alvarez-Morales A, Avila EE. Effect of recombinant prophenin 2 on the integrity and viability of Trichomonas vaginalis.Biomed Res Int. 2015;2015:430436. [DOI] [PubMed] [PMC]
Starling S. Innate immunity: A new way out for lysozyme.Nat Rev Gastroenterol Hepatol. 2017;14:567. [DOI] [PubMed]
Ragland SA, Criss AK. From bacterial killing to immune modulation: Recent insights into the functions of lysozyme.PLoS Pathog. 2017;13:e1006512. [DOI] [PubMed] [PMC]
Zhang C, Zhang J, Liu M, Huang M. Molecular cloning, expression and antibacterial activity of goose-type lysozyme gene in Microptenus salmoides.Fish Shellfish Immunol. 2018;82:9–16. [DOI] [PubMed]
Ibrahim HR, Thomas U, Pellegrini A. A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action.J Biol Chem. 2001;276:43767–74. [DOI] [PubMed]
Toda H, Williams JA, Gulledge M, Sehgal A. A sleep-inducing gene, nemuri, links sleep and immune function in Drosophila.Science. 2019;363:509–15. [DOI] [PubMed] [PMC]
Harford C, Sarkar B. Amino terminal Cu (II)-and Ni (II)-binding (ATCUN) motif of proteins and peptides: metal binding, DNA cleavage, and other properties.Acc Chem Res. 1997;30:123–30. [DOI]
Portelinha J, Duay SS, Yu SI, Heilemann K, Libardo MDJ, Juliano SA, et al. Antimicrobial Peptides and Copper(II) Ions: Novel Therapeutic Opportunities.Chem Rev. 2021;121:2648–712. [DOI] [PubMed]
Wende C, Kulak N. Fluorophore ATCUN complexes: combining agent and probe for oxidative DNA cleavage.Chem Commun (Camb). 2015;51:12395–8. [DOI] [PubMed]
Heinrich J, König NF, Sobottka S, Sarkar B, Kulak N. Flexible vs. rigid bis(2-benzimidazolyl) ligands in Cu(II) complexes: Impact on redox chemistry and oxidative DNA cleavage activity.J Inorg Biochem. 2019;194:223–32. [DOI] [PubMed]
Mokoena MP. Lactic Acid Bacteria and Their Bacteriocins: Classification, Biosynthesis and Applications against Uropathogens: A Mini-Review.Molecules. 2017;22:1255. [DOI] [PubMed] [PMC]
Wang S, Fang Q, Lu Z, Gao Y, Trembleau L, Ebel R, et al. Discovery and Biosynthetic Investigation of a New Antibacterial Dehydrated Non-Ribosomal Tripeptide.Angew Chem Int Ed Engl. 2021;60:3229–37. [DOI] [PubMed]
Márquez IJG, McKay B, Wong A, Cheetham JJ, Bean C, Golshani A, et al. Mode of action of nisin on Escherichia coli.Can J Microbiol. 2020;66:161–8. [DOI] [PubMed]
Tong Z, Zhang Y, Ling J, Ma J, Huang L, Zhang L. An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis.PLoS One. 2014;9:e89209. [DOI] [PubMed] [PMC]
Li C, Hong P, Yang M, Zhao X, Wang J. FOXO regulates the expression of antimicrobial peptides and promotes phagocytosis of hemocytes in shrimp antibacterial immunity.PLoS Pathog. 2021;17:e1009479. [DOI] [PubMed] [PMC]
Rodríguez-Rojas A, Baeder DY, Johnston P, Regoes RR, Rolff J. Bacteria primed by antimicrobial peptides develop tolerance and persist.PLoS Pathog. 2021;17:e1009443. [DOI] [PubMed] [PMC]
Liang X, Zhang X, Lian K, Tian X, Zhang M, Wang S, et al. Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro.J Vet Sci. 2020;21:e80. [DOI] [PubMed] [PMC]
Yasin B, Pang M, Turner JS, Cho Y, Dinh NN, Waring AJ, et al. Evaluation of the inactivation of infectious Herpes simplex virus by host-defense peptides.Eur J Clin Microbiol Infect Dis. 2000;19:187–94. [DOI] [PubMed]
Yasin B, Wang W, Pang M, Cheshenko N, Hong T, Waring AJ, et al. Theta defensins protect cells from infection by herpes simplex virus by inhibiting viral adhesion and entry.J Virol. 2004;78:5147–56. [DOI] [PubMed] [PMC]
Barlow PG, Svoboda P, Mackellar A, Nash AA, York IA, Pohl J, et al. Antiviral activity and increased host defense against influenza infection elicited by the human cathelicidin LL-37.PLoS One. 2011;6:e25333. [DOI] [PubMed] [PMC]
Bergman P, Walter-Jallow L, Broliden K, Agerberth B, Söderlund J. The antimicrobial peptide LL-37 inhibits HIV-1 replication.Curr HIV Res. 2007;5:410–5. [DOI] [PubMed]
