Inhibition of human recombinant poly(adenosine diphosphate ribose) polymerase (PARP)-1 by some synthetic nucleoside analogs with different carbohydrate moiety
This research was funded by the Program of Fundamental Research in the Russian Federation for the 2021–2030 period “Development of biologically active analogues of natural compounds with potential use in pharmaceutics and biomedicine” [project No. 124022200001-4]. The funders had roles in data collection and analysis, but had no role in study design, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
McCown PJ, Ruszkowska A, Kunkler CN, Breger K, Hulewicz JP, Wang MC, et al. Naturally occurring modified ribonucleosides.Wiley Interdiscip Rev RNA. 2020;11:e1595. [DOI] [PubMed] [PMC]
Tong J, Flavell RA, Li HB. RNA m6A modification and its function in diseases.Front Med. 2018;12:481–9. [DOI] [PubMed]
Mathews CK, van Holde KE. Biochemistry. 2nd ed. Menlo Park: Benjamin/Cummings Pub. Co.; 1996.
Cantara WA, Crain PF, Rozenski J, McCloskey JA, Harris KA, Zhang X, et al. The RNA Modification Database, RNAMDB: 2011 update.Nucleic Acids Res. 2011;39:D195–201. [DOI] [PubMed] [PMC]
Zhang M, Lu Z. tRNA modifications: greasing the wheels of translation and beyond.RNA Biol. 2025;22:1–25. [DOI] [PubMed]
Schultz SK, Kothe U. Chapter Ten - Partially modified tRNAs for the study of tRNA maturation and function. In: Jackman JE, editor. Methods in Enzymology. Academic Press; 2021. pp. 225–50. [DOI] [PubMed]
D’Amours D, Desnoyers S, D’Silva I, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.Biochem J. 1999;342:249–68. [DOI] [PubMed] [PMC]
Efimtseva EV, Kulikova IV, Mikhailov SN. Disaccharide Nucleosides and their Incorporation into Oligonucleotides.Curr Org Chem. 2007;11:337–54. [DOI]
Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule.Nat Rev Mol Cell Biol. 2006;7:517–28. [DOI] [PubMed]
Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond.Nat Rev Cancer. 2010;10:293–301. [DOI] [PubMed] [PMC]
Langelier MF, Pascal JM. PARP-1 mechanism for coupling DNA damage detection to poly(ADP-ribose) synthesis.Curr Opin Struct Biol. 2013;23:134–43. [DOI] [PubMed] [PMC]
Miwa M, Masutani M. PolyADP-ribosylation and cancer.Cancer Sci. 2007;98:1528–35. [DOI] [PubMed] [PMC]
Hassa PO, Haenni SS, Elser M, Hottiger MO. Nuclear ADP-ribosylation reactions in mammalian cells: where are we today and where are we going?Microbiol Mol Biol Rev. 2006;70:789–829. [DOI] [PubMed] [PMC]
Reber JM, Mangerich A. Why structure and chain length matter: on the biological significance underlying the structural heterogeneity of poly(ADP-ribose).Nucleic Acids Res. 2021;49:8432–48. [DOI] [PubMed] [PMC]
Teloni F, Altmeyer M. Readers of poly(ADP-ribose): designed to be fit for purpose.Nucleic Acids Res. 2016;44:993–1006. [DOI] [PubMed] [PMC]
Minnee H, Codée JDC, Filippov DV. Mono-ADP-Ribosylation of Peptides: An Overview of Synthetic and Chemoenzymatic Methodologies.Chembiochem. 2024;25:e202400440. [DOI] [PubMed] [PMC]
Ariza A, Liu Q, Cowieson NP, Ahel I, Filippov DV, Rack JGM. Evolutionary and molecular basis of ADP-ribosylation reversal by zinc-dependent macrodomains.J Biol Chem. 2024;300:107770. [DOI] [PubMed] [PMC]
