+: trend towards increased pollen concentration (PIn), earlier onset of pollination (PSS), or longer pollen season (PSD); –: trend towards decreased pollen concentration (PIn), later onset of pollination (PSS), or shorter pollen season (PSD); *: p < 0.05; **: p < 0.01; ***: p < 0.001. PIn: pollen integral; PSS: pollen season start date; PSD: pollen season duration; NW: northwest; NE: northeast; N: north; S: south; LOESS: locally estimated scatterplot smoothing; ns: non-significant; SW: southwest.
Declarations
Author contributions
JPB: Conceptualization, Formal analysis, Writing—original draft, Writing—review & editing. LM: Conceptualization, Writing—review & editing. Both authors read and approved the submitted version.
Conflicts of interest
Laurent Mascarell, who is the Editorial Board Member and Guest Editor of Exploration of Asthma & Allergy, had no involvement in the decision-making or the review process of this manuscript. LM is also an employee of Stallergenes Greer. The other author declares no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Cook J, Oreskes N, Doran PT, Anderegg WRL, Verheggen B, Maibach EW, et al. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming.Environ Res Lett. 2016;11:048002. [DOI]
Wuebbles DJ. Climate Change in the 21st Century: Looking Beyond the Paris Agreement. In: Murphy C, Gardoni P, McKim R, editors. Climate Change and Its Impacts: Risks and Inequalities. Cham: Springer International Publishing; 2018. pp. 15–38. [DOI]
Intergovernmental Panel on Climate Change (IPCC). Technical Summary.In: Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press; 2023. pp. 35–144. [DOI]
Wilkinson MJ. Pollen and climatic change.Aerobiologia. 1989;5:3–8. [DOI]
Besancenot JP, Thibaudon M. Climate change and pollination.Rev Mal Respir. 2012;29:1238–53. French. [DOI] [PubMed]
Bhadra P, Maitra S, Shankar T, Hossain A, Praharaj S, Aftab T. Chapter 1 - Climate change impact on plants: Plant responses and adaptations. In: Aftab T, Roychoudhury A, editors. Plant Perspectives to Global Climate Changes. Academic Press; 2022. pp. 1–24. [DOI]
Inouye DW. Climate change and phenology.WIREs Clim Change. 2022;13:e764. [DOI]
Pacheco SE, Guidos-Fogelbach G, Annesi-Maesano I, Pawankar R, D’Amato G, Latour-Staffeld P, et al.; American Academy of Allergy, Asthma & Immunology Environmental Exposures and Respiratory Health Committee. Climate change and global issues in allergy and immunology.J Allergy Clin Immunol. 2021;148:1366–77. [DOI] [PubMed]
Rothenberg ME. The climate change hypothesis for the allergy epidemic.J Allergy Clin Immunol. 2022;149:1522–4. [DOI] [PubMed]
Buters JTM. Impacts of climate change on allergenicity. In: Beggs PJ, editor. Impacts of Climate Change on Allergens and Allergic Diseases. Cambridge: Cambridge University Press; 2016. pp. 74–91. [DOI]
Beaumont LJ, Duursma DE. Impacts of climate change on the distributions of allergenic species. In: Beggs PJ, editor. Impacts of climate change on allergens and allergic diseases. Cambridge: Cambridge University Press; 2016. pp. 29–49. [DOI]
Hickler T, Vohland K, Feehan J, Miller PA, Smith B, Costa L, et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model.Global Ecol Biogeography. 2012;21:50–63. [DOI]
Thibaudon M, Caillaud D, Besancenot JP. Methods of studying airborne pollen and pollen calendars.Rev Mal Respir. 2013;30:463–79. French. [DOI] [PubMed]
Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, et al. Recommended terminology for aerobiological studies.Aerobiologia. 2017;33:293–5. [DOI]