Tripathi S, Tecle T, Verma A, Crouch E, White M, Hartshorn KL. The human cathelicidin LL-37 inhibits influenza A viruses through a mechanism distinct from that of surfactant protein D or defensins.J Gen Virol. 2013;94:40–9. [DOI] [PubMed] [PMC]
Howell MD, Jones JF, Kisich KO, Streib JE, Gallo RL, Leung DYM. Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum.J Immunol. 2004;172:1763–7. [DOI] [PubMed]
Howell MD, Wollenberg A, Gallo RL, Flaig M, Streib JE, Wong C, et al. Cathelicidin deficiency predisposes to eczema herpeticum.J Allergy Clin Immunol. 2006;117:836–41. [DOI] [PubMed] [PMC]
Ahmed A, Siman-Tov G, Hall G, Bhalla N, Narayanan A. Human Antimicrobial Peptides as Therapeutics for Viral Infections.Viruses. 2019;11:704. [DOI] [PubMed] [PMC]
Yu J, Dai Y, Fu Y, Wang K, Yang Y, Li M, et al. Cathelicidin antimicrobial peptides suppress EV71 infection via regulating antiviral response and inhibiting viral binding.Antiviral Res. 2021;187:105021. [DOI] [PubMed]
LeMessurier KS, Lin Y, McCullers JA, Samarasinghe AE. Antimicrobial peptides alter early immune response to influenza A virus infection in C57BL/6 mice.Antiviral Res. 2016;133:208–17. [DOI] [PubMed] [PMC]
Vilas Boas LC, de Lima LM, Migliolo L, Mendes GD, de Jesus MG, Franco OL, et al. Linear antimicrobial peptides with activity against herpes simplex virus 1 and Aichi virus.Biopolymers. 2017;108. [DOI] [PubMed]
Marcocci ME, Amatore D, Villa S, Casciaro B, Aimola P, Franci G, et al. The Amphibian Antimicrobial Peptide Temporin B Inhibits In Vitro Herpes Simplex Virus 1 Infection.Antimicrob Agents Chemother. 2018;62:e02367–17. [DOI] [PubMed] [PMC]
De Angelis M, Casciaro B, Genovese A, Brancaccio D, Marcocci ME, Novellino E, et al. Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: Insights into biological activity and mechanism of action.FASEB J. 2021;35:e21358. [DOI] [PubMed]
He M, Zhang H, Li Y, Wang G, Tang B, Zhao J, et al. Cathelicidin-Derived Antimicrobial Peptides Inhibit Zika Virus Through Direct Inactivation and Interferon Pathway.Front Immunol. 2018;9:722. [DOI] [PubMed] [PMC]
Monteiro JMC, Oliveira MD, Dias RS, Nacif-Marçal L, Feio RN, Ferreira SO, et al. The antimicrobial peptide HS-1 inhibits dengue virus infection.Virology. 2018;514:79–87. [DOI] [PubMed]
Hu H, Guo N, Chen S, Guo X, Liu X, Ye S, et al. Antiviral activity of Piscidin 1 against pseudorabies virus both in vitro and in vivo.Virol J. 2019;16:95. [DOI] [PubMed] [PMC]
Uchio E, Inoue H, Kadonosono K. Anti-adenoviral effects of human cationic antimicrobial protein-18/LL-37, an antimicrobial peptide, by quantitative polymerase chain reaction.Korean J Ophthalmol. 2013;27:199–203. [DOI] [PubMed] [PMC]
Sousa FH, Casanova V, Findlay F, Stevens C, Svoboda P, Pohl J, et al. Cathelicidins display conserved direct antiviral activity towards rhinovirus.Peptides. 2017;95:76–83. [DOI] [PubMed] [PMC]
Chessa C, Bodet C, Jousselin C, Wehbe M, Lévêque N, Garcia M. Antiviral and Immunomodulatory Properties of Antimicrobial Peptides Produced by Human Keratinocytes.Front Microbiol. 2020;11:1155. [DOI] [PubMed] [PMC]
Holly MK, Diaz K, Smith JG. Defensins in Viral Infection and Pathogenesis.Annu Rev Virol. 2017;4:369–91. [DOI] [PubMed]
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL, et al. Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths.Nutrients. 2020;12:988. [DOI] [PubMed] [PMC]
Yoshimoto FK. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COV19), the Cause of COVID-19.Protein J. 2020;39:198–216. [DOI] [PubMed] [PMC]
Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et al. Structural basis for human coronavirus attachment to sialic acid receptors.Nat Struct Mol Biol. 2019;26:481–9. [DOI] [PubMed] [PMC]
Hoffmann M, Hofmann-Winkler H, Pöhlmann S. Priming time: how cellular proteases arm coronavirus spike proteins.In: Activation of viruses by host proteases. Cham: Springer; 2018. pp. 71–98.
