JH, SV, and AAS: Investigation, Validation. RAS: Writing—original draft. AHR: Methodology, Supervision. SA and PGM: Writing—review & editing. MZ and NK: Visualization. All authors read and approved the submitted version.
Conflicts of interest
The authors have no conflicts of interest to declare.
Ethical approval
Since the present study is a review study and no animal or clinical studies have been conducted, this issue is not covered in the current study. However, all ethical considerations regarding the design and publication of this research have been observed, and its ethics code is IR.TBZMED.VCR.REC.1401.108.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
The research protocol was approved and supported by the Student Research Committee, Tabriz University of Medical Sciences [Grant number 69635]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Shojaei Jeshvaghani F, Amani J, Kazemi R, Karimi Rahjerdi A, Jafari M, Abbasi S, et al. Oral immunization with a plant-derived chimeric protein in mice: Toward the development of a multipotent edible vaccine against E. coli O157: H7 and ETEC.Immunobiology. 2019;224:262–9. [DOI] [PubMed]
Zeitlin L, Cone RA, Whaley KJ. Using monoclonal antibodies to prevent mucosal transmission of epidemic infectious diseases.Emerg Infect Dis. 1999;5:54–64. [DOI] [PubMed] [PMC]
Jakobsen H, Jonsdottir I. Mucosal vaccination against encapsulated respiratory bacteria--new potentials for conjugate vaccines?Scand J Immunol. 2003;58:119–28. [DOI] [PubMed]
Patel GB, Zhou H, Ponce A, Chen W. Mucosal and systemic immune responses by intranasal immunization using archaeal lipid-adjuvanted vaccines.Vaccine. 2007;25:8622–36. [DOI] [PubMed]
Wurm FM. Production of recombinant protein therapeutics in cultivated mammalian cells.Nat Biotechnol. 2004;22:1393–8. [DOI] [PubMed]
Furness JB, Kunze WA, Clerc N. Nutrient tasting and signaling mechanisms in the gut. II. The intestine as a sensory organ: neural, endocrine, and immune responses.Am J Physiol. 1999;277:G922–8. [DOI] [PubMed]
Holmgren J, Czerkinsky C. Mucosal immunity and vaccines.Nat Med. 2005;11:S45–53. [DOI] [PubMed]
Sanders ME, Merenstein DJ, Ouwehand AC, Reid G, Salminen S, Cabana MD, et al. Probiotic use in at-risk populations.J Am Pharm Assoc (2003). 2016;56:680–6. [DOI] [PubMed]
Hirlekar R, Bhairy S. Edible vaccines: An advancement in oral immunization.Asian J Pharm Clin Res. 2017;10:71–7. [DOI]
Plotkin SA, Farquhar JD, Katz M, Buser F. Attenuation of RA 27-3 rubella virus in WI-38 human diploid cells.Am J Dis Child. 1969;118:178–85. [DOI] [PubMed]
Takahashi M, Okuno Y, Otsuka T, Osame J, Takamizawa A. Development of a live attenuated varicella vaccine.Biken J. 1975;18:25–33. [PubMed]
Minor PD. Live attenuated vaccines: Historical successes and current challenges.Virology. 2015;479–480:379–92. [DOI] [PubMed]
Holmgren J, Svennerholm AM, Clemens J, Sack D, Black R, Levine M. An oral B subunit-whole cell vaccine against cholera: from concept to successful field trial.Adv Exp Med Biol. 1987;216B:1649–60. [PubMed]
Glenny AT, Hopkins BE. Diphtheria toxoid as an immunising agent.Br J Exp Pathol. 1923;4:283–8. [PMC]
Ramon G. Sur le pouvoir floculant et sur les proprietes immunisantes d’une toxin diphterique rendu anatoxique (anatosine).C R Acad Sci Paris. 1923;177:1338–40.
World Health Organization. Global health sector strategy on viral hepatitis 2016-2021. Towards ending viral hepatitis. WHO; 2016.