Mercuri AM, Torri P, Fornaciari R, Florenzano A. Plant Responses to Climate Change: The Case Study of Betulaceae and Poaceae Pollen Seasons (Northern Italy, Vignola, Emilia-Romagna).Plants (Basel). 2016;5:42. [DOI] [PubMed] [PMC]
Picornell A, Smith M, Rojo J. Climate change related phenological decoupling in species belonging to the Betulaceae family.Int J Biometeorol. 2023;67:195–209. [DOI] [PubMed]
Smith M, Jäger S, Berger U, Sikoparija B, Hallsdottir M, Sauliene I, et al. Geographic and temporal variations in pollen exposure across Europe.Allergy. 2014;69:913–23. [DOI] [PubMed]
Adams-Groom B, Selby K, Derrett S, Frisk CA, Pashley CH, Satchwell J, et al. Pollen season trends as markers of climate change impact: Betula, Quercus and Poaceae.Sci Total Environ. 2022;831:154882. [DOI] [PubMed]
Ariano R, Canonica GW, Passalacqua G. Possible role of climate changes in variations in pollen seasons and allergic sensitizations during 27 years.Ann Allergy Asthma Immunol. 2010;104:215–22. [DOI] [PubMed]
Bergmann KC, Buters J, Karatzas K, Tasioulis T, Werchan B, Werchan M, et al. The development of birch pollen seasons over 30 years in Munich, Germany—An EAACI Task Force report.Allergy. 2020;75:3024–6. [DOI] [PubMed]
Besancenot JP, Sindt C, Thibaudon M. Pollen and climate change. Birch and grasses in metropolitan France.Rev Fr Allergol. 2019;59:563–75. French. [DOI]
Beutner C, Werchan B, Forkel S, Gupta S, Fuchs T, Schön MP, et al. Sensitization rates to common inhaled allergens in Germany – increase and change patterns over the last 20 years.J Dtsch Dermatol Ges. 2021;19:37–44. [DOI] [PubMed]
Bortenschlager S, Bortenschlager I. Altering airborne pollen concentrations due to the Global Warming. A comparative analysis of airborne pollen records from Innsbruck and Obergurgl (Austria) for the period 1980–2001.Grana. 2005;44:172–80. [DOI]
Bruffaerts N, De Smedt T, Delcloo A, Simons K, Hoebeke L, Verstraeten C, et al. Comparative long-term trend analysis of daily weather conditions with daily pollen concentrations in Brussels, Belgium.Int J Biometeorol. 2018;62:483–91. [DOI] [PubMed] [PMC]
Clot B. Trends in airborne pollen: An overview of 21 years of data in Neuchâtel (Switzerland).Aerobiologia. 2003;19:227–34. [DOI]
Crisp HC, Richards MP. A 15-year survey of pollen aeroallergens in North Texas.J Allergy Clin Immunol Glob. 2025;4:100469. [DOI] [PubMed] [PMC]
de Weger LA, Bruffaerts N, Koenders MMJF, Verstraeten WW, Delcloo AW, Hentges P, et al. Long-Term Pollen Monitoring in the Benelux: Evaluation of Allergenic Pollen Levels and Temporal Variations of Pollen Seasons.Front Allergy. 2021;2:676176. [DOI] [PubMed] [PMC]
Emberlin J, Savage M, Woodman R. Annual variations in the concentrations of Betula pollen in the London area, 1961–1990.Grana. 1993;32:359–63. [DOI]
Fernández-Llamazares A, Belmonte J, Delgado R, De Linares C. A statistical approach to bioclimatic trend detection in the airborne pollen records of Catalonia (NE Spain).Int J Biometeorol. 2014;58:371–82. [DOI] [PubMed]
Frei T. The effects of climate change in Switzerland 1969–1996 on airborne pollen quantities from hazel, birch and grass.Grana. 1998;37:172–9. [DOI]
Frei T, Leuschner RM. A change from grass pollen induced allergy to tree pollen induced allergy: 30 years of pollen observation in Switzerland.Aerobiologia. 2000;16:407–16. [DOI]
Frei T, Gassner E. Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006.Int J Biometeorol. 2008;52:667–74. [DOI] [PubMed]
Frei T, Gassner E. Trends in prevalence of allergic rhinitis and correlation with pollen counts in Switzerland.Int J Biometeorol. 2008;52:841–7. [DOI] [PubMed]
Frei T. Climate Change, CO2-Concentration, and the Impact on Long-Term Pollen Observation with Implications for Human Health.Adv Environ Eng Res. 2021;2:030. [DOI]