Lokhande KB, Banerjee T, Swamy KV, Ghosh P, Deshpande M. An in silico scientific basis for LL-37 as a therapeutic for Covid-19.Proteins. 2022;90:1029–43. [DOI] [PubMed] [PMC]
Zhang L, Ghosh SK, Basavarajappa SC, Muller-Greven J, Penfield J, Brewer A, et al. Molecular dynamics simulations and functional studies reveal that hBD-2 binds SARS-CoV-2 spike RBD and blocks viral entry into ACE2 expressing cells.BioRxiv 425621 [Preprint]. 2021 [2024 Dec 15]. Available from: https://www.biorxiv.org/content/10.1101/2021.01.07.425621v1
Wang C, Wang S, Li D, Chen P, Han S, Zhao G, et al. Human cathelicidin inhibits SARS-CoV-2 infection: killing two birds with one stone.ACS Infect Dis. 2021;7:1545–54. [DOI] [PubMed]
Ash MM, Phillips CM. Parasitic Diseases With Cutaneous Manifestations.N C Med J. 2016;77:350–4. [DOI] [PubMed]
Parise ME, Hotez PJ, Slutsker L. Neglected parasitic infections in the United States: needs and opportunities.Am J Trop Med Hyg. 2014;90:783–5. [DOI] [PubMed] [PMC]
Uraki S, Sugimoto K, Shiraki K, Tameda M, Inagaki Y, Ogura S, et al. Human β-defensin-3 inhibits migration of colon cancer cells via downregulation of metastasis-associated 1 family, member 2 expression.Int J Oncol. 2014;45:1059–64.Erratum in: Int J Oncol. 2015;46:1858. [DOI] [PubMed]
Pitale DM, Kaur G, Baghel M, Kaur KJ, Shaha C. Halictine-2 antimicrobial peptide shows promising anti-parasitic activity against Leishmania spp.Exp Parasitol. 2020;218:107987. [DOI] [PubMed]
Fang Y, He X, Zhang P, Shen C, Mwangi J, Xu C, et al. In Vitro and In Vivo Antimalarial Activity of LZ1, a Peptide Derived from Snake Cathelicidin.Toxins (Basel). 2019;11:379. [DOI] [PubMed] [PMC]
Kückelhaus SAS, Leite JRSA, Muniz-Junqueira MI, Sampaio RN, Bloch C, Tosta CE. Antiplasmodial and antileishmanial activities of phylloseptin-1, an antimicrobial peptide from the skin secretion of Phyllomedusa azurea (Amphibia).Exp Parasitol. 2009;123:11–6. [DOI] [PubMed]
Perez-Rodriguez A, Eraso E, Quindós G, Mateo E. Antimicrobial Peptides with Anti- Candida Activity.Int J Mol Sci. 2022;23:9264. [DOI] [PubMed] [PMC]
Rodríguez-Castaño GP, Rosenau F, Ständker L, Firacative C. Antimicrobial Peptides: Avant-Garde Antifungal Agents to Fight against Medically Important Candida Species.Pharmaceutics. 2023;15:789. [DOI] [PubMed] [PMC]
Jarczak J, Kościuczuk EM, Lisowski P, Strzałkowska N, Jóźwik A, Horbańczuk J, et al. Defensins: natural component of human innate immunity.Hum Immunol. 2013;74:1069–79. [DOI] [PubMed]
Date Y, Nakazato M, Shiomi K, Toshimori H, Kangawa K, Matsuo H, et al. Localization of human neutrophil peptide (HNP) and its messenger RNA in neutrophil series.Ann Hematol. 1994;69:73–7. [DOI] [PubMed]
Khine AA, Sorbo LD, Vaschetto R, Voglis S, Tullis E, Slutsky AS, et al. Human neutrophil peptides induce interleukin-8 production through the P2Y6 signaling pathway.Blood. 2006;107:2936–42. [DOI] [PubMed]
Lillard JW, Boyaka PN, Chertov O, Oppenheim JJ, McGhee JR. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins.Proc Natl Acad Sci U S A. 1999;96:651–6. [DOI] [PubMed] [PMC]