Efimtseva EV, Kulikova IV, Mikhailov SN. Disaccharide nucleosides as an important group of natural compounds.Mol Biol. 2009;43:301–12. [DOI]
Rodionov AA, Efimtseva EV, Mikhailov SN, Rozenski J, Luyten I, Herdewijn P. Synthesis and properties of O-β-D-ribofuranosyl-(1''-2')-adenosine-5''-O-phosphate and its derivatives.Nucleosides Nucleotides Nucleic Acids. 2000;19:1847–59. [DOI] [PubMed]
Efimtseva EV, Shelkunova AA, Mikhailov SN, Nauwelaerts K, Rozenski J, Lescrinier E, et al. Synthesis and Properties of O-β-D-ribofuranosyl-(1''→2')-guanosine-5''- O-phosphate and Its Derivatives.Helv Chim Acta. 2003;86:504–14. [DOI]
Mikhailov SN, Efimtseva EV, Gurskaya GV, Fomitcheva MV, Meshkov SV, Zavodnik VE, et al. An Efficient Synthesis and Physico-Chemical Properties OF 2'-O-d-Ribofuranosylnuleosides, Minor tRNA Components.J Carbohydr Chem. 1997;16:75–92. [DOI]
Mikhailov SN, Efimtseva EV, Rodionov AA, Shelkunova AA, Rozenski J, Emmerechts G, et al. Synthesis of RNA containing O-β-D-ribofuranosyl-(1''—2')-adenosine-5''-phosphate and 1-methyladenosine, minor components of tRNA.Chem Biodivers. 2005;2:1153–63. [DOI] [PubMed]
Ferro AM, Oppenheimer NJ. Structure of a poly (adenosine diphosphoribose) monomer: 2'-(5''-hosphoribosyl)-5'-adenosine monophosphate.Proc Natl Acad Sci U S A. 1978;75:809–13. [DOI] [PubMed] [PMC]
Miwa M, Ishihara M, Takishima S, Takasuka N, Maeda M, Yamaizumi Z, et al. The branching and linear portions of poly(adenosine diphosphate ribose) have the same α(1→2) ribose-ribose linkage.J Biol Chem. 1981;256:2916–21. [DOI] [PubMed]
Minaga T, Kun E. Probable helical conformation of poly(ADP-ribose). The effect of cations on spectral properties.J Biol Chem. 1983;258:5726–30. [DOI] [PubMed]
Schultheisz HL, Szymczyna BR, Williamson JR. Enzymatic synthesis and structural characterization of 13C, 15N-poly(ADP-ribose).J Am Chem Soc. 2009;131:14571–8. [DOI] [PubMed] [PMC]
Fahrer J, Kranaster R, Altmeyer M, Marx A, Bürkle A. Quantitative analysis of the binding affinity of poly(ADP-ribose) to specific binding proteins as a function of chain length.Nucleic Acids Res. 2007;35:e143. [DOI] [PubMed] [PMC]
Brodie SA, Li G, Harvey D, Khuri FR, Vertino PM, Brandes JC. Small molecule inhibition of the CHFR-PARP1 interaction as novel approach to overcome intrinsic taxane resistance in cancer.Oncotarget. 2015;6:30773–86. [DOI] [PubMed] [PMC]
Kalisch T, Amé JC, Dantzer F, Schreiber V. New readers and interpretations of poly(ADP-ribosyl)ation.Trends Biochem Sci. 2012;37:381–90. [DOI] [PubMed] [PMC]
Krietsch J, Rouleau M, Pic É, Ethier C, Dawson TM, Dawson VL, et al. Reprogramming cellular events by poly(ADP-ribose)-binding proteins.Mol Aspects Med. 2013;34:1066–87. [DOI] [PubMed] [PMC]
Daniels CM, Ong SE, Leung AK. The Promise of Proteomics for the Study of ADP-Ribosylation.Mol Cell. 2015;58:911–24. [DOI] [PubMed] [PMC]
Sung VM. Mechanistic overview of ADP-ribosylation reactions.Biochimie. 2015;113:35–46. [DOI] [PubMed]
Gagné JP, Isabelle M, Lo KS, Bourassa S, Hendzel MJ, Dawson VL, et al. Proteome-wide identification of poly(ADP-ribose) binding proteins and poly(ADP-ribose)-associated protein complexes.Nucleic Acids Res. 2008;36:6959–76. [DOI] [PubMed] [PMC]