Galán C, Alcázar P, Oteros J, García-Mozo H, Aira MJ, Belmonte J, et al. Airborne pollen trends in the Iberian Peninsula.Sci Total Environ. 2016;550:53–9. [DOI] [PubMed]
Gehrig R, Clot B. 50 Years of Pollen Monitoring in Basel (Switzerland) Demonstrate the Influence of Climate Change on Airborne Pollen.Front Allergy. 2021;2:677159. [DOI] [PubMed] [PMC]
Glick S, Gehrig R, Eeftens M. Multi-decade changes in pollen season onset, duration, and intensity: A concern for public health?Sci Total Environ. 2021;781:146382. [DOI] [PubMed] [PMC]
Guada G, Fernández-González M, Amigo R, Dias-Lorenzo DA, Sánchez Espinosa KC, Rodríguez-Rajo FJ. Precipitation masks the effect of temperature on Birch airborne pollen start, and previous summer temperature affects pollen intensity; A 31-year study at its southwestern distribution boundary.Agric For Meteorol. 2024;353:110072. [DOI]
Hoebeke L, Bruffaerts N, Verstraeten C, Delcloo A, De Smedt T, Packeu A, et al. Thirty-four years of pollen monitoring: an evaluation of the temporal variation of pollen seasons in Belgium.Aerobiologia. 2018;34:139–55. [DOI]
Jochner-Oette S, Menzel A, Gehrig R, Clot B. Decrease or increase? Temporal changes in pollen concentrations assessed by Bayesian statistics.Aerobiologia. 2019;35:153–63. [DOI]
Kaminski U, Glod T. Are there changes in Germany regarding the start of the pollen season, the season length and the pollen concentration of the most important allergenic pollens?Meteorol Z. 2011;20:497–507. [DOI]
Lam HCY, Anees-Hill S, Satchwell J, Symon F, Macintyre H, Pashley CH, et al. Association between ambient temperature and common allergenic pollen and fungal spores: A 52-year analysis in central England, United Kingdom.Sci Total Environ. 2024;906:167607. [DOI] [PubMed]
Lind T, Ekebom A, Alm Kübler K, Östensson P, Bellander T, Lõhmus M. Pollen Season Trends (1973-2013) in Stockholm Area, Sweden.PLoS One. 2016;11:e0166887. [DOI] [PubMed] [PMC]
Myszkowska D, Jenner B, Stępalska D, Czarnobilska E. The pollen season dynamics and the relationship among some season parameters (start, end, annual total, season phases) in Kraków, Poland, 1991–2008.Aerobiologia (Bologna). 2011;27:229–38. [DOI] [PubMed] [PMC]
Rasmussen A. The effects of climate change on the birch pollen season in Denmark.Aerobiologia. 2002;18:253–65. [DOI]
Rojo J, Picornell A, Oteros J, Werchan M, Werchan B, Bergmann KC, et al. Consequences of climate change on airborne pollen in Bavaria, Central Europe.Reg Environ Change. 2021;21:9. [DOI]
Rojo J, Oteros J, Picornell A, Maya-Manzano JM, Damialis A, Zink K, et al. Effects of future climate change on birch abundance and their pollen load.Glob Chang Biol. 2021;27:5934–49. [DOI] [PubMed]
Spieksma FTM, Emberlin JC, Hjelmroos M, Jäger S, Leuschner RM. Atmospheric birch (Betula) pollen in Europe: Trends and fluctuations in annual quantities and the starting dates of the seasons.Grana. 1995;34:51–7. [DOI]
Spieksma FTM, Corden JM, Detandt M, Millington WM, Nikkels H, Nolard N, et al. Quantitative trends in annual totals of five common airborne pollen types (Betula, Quercus, Poaceae, Urtica, and Artemisia), at five pollen-monitoring stations in western Europe.Aerobiologia. 2003;19:171–84. [DOI]
Tagliaferro S, Marchetti P, Dall’Ara B, Domenichini F, Lazzarin S, Nicolis M, et al. Temporal trends of seasonal pollen indexes in a region of Northern Italy (2001–2022).Atmos Environ. 2024;338:120826. [DOI]
Thibaudon M, Besancenot JP. Outdoor aeroallergens and climate change.Rev Mal Respir. 2021;38:1025–36. French. [DOI] [PubMed]