Tani K, Murphy WJ, Chertov O, Salcedo R, Koh CY, Utsunomiya I, et al. Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens.Int Immunol. 2000;12:691–700. [DOI] [PubMed]
Satyam R, Bhardwaj T, Jha NK, Jha SK, Nand P. Toward a chimeric vaccine against multiple isolates of Mycobacteroides - An integrative approach.Life Sci. 2020;250:117541. [DOI] [PubMed]
Boniotto M, Jordan WJ, Eskdale J, Tossi A, Antcheva N, Crovella S, et al. Human beta-defensin 2 induces a vigorous cytokine response in peripheral blood mononuclear cells.Antimicrob Agents Chemother. 2006;50:1433–41. [DOI] [PubMed] [PMC]
Umnyakova ES, Gorbunov NP, Zhakhov AV, Krenev IA, Ovchinnikova TV, Kokryakov VN, et al. Modulation of Human Complement System by Antimicrobial Peptide Arenicin-1 from Arenicola marina.Mar Drugs. 2018;16:480. [DOI] [PubMed] [PMC]
Krenev IA, Umnyakova ES, Eliseev IE, Dubrovskii YA, Gorbunov NP, Pozolotin VA, et al. Antimicrobial Peptide Arenicin-1 Derivative Ar-1-(C/A) as Complement System Modulator.Mar Drugs. 2020;18:631. [DOI] [PubMed] [PMC]
Tonk M, Vilcinskas A, Rahnamaeian M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer.Appl Microbiol Biotechnol. 2016;100:7397–405. [DOI] [PubMed] [PMC]
Jafari A, Babajani A, Forooshani RS, Yazdani M, Rezaei-Tavirani M. Clinical Applications and Anticancer Effects of Antimicrobial Peptides: From Bench to Bedside.Front Oncol. 2022;12:819563. [DOI] [PubMed] [PMC]
Aghamiri S, Zandsalimi F, Raee P, Abdollahifar M, Tan SC, Low TY, et al. Antimicrobial peptides as potential therapeutics for breast cancer.Pharmacol Res. 2021;171:105777. [DOI] [PubMed]
Das A, Deka D, Baildya N, Banerjee A, Bisgin A, Adhikari S, et al. BMAP-27 Peptide Reduces Proliferation and Increases Apoptosis in Primary and Metastatic Colon Cancer Cell Lines.Int J Pept Res Ther. 2023;29:100. [DOI]
Maijaroen S, Klaynongsruang S, Roytrakul S, Konkchaiyaphum M, Taemaitree L, Jangpromma N. An Integrated Proteomics and Bioinformatics Analysis of the Anticancer Properties of RT2 Antimicrobial Peptide on Human Colon Cancer (Caco-2) Cells.Molecules. 2022;27:1426. [DOI] [PubMed] [PMC]
Swithenbank L, Cox P, Harris LG, Dudley E, Sinclair K, Lewis P, et al. Temporin A and Bombinin H2 Antimicrobial Peptides Exhibit Selective Cytotoxicity to Lung Cancer Cells.Scientifica (Cairo). 2020;2020:3526286. [DOI] [PubMed] [PMC]
Sung JJY, Chiu H, Lieberman D, Kuipers EJ, Rutter MD, Macrae F, et al. Third Asia-Pacific consensus recommendations on colorectal cancer screening and postpolypectomy surveillance.Gut. 2022;71:2152–66. [DOI] [PubMed]
Savitskaya A, Masso-Silva J, Haddaoui I, Enany S. Exploring the arsenal of antimicrobial peptides: Mechanisms, diversity, and applications.Biochimie. 2023;214:216–27. [DOI] [PubMed]
Karmakar S, Das S, Banerjee KK. Interaction of antimicrobial peptides with model membranes: a perspective towards new antibiotics.Eur Phys J Spec Top. 2024;233:2981–96. [DOI]
Park P, Matsubara DK, Barzotto DR, Lima FS, Chaimovich H, Marrink SJ, et al. Vesicle protrusion induced by antimicrobial peptides suggests common carpet mechanism for short antimicrobial peptides.Sci Rep. 2024;14:9701. [DOI] [PubMed] [PMC]