Macpherson AJ, Smith K. Mesenteric lymph nodes at the center of immune anatomy.J Exp Med. 2006;203:497–500. [DOI] [PubMed] [PMC]
Chassaing B, Kumar M, Baker MT, Singh V, Vijay-Kumar M. Mammalian gut immunity.Biomed J. 2014;37:246–58. [DOI] [PubMed] [PMC]
Howe SE, Lickteig DJ, Plunkett KN, Ryerse JS, Konjufca V. The uptake of soluble and particulate antigens by epithelial cells in the mouse small intestine.PLoS One. 2014;9:e86656. [DOI] [PubMed] [PMC]
Hou Y, Li J, Wu Y. Modulation of oral vaccine efficacy by the gut microbiota.NPJ Vaccines. 2025;10:179. [DOI] [PubMed] [PMC]
Song KR, Lim JK, Park SE, Saluja T, Cho SI, Wartel TA, et al. Oral Cholera Vaccine Efficacy and Effectiveness.Vaccines (Basel). 2021;9:1482. [DOI] [PubMed] [PMC]
Tregnaghi MW, Abate HJ, Valencia A, Lopez P, Da Silveira TR, Rivera L, et al.; Rota-024 Study Group. Human rotavirus vaccine is highly efficacious when coadministered with routine expanded program of immunization vaccines including oral poliovirus vaccine in Latin America.Pediatr Infect Dis J. 2011;30:e103–8. [DOI] [PubMed]
Middleton BF, Fathima P, Snelling TL, Morris P. Systematic review of the effect of additional doses of oral rotavirus vaccine on immunogenicity and reduction in diarrhoeal disease among young children.EClinicalMedicine. 2022;54:101687. [DOI] [PubMed] [PMC]
Ferreira RB, Antunes LC, Finlay BB. Should the human microbiome be considered when developing vaccines?PLoS Pathog. 2010;6:e1001190. [DOI] [PubMed] [PMC]
Abt MC, Osborne LC, Monticelli LA, Doering TA, Alenghat T, Sonnenberg GF, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity.Immunity. 2012;37:158–70. [DOI] [PubMed] [PMC]
Naik S, Bouladoux N, Linehan JL, Han SJ, Harrison OJ, Wilhelm C, et al. Commensal-dendritic-cell interaction specifies a unique protective skin immune signature.Nature. 2015;520:104–8. [DOI] [PubMed] [PMC]
Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination.Immunity. 2014;41:478–92. [DOI] [PubMed] [PMC]
Eloe-Fadrosh EA, McArthur MA, Seekatz AM, Drabek EF, Rasko DA, Sztein MB, et al. Impact of oral typhoid vaccination on the human gut microbiota and correlations with s. Typhi-specific immunological responses.PLoS One. 2013;8:e62026. [DOI] [PubMed] [PMC]
Jurado A, Carballido J, Griffel H, Hochkeppel HK, Wetzel GD. The immunomodulatory effects of interferon-gamma on mature B-lymphocyte responses.Experientia. 1989;45:521–6. [DOI] [PubMed]
Huda MN, Lewis Z, Kalanetra KM, Rashid M, Ahmad SM, Raqib R, et al. Stool microbiota and vaccine responses of infants.Pediatrics. 2014;134:e362–72. [DOI] [PubMed] [PMC]
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns.Proc Natl Acad Sci U S A. 2010;107:11971–5. [DOI] [PubMed] [PMC]
Smith K, McCoy KD, Macpherson AJ. Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota.Semin Immunol. 2007;19:59–69. [DOI] [PubMed]
Pfeiffer JK, Virgin HW. Viral immunity. Transkingdom control of viral infection and immunity in the mammalian intestine.Science. 2016;351:10.1126/science.aad5872 aad5872. [DOI] [PubMed] [PMC]
Praharaj I, John SM, Bandyopadhyay R, Kang G. Probiotics, antibiotics and the immune responses to vaccines.Philos Trans R Soc Lond B Biol Sci. 2015;370:20140144. [DOI] [PubMed] [PMC]
Lazarus RP, John J, Shanmugasundaram E, Rajan AK, Thiagarajan S, Giri S, et al. The effect of probiotics and zinc supplementation on the immune response to oral rotavirus vaccine: A randomized, factorial design, placebo-controlled study among Indian infants.Vaccine. 2018;36:273–9. [DOI] [PubMed] [PMC]
Carmody RN, Gerber GK, Luevano JM Jr, Gatti DM, Somes L, Svenson KL, et al. Diet dominates host genotype in shaping the murine gut microbiota.Cell Host Microbe. 2015;17:72–84. [DOI] [PubMed] [PMC]
Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography.Nature. 2012;486:222–7. [DOI] [PubMed] [PMC]
De Santis S, Cavalcanti E, Mastronardi M, Jirillo E, Chieppa M. Nutritional Keys for Intestinal Barrier Modulation.Front Immunol. 2015;6:612. [DOI] [PubMed] [PMC]