Kistemaker HA, Overkleeft HS, van der Marel GA, Filippov DV. Branching of poly(ADP-ribose): Synthesis of the Core Motif.Org Lett. 2015;17:4328–31. [DOI] [PubMed]
Drenichev MS, Mikhailov SN. Poly(ADP-ribose)—a unique natural polymer structural features, biological role and approaches to the chemical synthesis.Nucleosides Nucleotides Nucleic Acids. 2015;34:258–76. [DOI] [PubMed]
Drenichev MS, Mikhailov SN. Poly(ADP-ribose): From chemical synthesis to drug design.Bioorg Med Chem Lett. 2016;26:3395–403. [DOI] [PubMed]
Meyer RG, Meyer-Ficca ML, Jacobson EL, Jacobson MK. Enzymes in Poly(ADP-Ribose) Metabolism. In: Bürkle A, editor. Poly(ADP-Ribosyl)ation. Boston, MA: Springer US; 2006. pp. 1–12. [DOI]
Sukhanova MV, Lavrik OI, Khodyreva SN. Poly(ADP-ribose) polymerase-1 as a regulator of protein-nucleic acid interactions in the processes responding to genotoxic action.Mol Biol (Mosk). 2004;38:834–47. Russian. [PubMed]
Bonicalzi ME, Haince JF, Droit A, Poirier GG. Poly-ADP-ribosylation in health and disease. Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when?Cell Mol Life Sci. 2005;62:739–50. [DOI] [PubMed] [PMC]
Barkauskaite E, Brassington A, Tan ES, Warwicker J, Dunstan MS, Banos B, et al. Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities.Nat Commun. 2013;4:2164. [DOI] [PubMed] [PMC]
Oka J, Ueda K, Hayaishi O, Komura H, Nakanishi K. ADP-ribosyl protein lyase. Purification, properties, and identification of the product.J Biol Chem. 1984;259:986–95. [DOI] [PubMed]
Bürkle A. Poly(ADP-Ribosyl)ation. 1st ed. Springer New York, NY; 2006. [DOI]
Tan ES, Krukenberg KA, Mitchison TJ. Large-scale preparation and characterization of poly(ADP-ribose) and defined length polymers.Anal Biochem. 2012;428:126–36. [DOI] [PubMed] [PMC]
Langelier MF, Mirhasan M, Gilbert K, Sverzhinksy A, Furtos A, Pascal JM. PARP enzyme de novo synthesis of protein-free poly(ADP-ribose).Mol Cell. 2024;84:4758–73.e6. [DOI] [PubMed] [PMC]
Vorbrüggen H, Ruh-Pohlenz C. Handbook of Nucleoside Synthesis. John Wiley & Sons; 2001.
Mikhailov SN, Kulikova IV, Nauwelaerts K, Herdewijn P. Synthesis of 2'-O-α-D-ribofuranosyladenosine, monomeric unit of poly(ADP–ribose).Tetrahedron. 2008;64:2871–6. [DOI]
Drenichev MS, Kulikova IV, Bobkov GV, Tararov VI, Mikhailov SN. A New Protocol for Selective Cleavage of Acyl Protecting Groups in 2'-O-Modified 3',5'-O-(Tetraisopropyldisiloxane-1,3-diyl)ribonucleosides.Synthesis. 2010:3827–34. [DOI]
Mikhailov SN, Drenichev MS, Oslovsky VE, Kulikova IV, Herdewijn P. Synthesis of Poly(ADP-ribose) Monomer Containing 2'-O-α-D-Ribofuranosyl Adenosine.Curr Protoc Nucleic Acid Chem. 2019;78:e92. [DOI] [PubMed]
van der Heden van Noort GJ, Overkleeft HS, van der Marel GA, Filippov DV. Ribosylation of adenosine: an orthogonally protected building block for the synthesis of ADP-ribosyl oligomers.Org Lett. 2011;13:2920–3. [DOI] [PubMed]
Lambrecht MJ, Brichacek M, Barkauskaite E, Ariza A, Ahel I, Hergenrother PJ. Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase.J Am Chem Soc. 2015;137:3558–64. [DOI] [PubMed] [PMC]
Kistemaker HA, Lameijer LN, Meeuwenoord NJ, Overkleeft HS, van der Marel GA, Filippov DV. Synthesis of well-defined adenosine diphosphate ribose oligomers.Angew Chem Int Ed Engl. 2015;54:4915–8. [DOI] [PubMed]