Yli-Panula E, Fekedulegn DB, Green BJ, Ranta H. Analysis of Airborne Betula Pollen in Finland; a 31-Year Perspective.Int J Environ Res Public Health. 2009;6:1706–23. [DOI] [PubMed] [PMC]
Zhang Y, Bielory L, Georgopoulos PG. Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States.Int J Biometeorol. 2014;58:909–19. [DOI] [PubMed] [PMC]
Zhang Y, Bielory L, Mi Z, Cai T, Robock A, Georgopoulos P. Allergenic pollen season variations in the past two decades under changing climate in the United States.Glob Chang Biol. 2015;21:1581–9. [DOI] [PubMed] [PMC]
Ziello C, Sparks TH, Estrella N, Belmonte J, Bergmann KC, Bucher E, et al. Changes to airborne pollen counts across Europe.PLoS One. 2012;7:e34076. [DOI] [PubMed] [PMC]
Cristofolini F, Anelli P, Billi BM, Bocchi C, Borney MF, Bucher E, et al. Temporal trends in airborne pollen seasonality: evidence from the Italian POLLnet network data.Aerobiologia. 2020;36:63–70. [DOI]
Frei T. Climate change in Switzerland: Impact on hazel, birch, and grass pollen on the basis of half a century of pollen records (1969 – 2018).Allergol Select. 2020;4:69–75. [DOI] [PubMed] [PMC]
Manangan A, Brown C, Saha S, Bell J, Hess J, Uejio C, et al. Long-term pollen trends and associations between pollen phenology and seasonal climate in Atlanta, Georgia (1992-2018).Ann Allergy Asthma Immunol. 2021;127:471–80.e4. [DOI] [PubMed] [PMC]
Pipiraitė-Januškienė S, Rimkus E, Šaulienė I, Šukienė L. Changes in pollen season duration and their relationship with meteorological conditions in Lithuania.Atmos Environ: X. 2025;28:100397. [DOI]
Schinko HAE, Lamprecht B, Schmidt R. How will climate change alter the dynamics of airborne pollen and pollen load of allergenic plants?Allergo J Int. 2021;30:96–108. [DOI]
Albertini R, Coluccia A, Mohieldin Mahgoub Ibrahim M, Colucci ME, Zoni R, Affanni Pq, et al. The Impact of Climate Change on the Spread of Airborne Pollen in Northern Italy - The Results Of 27 Years of Monitoring in Parma.Preprints [Preprint]. 2025 [cited 2025 Jul 21]. Available from: https://doi.org/10.20944/preprints202501.1624.v1
Eeftens M, Tummon F. Pollen allergy and the impact of a changing climate.Swiss Acad Factsheets. 2024;19. [DOI]
Bielory L, Zhang Y, Mi Z, Cai T, Georgopoulos PG. Tree (Oak and Birch) Season and Climate Change in the Continental United States (CONUS) from 2000 to 2050.J Allergy Clin Immunol. 2016;137:AB122. [DOI]
Zhang Y, Isukapalli S, Bielory L, Georgopoulos P. Bayesian Analysis of Climate Change Effects on Observed and Projected Airborne Levels of Birch Pollen.Atmos Environ (1994). 2013;68:64–73. [DOI] [PubMed] [PMC]
Chmielewski FM, Rötzer T. Response of tree phenology to climate change across Europe.Agric For Meteorol. 2001;108:101–12. [DOI]
Chmielewski FM, Rötzer T. Annual and spatial variability of the beginning of growing season in Europe in relation to air temperature changes.Clim Res. 2002;19:257–64. [DOI]
Clot B. Airborne birch pollen in Neuchâtel (Switzerland): onset, peak and daily patterns.Aerobiologia. 2001;17:25–9. [DOI]
Emberlin J, Mullins J, Corden J, Millington W, Brooke M, Savage M, et al. The trend to earlier birch pollen seasons in the U.K.: A biotic response to changes in weather conditions?Grana. 1997;36:29–33. [DOI]
Emberlin J, Detandt M, Gehrig R, Jaeger S, Nolard N, Rantio-Lehtimäki A. Responses in the start of Betula (birch) pollen seasons to recent changes in spring temperatures across Europe.Int J Biometeorol. 2002;46:159–70. [DOI] [PubMed]
Emberlin J, Laaidi M, Detandt M, Gehrig R, Jaeger S, Myszkowska D, et al. Climate Change and Evolution of the Pollen Content of the Air in Seven European Countries: the Example of Birch.Rev Fr Allergol Immunol Clin. 2007;47:57–63.