Haque R, Snider C, Liu Y, Ma JZ, Liu L, Nayak U, et al. Oral polio vaccine response in breast fed infants with malnutrition and diarrhea.Vaccine. 2014;32:478–82. [DOI] [PubMed] [PMC]
Bhattacharjee A, Hand TW. Role of nutrition, infection, and the microbiota in the efficacy of oral vaccines.Clin Sci (Lond). 2018;132:1169–77. [DOI] [PubMed]
Sommer A. Vitamin a deficiency and clinical disease: an historical overview.J Nutr. 2008;138:1835–9. [DOI] [PubMed]
Green HN, Mellanby E. VITAMIN A AS AN ANTI-INFECTIVE AGENT.Br Med J. 1928;2:691–6. [DOI] [PubMed] [PMC]
Ross SA, McCaffery PJ, Drager UC, De Luca LM. Retinoids in embryonal development.Physiol Rev. 2000;80:1021–54. [DOI] [PubMed]
Iwata M, Hirakiyama A, Eshima Y, Kagechika H, Kato C, Song SY. Retinoic acid imprints gut-homing specificity on T cells.Immunity. 2004;21:527–38. [DOI] [PubMed]
Pino-Lagos K, Guo Y, Brown C, Alexander MP, Elgueta R, Bennett KA, et al. A retinoic acid-dependent checkpoint in the development of CD4+ T cell-mediated immunity.J Exp Med. 2011;208:1767–75. [DOI] [PubMed] [PMC]
Hammerschmidt SI, Ahrendt M, Bode U, Wahl B, Kremmer E, Förster R, et al. Stromal mesenteric lymph node cells are essential for the generation of gut-homing T cells in vivo.J Exp Med. 2008;205:2483–90. [DOI] [PubMed] [PMC]
Jyonouchi H, Sun S, Tomita Y, Gross MD. Astaxanthin, a carotenoid without vitamin A activity, augments antibody responses in cultures including T-helper cell clones and suboptimal doses of antigen.J Nutr. 1995;125:2483–92. [DOI] [PubMed]
Yang Y, Yuan Y, Tao Y, Wang W. Effects of vitamin A deficiency on mucosal immunity and response to intestinal infection in rats.Nutrition. 2011;27:227–32. [DOI] [PubMed]
Mora JR, Iwata M, Eksteen B, Song SY, Junt T, Senman B, et al. Generation of gut-homing IgA-secreting B cells by intestinal dendritic cells.Science. 2006;314:1157–60. [DOI] [PubMed]
Ao T, Kikuta J, Ishii M. The Effects of Vitamin D on Immune System and Inflammatory Diseases.Biomolecules. 2021;11:1624. [DOI] [PubMed] [PMC]
Abe E, Miyaura C, Sakagami H, Takeda M, Konno K, Yamazaki T, et al. Differentiation of mouse myeloid leukemia cells induced by 1 alpha,25-dihydroxyvitamin D3.Proc Natl Acad Sci U S A. 1981;78:4990–4. [DOI] [PubMed] [PMC]
Hart PH, Gorman S, Finlay-Jones JJ. Modulation of the immune system by UV radiation: more than just the effects of vitamin D?Nat Rev Immunol. 2011;11:584–96. [DOI] [PubMed]
Zamarron BF, Chen W. Dual roles of immune cells and their factors in cancer development and progression.Int J Biol Sci. 2011;7:651–8. [DOI] [PubMed] [PMC]
Baltaci AK, Mogulkoc R. Leptin and zinc relation: In regulation of food intake and immunity.Indian J Endocrinol Metab. 2012;16:S611–6. [DOI] [PubMed] [PMC]
Koyasu S, Moro K. Type 2 innate immune responses and the natural helper cell.Immunology. 2011;132:475–81. [DOI] [PubMed] [PMC]
Rink L, Kirchner H. Zinc-altered immune function and cytokine production.J Nutr. 2000;130:1407S–11S. [DOI] [PubMed]
Fernandes G, Nair M, Onoe K, Tanaka T, Floyd R, Good RA. Impairment of cell-mediated immunity functions by dietary zinc deficiency in mice.Proc Natl Acad Sci U S A. 1979;76:457–61. [DOI] [PubMed] [PMC]
Giddings G, Allison G, Brooks D, Carter A. Transgenic plants as factories for biopharmaceuticals.Nat Biotechnol. 2000;18:1151–5. [DOI] [PubMed]
Koya V, Moayeri M, Leppla SH, Daniell H. Plant-based vaccine: mice immunized with chloroplast-derived anthrax protective antigen survive anthrax lethal toxin challenge.Infect Immun. 2005;73:8266–74. [DOI] [PubMed] [PMC]
Arakawa T, Chong DK, Merritt JL, Langridge WH. Expression of cholera toxin B subunit oligomers in transgenic potato plants.Transgenic Res. 1997;6:403–13. [DOI] [PubMed]
Doshi V, Rawal H, Mukherjee S. Edible vaccines from GM crops: current status and future scope.J Pharma Sci Innovat. 2013;2:1–6.