Kar A, Ghosh P, Gautam A, Chowdhury S, Basak D, Sarkar I, et al. CD38-RyR2 axis-mediated signaling impedes CD8+ T cell response to anti-PD1 therapy in cancer.Proc Natl Acad Sci U S A. 2024;121:e2315989121. [DOI] [PubMed] [PMC]
Takasawa S. CD38–Cyclic ADP-Ribose Signal System in Physiology, Biochemistry, and Pathophysiology.Int J Mol Sci. 2022;23:4306. [DOI] [PubMed] [PMC]
Yong J, Cai S, Zeng Z. Targeting NAD+ metabolism: dual roles in cancer treatment.Front Immunol. 2023;14:1269896. [DOI] [PubMed] [PMC]
Moreau C, Ashamu GA, Bailey VC, Galione A, Guse AH, Potter BV. Synthesis of cyclic adenosine 5'-diphosphate ribose analogues: a C2' endo/syn “southern” ribose conformation underlies activity at the sea urchin cADPR receptor.Org Biomol Chem. 2011;9:278–90. [DOI] [PubMed] [PMC]
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD+–ADPr-Dependent Systems in the Virus World.Viruses. 2022;14:1977. [DOI] [PubMed] [PMC]
Eastman S, Bayless A, Guo M. The Nucleotide Revolution: Immunity at the Intersection of Toll/Interleukin-1 Receptor Domains, Nucleotides, and Ca2+.Mol Plant Microbe Interact. 2022;35:964–76. [DOI] [PubMed]
Rousset F, Osterman I, Scherf T, Falkovich AH, Leavitt A, Amitai G, et al. TIR signaling activates caspase-like immunity in bacteria.Science. 2025;387:510–6. [DOI] [PubMed]
Hengge R, Pruteanu M, Stülke J, Tschowri N, Turgay K. Recent advances and perspectives in nucleotide second messenger signaling in bacteria.Microlife. 2023;4:uqad015. [DOI] [PubMed] [PMC]
Dangl JL, Jones JDG. A common immune response node in diverse plants.Science. 2024;386:1344–6. [DOI] [PubMed]
Świeżawska-Boniecka B, Szmidt-Jaworska A. Phytohormones and cyclic nucleotides - Long-awaited couples?J Plant Physiol. 2023;286:154005. [DOI] [PubMed]
Witte CP, Herde M. Nucleotides and nucleotide derivatives as signal molecules in plants.J Exp Bot. 2024;75:6918–38. [DOI] [PubMed]
Kirchberger T, Moreau C, Wagner GK, Fliegert R, Siebrands CC, Nebel M, et al. 8-Bromo-cyclic inosine diphosphoribose: towards a selective cyclic ADP-ribose agonist.Biochem J. 2009;422:139–49. [DOI] [PubMed] [PMC]
Watt JM, Thomas MP, Potter BVL. Synthetic cADPR analogues may form only one of two possible conformational diastereoisomers.Sci Rep. 2018;8:15268. [DOI] [PubMed] [PMC]
Oslovsky VE, Drenichev MS, Mikhailov SN. Regioselective 1-N-Alkylation and Rearrangement of Adenosine Derivatives.Nucleosides Nucleotides Nucleic Acids. 2015;34:475–99. [DOI] [PubMed]
Huang S, Jia A, Song W, Hessler G, Meng Y, Sun Y, et al. Identification and receptor mechanism of TIR-catalyzed small molecules in plant immunity.Science. 2022;377:eabq3297. [DOI] [PubMed]
Jia A, Huang S, Song W, Wang J, Meng Y, Sun Y, et al. TIR-catalyzed ADP-ribosylation reactions produce signaling molecules for plant immunity.Science. 2022;377:eabq8180. [DOI] [PubMed]
Ljungman M. Targeting the DNA damage response in cancer.Chem Rev. 2009;109:2929–50. [DOI] [PubMed]
Hou WH, Chen SH, Yu X. Poly-ADP ribosylation in DNA damage response and cancer therapy.Mutat Res Rev Mutat Res. 2019;780:82–91. [DOI] [PubMed] [PMC]