Veriankaite L, Šauliene I, Bukantis A. Analysis of changes in flowering phases and airborne pollen dispersion of the genus Betula (birch).J Environ Eng Landscape Manage. 2010;18:137–44. [DOI]
van Vliet AJH, Overeem A, De Groot RS, Jacobs AFG, Spieksma FTM. The influence of temperature and climate change on the timing of pollen release in the Netherlands.Int J Climatol. 2002;22:1757–67. [DOI]
Galan C, Oteros J. Airborne Pollen Trends during the 3 last decades in Spain. In: Proceedings of EGU General Assembly 2025; 2025 Apr 27–May 2; Vienna, Austria. 2025. [DOI]
Newnham RM, Sparks TH, Skjøth CA, Head K, Adams-Groom B, Smith M. Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit?Int J Biometeorol. 2013;57:391–400. [DOI] [PubMed]
Caffarra A, Zottele F, Gleeson E, Donnelly A. Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland.Int J Biometeorol. 2014;58:509–19. [DOI] [PubMed]
Beil I, Kreyling J, Meyer C, Lemcke N, Malyshev AV. Late to bed, late to rise—Warmer autumn temperatures delay spring phenology by delaying dormancy.Glob Chang Biol. 2021;27:5806–17. [DOI] [PubMed]
Myking T, Heide OM. Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens.Tree Physiol. 1995;15:697–704. [DOI] [PubMed]
Ziska LH. Impacts of Climate Change on Allergen Seasonality. In: Beggs PJ, editor. Impacts of Climate Change on Allergens and Allergic Diseases. Cambridge: Cambridge University Press; 2016. pp. 92–112. [DOI]
Asse D, Chuine I, Vitasse Y, Yoccoz NG, Delpierre N, Badeau V, et al. Warmer winters reduce the advance of tree spring phenology induced by warmer springs in the Alps.Agric For Meteorol. 2018;252:220–30. [DOI]
Damialis A, Halley JM, Gioulekas D, Vokou D. Long-term trends in atmospheric pollen levels in the city of Thessaloniki, Greece.Atmos Environ. 2007;41:7011–21. [DOI]
De Franco D, Di Menno di Bucchianico A, Travaglini A, Brighetti MA. 1997–2016, Twenty Years of Pollen Monitoring Activity in Rome Tor Vergata (Rome South-East): Trends Analysis.Aerobiology. 2024;2:105–17. [DOI]
Frenguelli G. Interactions between climatic changes and allergenic plants.Monaldi Arch Chest Dis. 2002;57:141–3. [PubMed]
Novo-Lourés M, Fernández-González M, Pavón R, Espinosa KCS, Laza R, Guada G, et al. Alnus Airborne Pollen Trends during the Last 26 Years for Improving Machine Learning-Based Forecasting Methods.Forests. 2023;14:1586. [DOI]
Ščevková J, Dušička J, Hrabovský M, Vašková Z. Trends in pollen season characteristics of Alnus, Poaceae and Artemisia allergenic taxa in Bratislava, central Europe.Aerobiologia. 2021;37:707–17. [DOI]
Velasco-Jiménez MJ, Alcázar P, Díaz de la Guardia C, Trigo MdM, de Linares C, Recio M, et al. Pollen season trends in winter flowering trees in South Spain.Aerobiologia. 2020;36:213–24. [DOI]
Charpin D, Pichot C, Belmonte J, Sutra JP, Zidkova J, Chanez P, et al. Cypress Pollinosis: from Tree to Clinic.Clin Rev Allergy Immunol. 2019;56:174–95. [DOI] [PubMed]
Asero R, Ceriotti V, Bonini M. Cypress pollen allergy in Milan: the story of an ongoing growth.Eur Ann Allergy Clin Immunol. 2021;53:209–13. [DOI] [PubMed]