Markowiak P, Śliżewska K. Effects of Probiotics, Prebiotics, and Synbiotics on Human Health.Nutrients. 2017;9:1021. [DOI] [PubMed] [PMC]
Trombert A. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: the future of vaccination?Benef Microbes. 2015;6:313–24. [DOI] [PubMed]
Gallo A, Passaro G, Gasbarrini A, Landolfi R, Montalto M. Modulation of microbiota as treatment for intestinal inflammatory disorders: An uptodate.World J Gastroenterol. 2016;22:7186–202. [DOI] [PubMed] [PMC]
LeCureux JS, Dean GA. Lactobacillus Mucosal Vaccine Vectors: Immune Responses against Bacterial and Viral Antigens.mSphere. 2018;3:e00061–18. [DOI] [PubMed] [PMC]
Smits HH, Engering A, van der Kleij D, de Jong EC, Schipper K, van Capel TM, et al. Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin.J Allergy Clin Immunol. 2005;115:1260–7. [DOI] [PubMed]
Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, et al. S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions.Proc Natl Acad Sci U S A. 2008;105:19474–9. [DOI] [PubMed] [PMC]
Thakur BK, Saha P, Banik G, Saha DR, Grover S, Batish VK, et al. Live and heat-killed probiotic Lactobacillus casei Lbs2 protects from experimental colitis through Toll-like receptor 2-dependent induction of T-regulatory response.Int Immunopharmacol. 2016;36:39–50. [DOI] [PubMed]
Eslami S, Hadjati J, Motevaseli E, Mirzaei R, Farashi Bonab S, Ansaripour B, et al. Lactobacillus crispatus strain SJ-3C-US induces human dendritic cells (DCs) maturation and confers an anti-inflammatory phenotype to DCs.APMIS. 2016;124:697–710. [DOI] [PubMed]
Johansson MA, Björkander S, Mata Forsberg M, Qazi KR, Salvany Celades M, Bittmann J, et al. Probiotic Lactobacilli Modulate Staphylococcus aureus-Induced Activation of Conventional and Unconventional T cells and NK Cells.Front Immunol. 2016;7:273. [DOI] [PubMed] [PMC]
Compare D, Rocco A, Coccoli P, Angrisani D, Sgamato C, Iovine B, et al. Lactobacillus casei DG and its postbiotic reduce the inflammatory mucosal response: an ex-vivo organ culture model of post-infectious irritable bowel syndrome.BMC Gastroenterol. 2017;17:53. [DOI] [PubMed] [PMC]
Sagheddu V, Uggeri F, Belogi L, Remollino L, Brun P, Bernabè G, et al. The Biotherapeutic Potential of Lactobacillus reuteri Characterized Using a Target-Specific Selection Process.Front Microbiol. 2020;11:532. [DOI] [PubMed] [PMC]
Sichetti M, De Marco S, Pagiotti R, Traina G, Pietrella D. Anti-inflammatory effect of multistrain probiotic formulation (L. rhamnosus, B. lactis, and B. longum).Nutrition. 2018;53:95–102. [DOI] [PubMed]
Solis B, Nova E, Gómez S, Samartín S, Mouane N, Lemtouni A, et al. The effect of fermented milk on interferon production in malnourished children and in anorexia nervosa patients undergoing nutritional care.Eur J Clin Nutr. 2002;56 Suppl 4:S27–33. [DOI] [PubMed]
Nova E, Toro O, Varela P, López-Vidriero I, Morandé G, Marcos A. Effects of a nutritional intervention with yogurt on lymphocyte subsets and cytokine production capacity in anorexia nervosa patients.Eur J Nutr. 2006;45:225–33. [DOI] [PubMed]
Chiang BL, Sheih YH, Wang LH, Liao CK, Gill HS. Enhancing immunity by dietary consumption of a probiotic lactic acid bacterium (Bifidobacterium lactis HN019): optimization and definition of cellular immune responses.Eur J Clin Nutr. 2000;54:849–55. [DOI] [PubMed]
Arunachalam K, Gill HS, Chandra RK. Enhancement of natural immune function by dietary consumption of Bifidobacterium lactis (HN019).Eur J Clin Nutr. 2000;54:263–7. [DOI] [PubMed]
Chen L, Zou Y, Peng J, Lu F, Yin Y, Li F, et al. Lactobacillus acidophilus suppresses colitis-associated activation of the IL-23/Th17 axis.J Immunol Res. 2015;2015:909514. [DOI] [PubMed] [PMC]
Gao C, Major A, Rendon D, Lugo M, Jackson V, Shi Z, et al. Histamine H2 Receptor-Mediated Suppression of Intestinal Inflammation by Probiotic Lactobacillus reuteri.mBio. 2015;6:e01358–15. [DOI] [PubMed] [PMC]
Dogi C, García G, De Moreno de LeBlanc A, Greco C, Cavaglieri L. Lactobacillus rhamnosus RC007 intended for feed additive: immune-stimulatory properties and ameliorating effects on TNBS-induced colitis.Benef Microbes. 2016;7:539–47. [DOI] [PubMed]