Chatterjee PK, Thiemermann C. Poly(ADP-Ribose) Polymerase and Ischemia-Reperfusion Injury. In: Bürkle A, editor. Poly(ADP-Ribosyl)ation. Boston, MA: Springer US; 2006. pp. 164–83. [DOI]
Szabó C. Role of Poly(ADP-Ribose) Polymerase Activation in the Pathogenesis of Inflammation and Circulatory Shock. In: Bürkle A, editor. Poly(ADP-Ribosyl)ation. Boston, MA: Springer US; 2006. pp. 184–202. [DOI]
Masutani M, Gunji A, Tsutsumi M, Ogawa K, Kamada N, Shirai T, et al. Role of Poly-ADP-Ribosylation in Cancer Development. In: Bürkle A, editor. Poly(ADP-Ribosyl)ation. Boston, MA: Springer US; 2006. pp. 203–17. [DOI]
Zhu H, Fang Z, Chen J, Yang Y, Gan J, Luo L, et al. PARP-1 and SIRT-1 are Interacted in Diabetic Nephropathy by Activating AMPK/PGC-1α Signaling Pathway.Diabetes Metab Syndr Obes. 2021;14:355–66. [DOI] [PubMed] [PMC]
Zampieri M, Bacalini MG, Barchetta I, Scalea S, Cimini FA, Bertoccini L, et al. Increased PARylation impacts the DNA methylation process in type 2 diabetes mellitus.Clin Epigenetics. 2021;13:114. [DOI] [PubMed] [PMC]
Zampieri M, Karpach K, Salerno G, Raguzzini A, Barchetta I, Cimini FA, et al. PAR level mediates the link between ROS and inflammatory response in patients with type 2 diabetes mellitus.Redox Biol. 2024;75:103243. [DOI] [PubMed] [PMC]
Ferraris DV. Evolution of poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors. From concept to clinic.J Med Chem. 2010;53:4561–84. [DOI] [PubMed]
Curtin NJ, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond.Mol Aspects Med. 2013;34:1217–56. [DOI] [PubMed] [PMC]
Zhang J, Gao Y, Zhang Z, Zhao J, Jia W, Xia C, et al. Multi-therapies Based on PARP Inhibition: Potential Therapeutic Approaches for Cancer Treatment.J Med Chem. 2022;65:16099–127. [DOI] [PubMed]
Langelier MF, Planck JL, Roy S, Pascal JM. Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity.J Biol Chem. 2011;286:10690–701. [DOI] [PubMed] [PMC]
Dréan A, Lord CJ, Ashworth A. PARP inhibitor combination therapy.Crit Rev Oncol Hematol. 2016;108:73–85. [DOI] [PubMed]
Hu X, Zhang J, Zhang Y, Jiao F, Wang J, Chen H, et al. Dual-target inhibitors of poly (ADP-ribose) polymerase-1 for cancer therapy: Advances, challenges, and opportunities.Eur J Med Chem. 2022;230:114094. [DOI] [PubMed]
Ménissier de Murcia J, Ricoul M, Tartier L, Niedergang C, Huber A, Dantzer F, et al. Functional interaction between PARP-1 and PARP-2 in chromosome stability and embryonic development in mouse.EMBO J. 2003;22:2255–63. [DOI] [PubMed] [PMC]
Chernyshova I, Vasil’eva I, Moor N, Ivanisenko N, Kutuzov M, Abramova T, et al. Aminomethylmorpholino Nucleosides as Novel Inhibitors of PARP1 and PARP2: Experimental and Molecular Modeling Analyses of Their Selectivity and Mechanism of Action.Int J Mol Sci. 2024;25:12526. [DOI] [PubMed] [PMC]
Efremova AS, Zakharenko AL, Shram SI, Kulikova IV, Drenichev MS, Sukhanova MV, et al. Disaccharide pyrimidine nucleosides and their derivatives: a novel group of cell-penetrating inhibitors of poly(ADP-ribose) polymerase 1.Nucleosides Nucleotides Nucleic Acids. 2013;32:510–28. [DOI] [PubMed]
Zheng M, Mex M, Götz KH, Marx A. Synthesis of disaccharide nucleoside analogues as potential poly(ADP-ribose) polymerase-1 inhibitors.Org Biomol Chem. 2018;16:8904–7. [DOI] [PubMed]