Zhang Q, Yan Z, Meng Y, Hong X, Shao G, Ma J, et al. Antimicrobial peptides: mechanism of action, activity and clinical potential.Mil Med Res. 2021;8:48. [DOI] [PubMed] [PMC]
Cardoso MH, Meneguetti BT, Costa BO, Buccini DF, Oshiro KGN, Preza SLE, et al. Non-Lytic Antibacterial Peptides That Translocate Through Bacterial Membranes to Act on Intracellular Targets.Int J Mol Sci. 2019;20:4877. [DOI] [PubMed] [PMC]
Adhikari SNR, Jena J, Kar SK, Singh A, Panigrahi BK, Sarangi MK. Buforins: A Potential Antimicrobial Peptide Explored With Its Anticancer Efficacy‐A Review.Pept Sci. 2025;117:e24386. [DOI]
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, et al. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action.Front Genet. 2022;13:1022739. [DOI] [PubMed] [PMC]
R GK, Narasingappa RB, Vyas GV. Unveiling mechanisms of antimicrobial peptide: Actions beyond the membranes disruption.Heliyon. 2024;10:e38079. [DOI] [PubMed] [PMC]
Hou X, Feng C, Li S, Luo Q, Shen G, Wu H, et al. Mechanism of antimicrobial peptide NP-6 from Sichuan pepper seeds against E. coli and effects of different environmental factors on its activity.Appl Microbiol Biotechnol. 2019;103:6593–604. [DOI] [PubMed]
Wang H, Zhang C, Li M, Liu C, Wang J, Ou X, et al. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability.Int J Mol Sci. 2022;23:12732. [DOI] [PubMed] [PMC]
Chen W, Chang H, Lu J, Huang Y, Harroun SG, Tseng Y, et al. Self‐assembly of antimicrobial peptides on gold nanodots: against multidrug‐resistant bacteria and wound‐healing application.Adv Funct Mater. 2015;25:7189–99. [DOI]
Geilich BM, van de Ven AL, Singleton GL, Sepúlveda LG, Sridha S, Webster TJ. Silver nanoparticle-embedded polymersome nanocarriers for the treatment of antibiotic-resistant infections.Nanoscale. 2015;7:3511–9. [DOI]
de Azeredo HM. Antimicrobial nanostructures in food packaging.Trends Food Sci Technol. 2013;30:56–69. [DOI]
Braun K, Pochert A, Lindén M, Davoudi M, Schmidtchen A, Nordström R, et al. Membrane interactions of mesoporous silica nanoparticles as carriers of antimicrobial peptides.J Colloid Interface Sci. 2016;475:161–70. [DOI] [PubMed]
Hulme J. Harnessing Ultrasonic Technologies to Treat Staphylococcus Aureus Skin Infections.Molecules. 2025;30:512. [DOI] [PubMed] [PMC]
Dijksteel GS, Ulrich MMW, Middelkoop E, Boekema BKHL. Review: Lessons Learned From Clinical Trials Using Antimicrobial Peptides (AMPs).Front Microbiol. 2021;12:616979. [DOI] [PubMed] [PMC]
Maisetta G, Mangoni ML, Esin S, Pichierri G, Capria AL, Brancatisano FL, et al. In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1-18) in combination with conventional antibiotics against Stenotrophomonas maltophilia.Peptides. 2009;30:1622–6. [DOI] [PubMed]
Mishra NM, Briers Y, Lamberigts C, Steenackers H, Robijns S, Landuyt B, et al. Evaluation of the antibacterial and antibiofilm activities of novel CRAMP-vancomycin conjugates with diverse linkers.Org Biomol Chem. 2015;13:7477–86. [DOI] [PubMed]
de la Fuente-Núñez C, Reffuveille F, Mansour SC, Reckseidler-Zenteno SL, Hernández D, Brackman G, et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections.Chem Biol. 2015;22:196–205.Erratum in: Chem Biol. 2015;22:1280–2. [DOI] [PubMed] [PMC]