Tang Y, Wu Y, Huang Z, Dong W, Deng Y, Wang F, et al. Administration of probiotic mixture DM#1 ameliorated 5-fluorouracil-induced intestinal mucositis and dysbiosis in rats.Nutrition. 2017;33:96–104. [DOI] [PubMed]
Park J, Choi JW, Jhun J, Kwon JY, Lee BI, Yang CW, et al. Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development.J Med Food. 2018;21:215–24. [DOI] [PubMed]
Zhou X, Liu H, Zhang J, Mu J, Zalan Z, Hegyi F, et al. Protective effect of Lactobacillus fermentum CQPC04 on dextran sulfate sodium-induced colitis in mice is associated with modulation of the nuclear factor-κB signaling pathway.J Dairy Sci. 2019;102:9570–85. [DOI] [PubMed]
Choi SH, Lee SH, Kim MG, Lee HJ, Kim GB. Lactobacillus plantarum CAU1055 ameliorates inflammation in lipopolysaccharide-induced RAW264.7 cells and a dextran sulfate sodium-induced colitis animal model.J Dairy Sci. 2019;102:6718–25. [DOI] [PubMed]
Huang L, Zhao Z, Duan C, Wang C, Zhao Y, Yang G, et al. Lactobacillus plantarum C88 protects against aflatoxin B1-induced liver injury in mice via inhibition of NF-κB-mediated inflammatory responses and excessive apoptosis.BMC Microbiol. 2019;19:170. [DOI] [PubMed] [PMC]
Kanda T, Nishida A, Ohno M, Imaeda H, Shimada T, Inatomi O, et al. Enterococcus durans TN-3 Induces Regulatory T Cells and Suppresses the Development of Dextran Sulfate Sodium (DSS)-Induced Experimental Colitis.PLoS One. 2016;11:e0159705. [DOI] [PubMed] [PMC]
Levit R, Cortes-Perez NG, de Moreno de Leblanc A, Loiseau J, Aucouturier A, Langella P, et al. Use of genetically modified lactic acid bacteria and bifidobacteria as live delivery vectors for human and animal health.Gut Microbes. 2022;14:2110821. [DOI] [PubMed] [PMC]
Mierau I, Kleerebezem M. 10 years of the nisin-controlled gene expression system (NICE) in Lactococcus lactis.Appl Microbiol Biotechnol. 2005;68:705–17. [DOI] [PubMed]
Wu J, Xin Y, Kong J, Guo T. Genetic tools for the development of recombinant lactic acid bacteria.Microb Cell Fact. 2021;20:118. [DOI] [PubMed] [PMC]
Bermúdez-Humarán LG, Kharrat P, Chatel JM, Langella P. Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines.Microb Cell Fact. 2011;10 Suppl 1:S4. [DOI] [PubMed] [PMC]
Michon C, Langella P, Eijsink VG, Mathiesen G, Chatel JM. Display of recombinant proteins at the surface of lactic acid bacteria: strategies and applications.Microb Cell Fact. 2016;15:70. [DOI] [PubMed] [PMC]
Faghihkhorasani A, Ahmed HH, Mashool NM, Alwan M, Assefi M, Adab AH, et al. The potential use of bacteria and bacterial derivatives as drug delivery systems for viral infection.Virol J. 2023;20:222. [DOI] [PubMed] [PMC]
Lin J, Zou Y, Ma C, Liang Y, Ge X, Chen Z, et al. Construction and characterization of three protein-targeting expression system in Lactobacillus casei.FEMS Microbiol Lett. 2016;363:fnw041. [DOI] [PubMed]
Raheja G, Singh V, Ma K, Boumendjel R, Borthakur A, Gill RK, et al. Lactobacillus acidophilus stimulates the expression of SLC26A3 via a transcriptional mechanism.Am J Physiol Gastrointest Liver Physiol. 2010;298:G395–401. [DOI] [PubMed] [PMC]
Homayouni-Rad A, Abbasi A, Soleimani RA, Pouraga B. Could postbiotics substitute probiotics?Curr Nutr Food Sci. 2023;19:670–2. [DOI]
Homayouni Rad A, Aghebati Maleki L, Samadi Kafil H, Abbasi A. Postbiotics: A novel strategy in food allergy treatment.Crit Rev Food Sci Nutr. 2021;61:492–9. [DOI] [PubMed]
Milani PG, Soleimani RA, Khani N, Rad AH. Gut microbiota: a perspective for colorectal cancer.Gastrointest Nurs. 2023;21:26–31. [DOI]
Khani N, Bonyadi M, Soleimani RA, Raziabad RH, Ahmadi M, Homayouni-Rad A. Postbiotics: As a Promising Tools in the Treatment of Celiac Disease.Probiotics Antimicrob Proteins. 2025;17:1513–22. [DOI] [PubMed]
Khani N, Shakeri AH, Houshmandi S, Ziavand M, Abedi-Soleimani R, Hosseinzadeh N, et al. The Promising Biological Role of Postbiotics in Treating Human Infertility.Probiotics Antimicrob Proteins. 2025;17:2166–78. [DOI] [PubMed]
Ghazavi N, Abedi R. Using Lactobacillus acidophilus in production of probiotic pomegranate juice.J Food Sci Technol (Iran). 2018;15:107–99.