Efremova AS, Shram SI, Drenichev MS, Posypanova GA, Myasoedov NF, Mikhailov SN. The selective toxic effect of dialdehyde derivatives of pyrimidine nucleosides on human ovarian cancer cells.Biochem Moscow Suppl Ser B. 2014;8:318–22. [DOI]
Dias MP, Moser SC, Ganesan S, Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy.Nat Rev Clin Oncol. 2021;18:773–91. [DOI] [PubMed]
Huang P, Chen G, Jin W, Mao K, Wan H, He Y. Molecular Mechanisms of Parthanatos and Its Role in Diverse Diseases.Int J Mol Sci. 2022;23:7292. [DOI] [PubMed] [PMC]
Lambert SM, Watters JI. The Complexes of Pyrophosphate Ion with Alkali Metal Ions.J Am Chem Soc. 1957;79:4262–5. [DOI]
Mueller-Dieckmann C, Kernstock S, Lisurek M, von Kries JP, Haag F, Weiss MS, et al. The structure of human ADP-ribosylhydrolase 3 (ARH3) provides insights into the reversibility of protein ADP-ribosylation.Proc Natl Acad Sci U S A. 2006;103:15026–31. [DOI] [PubMed] [PMC]
Nottbohm AC, Dothager RS, Putt KS, Hoyt MT, Hergenrother PJ. A colorimetric substrate for poly(ADP-ribose) polymerase-1, VPARP, and tankyrase-1.Angew Chem Int Ed Engl. 2007;46:2066–9. [DOI] [PubMed]
Wang Y, Rösner D, Grzywa M, Marx A. Chain-terminating and clickable NAD+ analogues for labeling the target proteins of ADP-ribosyltransferases.Angew Chem Int Ed Engl. 2014;53:8159–62. [DOI] [PubMed]
Groslambert J, Prokhorova E, Ahel I. ADP-ribosylation of DNA and RNA.DNA Repair (Amst). 2021;105:103144. [DOI] [PubMed] [PMC]
Rijpkema KJ, Schuller M, van der Veer MS, Rieken S, Chang DLR, Balić P, et al. Synthesis of Structural ADP-Ribose Analogues as Inhibitors for SARS-CoV-2 Macrodomain 1.Org Lett. 2024;26:5700–4. [DOI] [PubMed] [PMC]
Manik MK, Shi Y, Li S, Zaydman MA, Damaraju N, Eastman S, et al. Cyclic ADP ribose isomers: Production, chemical structures, and immune signaling.Science. 2022;377:eadc8969. [DOI] [PubMed]
Jiao X, Doamekpor SK, Bird JG, Nickels BE, Tong L, Hart RP, et al. 5' End Nicotinamide Adenine Dinucleotide Cap in Human Cells Promotes RNA Decay through DXO-Mediated deNADding.Cell. 2017;168:1015–27.e10. [DOI] [PubMed] [PMC]
Sylla B, Gauthier C, Legault J, Fleury PY, Lavoie S, Mshvildadze V, et al. Isolation of a new disaccharide nucleoside from Helleborus caucasicus: structure elucidation and total synthesis of hellecaucaside A and its β-anomer.Carbohydr Res. 2014;398:80–9. [DOI] [PubMed]
Munir A, Banerjee A, Shuman S. NAD+-dependent synthesis of a 5'-phospho-ADP-ribosylated RNA/DNA cap by RNA 2'-phosphotransferase Tpt1.Nucleic Acids Res. 2018;46:9617–24. [DOI] [PubMed] [PMC]
Munnur D, Bartlett E, Mikolčević P, Kirby IT, Rack JGM, Mikoč A, et al. Reversible ADP-ribosylation of RNA.Nucleic Acids Res. 2019;47:5658–69. [DOI] [PubMed] [PMC]
Drenichev MS, Bennett M, Novikov RA, Mansfield J, Smirnoff N, Grant M, et al. A role for 3'-O-β-D-ribofuranosyladenosine in altering plant immunity.Phytochemistry. 2019;157:128–34. [DOI] [PubMed] [PMC]
Bednarek P, Winter J, Hamberger B, Oldham NJ, Schneider B, Tan J, et al. Induction of 3'-O-β-D-ribofuranosyl adenosine during compatible, but not during incompatible, interactions of Arabidopsis thaliana or Lycopersicon esculentum with Pseudomonas syringae pathovar tomato.Planta. 2004;218:668–72. [DOI] [PubMed]