Cervigón P, Ferencova Z, Cascón Á, Romero-Morte J, Galán Díaz J, Sabariego S, et al. Progressive pollen calendar to detect long-term changes in the biological air quality of cities in the Madrid Region, Spain.Landscape Urban Plann. 2024;247:105053. [DOI]
Cristofolini F, Cristofori A, Corradini S, Gottardini E. The impact of temperature on increased airborne pollen and earlier onset of the pollen season in Trentino, Northern Italy.Reg Environ Change. 2024;24:60. [DOI]
García-Mozo H, Oteros JA, Galán C. Impact of land cover changes and climate on the main airborne pollen types in Southern Spain.Sci Total Environ. 2016;548-549:221–8. [DOI] [PubMed]
Levetin E. Aeroallergens and Climate Change in Tulsa, Oklahoma: Long-Term Trends in the South Central United States.Front Allergy. 2021;2:726445. [DOI] [PubMed] [PMC]
López-Orozco R, García-Mozo H, Oteros J, Galán C. Long-term trends and influence of climate and land-use changes on pollen profiles of a Mediterranean oak forest.Sci Total Environ. 2023;897:165400. [DOI] [PubMed]
Ruiz-Valenzuela L, Aguilera F. Trends in airborne pollen and pollen-season-related features of anemophilous species in Jaen (south Spain): A 23-year perspective.Atmos Environ. 2018;180:234–43. [DOI]
Subiza J, Cabrera M, Jm CR, Jc C, Mj N. Influence of climate change on airborne pollen concentrations in Madrid, 1979–2018.Clin Exp Allergy. 2022;52:574–7. [DOI] [PubMed]
Montiel N, Hidalgo PJ, Adame JA, González-Minero F. Pollen season variations among anemophilous species in an Atlantic-influenced mediterranean environment: a long term study (1993–2022).Int J Biometeorol. 2025;69:109–22. [DOI] [PubMed] [PMC]
Silva-Palacios I, Fernández-Rodríguez S, Durán-Barroso P, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo Á. Temporal modelling and forecasting of the airborne pollen of Cupressaceae on the southwestern Iberian Peninsula.Int J Biometeorol. 2016;60:297–306. [DOI] [PubMed]
Torrigiani Malaspina T, Moriondo M, Bindi M, Cecchi L, Orlandini S. A PHENOLOGICAL MODEL TO EVALUATE THE IMPACT OF THE EXPECTED CLIMATE CHANGE ON CUPRESSACEAE MAIN POLLEN SEASON IN CENTRAL ITALY.Ital J Agrometeorol. 2007;3:45–51.
García-Mozo H, Yaezel L, Oteros J, Galán C. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.Sci Total Environ. 2014;473–474:103–9. [DOI] [PubMed]
Negrini AC, Negrini S, Giunta V, Quaglini S, Ciprandi G. Thirty-year survey on airborne pollen concentrations in Genoa, Italy: relationship with sensitizations, meteorological data, and air pollution.Am J Rhinol Allergy. 2011;25:e232–41. [DOI] [PubMed]
Aguilera F, Orlandi F, Ruiz-Valenzuela L, Msallem M, Fornaciari M. Analysis and interpretation of long temporal trends in cumulative temperatures and olive reproductive features using a seasonal trend decomposition procedure.Agric For Meteorol. 2015;203:208–16. [DOI]
Aguilera F, Orlandi F, Ruiz L, Galán C, Mozo HG, Bonofiglio T, et al. La floración del olivo (Olea europea L.) como elemento bioindicador de cambios en el clima mediterráneo: análisis preliminar.In: El Aceite de Oliva. Actas Simposio Expoliva; 2013 May 8–11; Jaén, Spain. 2013.