Khani N, Shirkhan F, Ashkezary MR, Sarabi Aghdam V, Soleimani RA, Shokouhian SMJ, et al. Functional Foods Based on Postbiotics as a Food Allergy Treatment.Foods. 2025;14:3584. [DOI] [PubMed] [PMC]
Homayouni-Rad A, Azizi A, Oroojzadeh P, Pourjafar H. Kluyveromyces marxianus as a probiotic yeast: A mini-review.Curr Nutr Food Sci. 2020;16:1163–9. [DOI]
Khani N, Shakeri AH, Bonyadi M, Khorrami R, Homayouni-Rad A. Microbial and Chemical Safety Aspects of Postbiotics: As their Tools in Improving Food Safety.Curr Nutr Food Sci. 2025;21:593–607. [DOI]
Khani N, Soleimani RA, Milani PG, Rad AH. Evaluation of the antifungal and antibiofilm activity of postbiotics derived from Lactobacillus spp. on Penicillium expansoum in vitro and in food model.Lett Appl Microbiol. 2023;76:ovad070. [DOI] [PubMed]
Khani N, Soleimani RA, Homayouni-Rad A. Potential of Postbiotics for the Biodegradation of Xenobiotics: A Review.Curr Nutr Food Sci. 2025;21:653–70. [DOI]
Khani N, Abedi Soleimani R, Chadorshabi S, Moutab BP, Milani PG, Rad AH. Postbiotics as candidates in biofilm inhibition in food industries.Lett Appl Microbiol. 2024;77:ovad069. [DOI] [PubMed]
Khani N, Shakeri AH, Moosavy MH, Soleymani Fard M, Abedi Soleimani R, Khorrami R, et al. Potential Application of Postbiotics as a Natural Preservative in Cheese.Probiotics Antimicrob Proteins. 2025;[Epub ahead of print]. [DOI] [PubMed]
Khani N, Noorkhajavi G, Reziabad RH, Rad AH, Ziavand M. Postbiotics as Potential Detoxification Tools for Mitigation of Pesticides.Probiotics Antimicrob Proteins. 2024;16:1427–39. [DOI] [PubMed]
Khani N, Noorkhajavi G, Soleiman RA, Raziabad RH, Rad AH, Akhlaghi AP. Aflatoxin Biodetoxification Strategies Based on Postbiotics.Probiotics Antimicrob Proteins. 2024;16:1673–86. [DOI] [PubMed]
Milani PG, Nazari A, Soleimani AA, Soleimani RA. Gut–liver axis and the impact of probiotics on neonatal jaundice symptoms: a review.Gastrointest Nurs. 2023;21(Sup6):S10–4. [DOI]
Vadaei S, Milani PG, Soleimani RA, Soleimani AA. Gut Microbiota: a Perspective for Postpartum Depression.Gastrointest Nurs. 2023;21:30–4. [DOI]
Milani PG, Vadaei S, Nazari A, Rezaie F, Soleimani RA, Rad AH. Anxiety and depression during the COVID-19 pandemic: role of the gut–brain axis.Gastrointest Nurs. 2023;21:18–24. [DOI]
Rahimi N, Soleimani RA, Milani PG, Vadaei S. The role of diet and microbiome in premenstrual syndrome.Gastrointest Nurs. 2024;22:34–40. [DOI]
Fiorino G, Allocca M, Furfaro F, Gilardi D, Zilli A, Radice S, et al. Inflammatory Bowel Disease Care in the COVID-19 Pandemic Era: The Humanitas, Milan, Experience.J Crohns Colitis. 2020;14:1330–3. [DOI] [PubMed] [PMC]
Homayouni-Rad A, Pouragha B, Houshyar J, Soleimani RA, Kazemi S, Keisan S, et al. Postbiotic application: a review on extraction, purification, and characterization methods.Food Bioprocess Technol. 2025;18:4153–74. [DOI]
Soleimani RA, Shokouhian SMJ, Houshyar J, Khani N, Abachi S, Milani PG, et al. Postbiotic bioactive packaging systems: A review.Curr Nutr Food Sci. 2024;20:296–304. [DOI]
Malagón-Rojas JN, Mantziari A, Salminen S, Szajewska H. Postbiotics for Preventing and Treating Common Infectious Diseases in Children: A Systematic Review.Nutrients. 2020;12:389. [DOI] [PubMed] [PMC]
Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimarães JT, Yılmaz N, et al. Postbiotics produced by lactic acid bacteria: The next frontier in food safety.Compr Rev Food Sci Food Saf. 2020;19:3390–415. [DOI] [PubMed]
Pacini S, Ruggiero M. Description of a novel probiotic concept: Implications for the modulation of the immune system.Am J Immunol. 2017;13:107–13.