Rudilla H, Fusté E, Cajal Y, Rabanal F, Vinuesa T, Viñas M. Synergistic Antipseudomonal Effects of Synthetic Peptide AMP38 and Carbapenems.Molecules. 2016;21:1223. [DOI] [PubMed] [PMC]
Gopal R, Kim YG, Lee JH, Lee SK, Chae JD, Son BK, et al. Synergistic effects and antibiofilm properties of chimeric peptides against multidrug-resistant Acinetobacter baumannii strains.Antimicrob Agents Chemother. 2014;58:1622–9. [DOI] [PubMed] [PMC]
Wakabayashi H, Yamauchi K, Kobayashi T, Yaeshima T, Iwatsuki K, Yoshie H. Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia.Antimicrob Agents Chemother. 2009;53:3308–16. [DOI] [PubMed] [PMC]
Ahire JJ, Dicks LMT. Nisin Incorporated With 2,3-Dihydroxybenzoic Acid in Nanofibers Inhibits Biofilm Formation by a Methicillin-Resistant Strain of Staphylococcus aureus.Probiotics Antimicrob Proteins. 2015;7:52–9. [DOI] [PubMed]
Jones EA, McGillivary G, Bakaletz LO. Extracellular DNA within a nontypeable Haemophilus influenzae-induced biofilm binds human beta defensin-3 and reduces its antimicrobial activity.J Innate Immun. 2013;5:24–38. [DOI] [PubMed] [PMC]
Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria.Curr Microbiol. 2014;68:635–41. [DOI] [PubMed]
Maisetta G, Grassi L, Luca MD, Bombardelli S, Medici C, Brancatisano FL, et al. Anti-biofilm properties of the antimicrobial peptide temporin 1Tb and its ability, in combination with EDTA, to eradicate Staphylococcus epidermidis biofilms on silicone catheters.Biofouling. 2016;32:787–800. [DOI] [PubMed]
Ren H, Wu J, Colletta A, Meyerhoff ME, Xi C. Efficient Eradication of Mature Pseudomonas aeruginosa Biofilm via Controlled Delivery of Nitric Oxide Combined with Antimicrobial Peptide and Antibiotics.Front Microbiol. 2016;7:1260. [DOI] [PubMed] [PMC]
Balaban N, Gov Y, Giacometti A, Cirioni O, Ghiselli R, Mocchegiani F, et al. A chimeric peptide composed of a dermaseptin derivative and an RNA III-inhibiting peptide prevents graft-associated infections by antibiotic-resistant staphylococci.Antimicrob Agents Chemother. 2004;48:2544–50. [DOI] [PubMed] [PMC]
Jorge P, Grzywacz D, Kamysz W, Lourenço A, Pereira MO. Searching for new strategies against biofilm infections: Colistin-AMP combinations against Pseudomonas aeruginosa and Staphylococcus aureus single- and double-species biofilms.PLoS One. 2017;12:e0174654. [DOI] [PubMed] [PMC]
Field D, Seisling N, Cotter PD, Ross RP, Hill C. Synergistic Nisin-Polymyxin Combinations for the Control of Pseudomonas Biofilm Formation.Front Microbiol. 2016;7:1713. [DOI] [PubMed] [PMC]
Grassi L, Maisetta G, Esin S, Batoni G. Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms.Front Microbiol. 2017;8:2409. [DOI] [PubMed] [PMC]
Luong HX, Thanh TT, Tran TH. Antimicrobial peptides - Advances in development of therapeutic applications.Life Sci. 2020;260:118407. [DOI] [PubMed] [PMC]
Park C, Lee DG. Fungicidal effect of antimicrobial peptide arenicin-1.Biochim Biophys Acta. 2009;1788:1790–6. [DOI] [PubMed]
Boparai JK, Sharma PK. Mini Review on Antimicrobial Peptides, Sources, Mechanism and Recent Applications.Protein Pept Lett. 2020;27:4–16. [DOI] [PubMed] [PMC]