Galán C, García-Mozo H, Vázquez L, Ruiz L, de la Guardia CD, Trigo MM. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change.Int J Biometeorol. 2005;49:184–8. [DOI] [PubMed]
Alarcón M, Casas-Castillo MDC, Rodríguez-Solà R, Periago C, Belmonte J. Projections of the start of the airborne pollen season in Barcelona (NE Iberian Peninsula) over the 21st century.Sci Total Environ. 2024;937:173363. [DOI] [PubMed]
Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galán C, Msallem M, Dhiab AB, et al. Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region.Int J Biometeorol. 2015;59:629–41. [DOI] [PubMed]
Avolio E, Orlandi F, Bellecci C, Fornaciari M, Federico S. Assessment of the impact of climate change on the olive flowering in Calabria (southern Italy).Theor Appl Climatol. 2012;107:531–40. [DOI]
Bonofiglio T, Orlandi F, Ruga L, Romano B, Fornaciari M. Climate change impact on the olive pollen season in Mediterranean areas of Italy: air quality in late spring from an allergenic point of view.Environ Monit Assess. 2013;185:877–90. [DOI] [PubMed]
Osborne CP, Chuine I, Viner D, Woodward FI. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean.Plant, Cell Environ. 2000;23:701–10. [DOI]
Oduber F, Calvo AI, Blanco-Alegre C, Castro A, Vega-Maray AM, Valencia-Barrera RM, et al. Links between recent trends in airborne pollen concentration, meteorological parameters and air pollutants.Agric For Meteorol. 2019;264:16–26. [DOI]
Ščevková J, Štefániková N, Dušička J, Lafférsová J, Zahradníková E. Long-term pollen season trends of Fraxinus (ash), Quercus (oak) and Ambrosia artemisiifolia (ragweed) as indicators of anthropogenic climate change impact.Environ Sci Pollut Res Int. 2024;31:43238–48. [DOI] [PubMed] [PMC]
Schneiter D, Bernard B, Defila C, Gehrig R. Effect of climatic changes on the phenology of plants and the presence of pollen in the air in Switzerland.Allerg Immunol (Paris). 2002;34:113–6. French. [PubMed]
D’Amato G, Cecchi L, Bonini S, Nunes C, Annesi-Maesano I, Behrendt H, et al. Allergenic pollen and pollen allergy in Europe.Allergy. 2007;62:976–90. [DOI] [PubMed]
Emberlin J, Savage M, Jones S. Annual variations in grass pollen seasons in London 1961–1990: trends and forecast models.Clin Exp Allergy. 1993;23:911–8. [DOI] [PubMed]
Ghitarrini S, Galán C, Frenguelli G, Tedeschini E. Phenological analysis of grasses (Poaceae) as a support for the dissection of their pollen season in Perugia (Central Italy).Aerobiologia. 2017;33:339–49. [DOI]
Jato V, Rodríguez-Rajo FJ, Seijo MC, Aira MJ. Poaceae pollen in Galicia (N.W. Spain): characterisation and recent trends in atmospheric pollen season.Int J Biometeorol. 2009;53:333–44. [DOI] [PubMed]
Sofia G, Emma T, Veronica T, Giuseppe F. Climate change: consequences on the pollination of grasses in Perugia (Central Italy). A 33-year-long study.Int J Biometeorol. 2017;61:149–58. [DOI] [PubMed]
Albertine JM, Manning WJ, DaCosta M, Stinson KA, Muilenberg ML, Rogers CA. Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels.PLoS One. 2014;9:e111712. [DOI] [PubMed] [PMC]
García-Mozo H, Galán C, Alcázar P, de la Guardia CD, Nieto-Lugilde D, Recio M, et al. Trends in grass pollen season in southern Spain.Aerobiologia. 2010;26:157–69. [DOI]
Bogawski P, Grewling L, Nowak M, Smith M, Jackowiak B. Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznań (Western Poland).Int J Biometeorol. 2014;58:1759–68. [DOI] [PubMed] [PMC]
Caeiro ERG, Camacho RAP, Ferreira MB, Carreiro-Martins P, Camacho IGC. Trends in airborne grass pollen in Évora City (Portugal).Aerobiologia. 2024;40:175–89. [DOI]
Voltolini S, Minale P, Troise C, Bignardi D, Modena P, Arobba D, et al. Trend of herbaceous pollen diffusion and allergic sensitisation in Genoa, Italy.Aerobiologia. 2000;16:245–9. [DOI]
Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, et al. Regional variations in grass pollen seasons in the UK, long-term trends and forecast models.Clin Exp Allergy. 1999;29:347–56. [DOI] [PubMed]
Iwanycki Ahlstrand N, Elvery HM, Primack RB. Grass flowering times determined using herbarium specimens for modeling grass pollen under a warming climate.Sci Total Environ. 2023;885:163824. [DOI] [PubMed]
Emberlin J, Jaeger S, Dominguez-Vilches E, Soldevilla CG, Hodal L, Mandrioli P, et al. Temporal and geographical variations in grass pollen seasons in areas of west0ern Europe: an analysis of season dates at sites of the European pollen information system.Aerobiologia. 2000;16:373–9. [DOI]
Recio M, Rodríguez-Rajo FJ, Jato MV, Trigo MM, Cabezudo B. The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo.Climatic Change. 2009;97:215–28. [DOI]
Ariano R, Cecchi L, Voltolini S, Quercia O, Scopano E, Ciprandi G; AAIITO Study group on Pollen Allergy. Parietaria pollination duration: myth or fact?Eur Ann Allergy Clin Immunol. 2017;49:6–10. [PubMed]
Cariñanos P, Díaz de la Guardia C, Algarra JA, De Linares C, Irurita JM. The pollen counts as bioindicator of meteorological trends and tool for assessing the status of endangered species: the case of Artemisia in Sierra Nevada (Spain).Climatic Change. 2013;119:799–813. [DOI]
Munuera Giner M, Carrión García JS, García Sellés J. Aerobiology of Artemisia airborne pollen in Murcia (SE Spain) and its relationship with weather variables: annual and intradiurnal variations for three different species. Wind vectors as a tool in determining pollen origin.Int J Biometeorol. 1999;43:51–63. [DOI] [PubMed]
Cristofori A, Bucher E, Rossi M, Cristofolini F, Kofler V, Prosser F, et al. The late flowering of invasive species contributes to the increase of Artemisia allergenic pollen in autumn: an analysis of 25 years of aerobiological data (1995–2019) in Trentino-Alto Adige (Northern Italy).Aerobiologia. 2020;36:669–82. [DOI]
Grewling Ł, Šikoparija B, Skjøth CA, Radišić P, Apatini D, Magyar D, et al. Variation in Artemisia pollen seasons in Central and Eastern Europe.Agric For Meteorol. 2012;160:48–59. [DOI]
Wan S, Yuan T, Bowdish S, Wallace L, Russell SD, Luo Y. Response of an allergenic species, Ambrosia psilostachya (Asteraceae), to experimental warming and clipping: implications for public health.Am J Bot. 2002;89:1843–6. [DOI] [PubMed]
Howard LE, Levetin E. Ambrosia pollen in Tulsa, Oklahoma: aerobiology, trends, and forecasting model development.Ann Allergy Asthma Immunol. 2014;113:641–6. [DOI] [PubMed]
Deen W, Hunt T, Swanton CJ. Influence of temperature, photoperiod, and irradiance on the phenological development of common ragweed (Ambrosia artemisiifolia).Weed Sci. 1998;46:555–60. [DOI]
Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, et al. Recent warming by latitude associated with increased length of ragweed pollen season in central North America.Proc Natl Acad Sci U S A. 2011;108:4248–51. [DOI] [PubMed] [PMC]
Hamaoui-Laguel L, Vautard R, Liu L, Solmon F, Viovy N, Khvorostyanov D, et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe.Nature Clim Change. 2015;5:766–71. [DOI]
Lake IR, Jones NR, Agnew M, Goodess CM, Giorgi F, Hamaoui-Laguel L, et al. Climate Change and Future Pollen Allergy in Europe.Environ Health Perspect. 2017;125:385–91. [DOI] [PubMed] [PMC]
Dhar MG, Portnoy JM, Barnes CS. Increasing Length of Ragweed Season in the Central Midwest.J Allergy Clin Immunol. 2018;141:AB84. [DOI]
Choi YJ, Lee KS, Oh JW. The Impact of Climate Change on Pollen Season and Allergic Sensitization to Pollens.Immunol Allergy Clin North Am. 2021;41:97–109. [DOI] [PubMed]
Antico A, Bocchi C, Ariano R. Allergy in the Po Valley: evolution of sensitization profiles and phenology throughout 33 years and possible relationship with climate change.Explor Asthma Allergy. 2024;2:511–28. [DOI]
Jungles K, Singh K, Armana S, Juarez C, Pacheco S, Mahdavinia M. CHANGE OF SENSITIZATION PATTERNS TO POLLENS OVER THE PAST DECADE.Ann Allergy, Asthma Immunol. 2024;133:S94–5. [DOI]
Thien F, Davies JM, Douglass JA, Hew M. Thunderstorm Asthma: Current Perspectives and Emerging Trends.J Allergy Clin Immunol Pract. 2025;13:1273–80. [DOI] [PubMed]
Poole JA, Nadeau KC. Climate Change and the Practice of Allergy and Immunology.J Allergy Clin Immunol Pract. 2025;13:295–7. [DOI] [PubMed]