Soleimani RA, Milani PG, Rad AH. The role of gut microbiota on obesity management: a review of the evidence.Gastrointest Nurs. 2024;22:26–32. [DOI]
Moossavi S, Miliku K, Sepehri S, Khafipour E, Azad MB. The Prebiotic and Probiotic Properties of Human Milk: Implications for Infant Immune Development and Pediatric Asthma.Front Pediatr. 2018;6:197. [DOI] [PubMed] [PMC]
Soleimani RA, Milani PG, Khani N, Homayouni-Rad A. The overlooked hazard: Clostridioides difficile in preterm infants and immature immune systems-harnessing postbiotics for safer therapeutic strategies.Lett Appl Microbiol. 2025;78:ovaf083. [DOI] [PubMed]
Soleimani RA, Salemkhoei S, Milani PG, Soleimani AA, Khayeri S. The role of gut microbiota and probiotics in managing hypertensive disorders of pregnancy.Gastrointest Nurs. 2025;23:42–8. [DOI]
Turroni F, Serafini F, Foroni E, Duranti S, O’Connell Motherway M, Taverniti V, et al. Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions.Proc Natl Acad Sci U S A. 2013;110:11151–6. [DOI] [PubMed] [PMC]
Al-Hassi HO, Mann ER, Sanchez B, English NR, Peake ST, Landy J, et al. Altered human gut dendritic cell properties in ulcerative colitis are reversed by Lactobacillus plantarum extracellular encrypted peptide STp.Mol Nutr Food Res. 2014;58:1132–43. [DOI] [PubMed]
Bernardo D, Sánchez B, Al-Hassi HO, Mann ER, Urdaci MC, Knight SC, et al. Microbiota/host crosstalk biomarkers: regulatory response of human intestinal dendritic cells exposed to Lactobacillus extracellular encrypted peptide.PLoS One. 2012;7:e36262. [DOI] [PubMed] [PMC]
Hidalgo-Cantabrana C, Moro-García MA, Blanco-Míguez A, Fdez-Riverola F, Lourenço A, Alonso-Arias R, et al. In Silico Screening of the Human Gut Metaproteome Identifies Th17-Promoting Peptides Encrypted in Proteins of Commensal Bacteria.Front Microbiol. 2017;8:1726. [DOI] [PubMed] [PMC]
Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P, López P, Martínez-Álvarez N, Delley M, et al. A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics.Appl Environ Microbiol. 2015;81:7960–8. [DOI] [PubMed] [PMC]
Hidalgo-Cantabrana C, Algieri F, Rodriguez-Nogales A, Vezza T, Martínez-Camblor P, Margolles A, et al. Effect of a Ropy Exopolysaccharide-Producing Bifidobacterium animalis subsp. lactis Strain Orally Administered on DSS-Induced Colitis Mice Model.Front Microbiol. 2016;7:868. [DOI] [PubMed] [PMC]
Chen YC, Wu YJ, Hu CY. Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides.Int J Biol Macromol. 2019;133:575–82. [DOI] [PubMed]
Yu R, Zuo F, Ma H, Chen S. Exopolysaccharide-Producing Bifidobacterium adolescentis Strains with Similar Adhesion Property Induce Differential Regulation of Inflammatory Immune Response in Treg/Th17 Axis of DSS-Colitis Mice.Nutrients. 2019;11:782. [DOI] [PubMed] [PMC]
Yan S, Yang B, Zhao J, Zhao J, Stanton C, Ross RP, et al. A ropy exopolysaccharide producing strain Bifidobacterium longum subsp. longum YS108R alleviates DSS-induced colitis by maintenance of the mucosal barrier and gut microbiota modulation.Food Funct. 2019;10:1595–608. [DOI] [PubMed]
López P, González-Rodríguez I, Sánchez B, Gueimonde M, Margolles A, Suárez A. Treg-inducing membrane vesicles from Bifidobacterium bifidum LMG13195 as potential adjuvants in immunotherapy.Vaccine. 2012;30:825–9. [DOI] [PubMed]
Lee HA, Kim H, Lee KW, Park KY. Dead Lactobacillus plantarum Stimulates and Skews Immune Responses toward T helper 1 and 17 Polarizations in RAW 264.7 Cells and Mouse Splenocytes.J Microbiol Biotechnol. 2016;26:469–76. [DOI] [PubMed]
Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, et al. Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids.Proc Natl Acad Sci U S A. 2005;102:10321–6. [DOI] [PubMed] [PMC]
Kim JY, Kim H, Jung BJ, Kim NR, Park JE, Chung DK. Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation.Mol Cells. 2013;35:115–24. [DOI] [PubMed] [PMC]
Claes IJ, Lebeer S, Shen C, Verhoeven TL, Dilissen E, De Hertogh G, et al. Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis.Clin Exp Immunol. 2010;162:306–14. [DOI] [PubMed] [PMC]
Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, et al. Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells.Gut. 2019;68:1003–13. [DOI] [PubMed] [PMC]
Wang S, Ahmadi S, Nagpal R, Jain S, Mishra SP, Kavanagh K, et al. Lipoteichoic acid from the cell wall of a heat killed Lactobacillus paracasei D3-5 ameliorates aging-related leaky gut, inflammation and improves physical and cognitive functions: from C. elegans to mice.Geroscience. 2020;42:333–52. [DOI] [PubMed] [PMC]
Zolnikova O, Komkova I, Potskherashvili N, Trukhmanov A, Ivashkin V, et al. Application of probiotics for acute respiratory tract infections.Ital J Med. 2018;12:32–8.
Soleimani RA, Abdoli A, Milani PG, Khani N, Homayouni-Rad A. Postbiotics as promising tools for controlling foodborne viruses infections.Microb Pathog. 2025;206:107835. [DOI] [PubMed]
Ermolenko EI, Desheva YA, Kolobov AA, Kotyleva MP, Sychev IA, Suvorov AN. Anti-Influenza Activity of Enterocin B In vitro and Protective Effect of Bacteriocinogenic Enterococcal Probiotic Strain on Influenza Infection in Mouse Model.Probiotics Antimicrob Proteins. 2019;11:705–12. [DOI] [PubMed]
Khani N, Abedi Soleimani R, Noorkhajavi G, Abedi Soleimani A, Abbasi A, Homayouni Rad A. Postbiotics as potential promising tools for SARS-CoV-2 disease adjuvant therapy.J Appl Microbiol. 2022;132:4097–111. [DOI] [PubMed]
Yeo JM, Lee HJ, Kim JW, Lee JB, Park SY, Choi IS, et al. Lactobacillus fermentum CJL-112 protects mice against influenza virus infection by activating T-helper 1 and eliciting a protective immune response.Int Immunopharmacol. 2014;18:50–4. [DOI] [PubMed]
Maeda N, Nakamura R, Hirose Y, Murosaki S, Yamamoto Y, Kase T, et al. Oral administration of heat-killed Lactobacillus plantarum L-137 enhances protection against influenza virus infection by stimulation of type I interferon production in mice.Int Immunopharmacol. 2009;9:1122–5. [DOI] [PubMed]
Marasco G, Lenti MV, Cremon C, Barbaro MR, Stanghellini V, Di Sabatino A, et al. Implications of SARS-CoV-2 infection for neurogastroenterology.Neurogastroenterol Motil. 2021;33:e14104. [DOI] [PubMed] [PMC]
Chen J, Vitetta L. Modulation of Gut Microbiota for the Prevention and Treatment of COVID-19.J Clin Med. 2021;10:2903. [DOI] [PubMed] [PMC]
Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN, et al. A Novel Rhamnose-Rich Hetero-exopolysaccharide Isolated from Lactobacillus paracasei DG Activates THP-1 Human Monocytic Cells.Appl Environ Microbiol. 2017;83:e02702–16. [DOI] [PubMed] [PMC]
Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body.Front Immunol. 2021;12:578386. [DOI] [PubMed] [PMC]
Morshedi M, Hashemi R, Moazzen S, Sahebkar A, Hosseinifard ES. Immunomodulatory and anti-inflammatory effects of probiotics in multiple sclerosis: a systematic review.J Neuroinflammation. 2019;16:231. [DOI] [PubMed] [PMC]
Wang HB, Wang PY, Wang X, Wan YL, Liu YC. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription.Dig Dis Sci. 2012;57:3126–35. [DOI] [PubMed]
Sun M, Ma N, He T, Johnston LJ, Ma X. Tryptophan (Trp) modulates gut homeostasis via aryl hydrocarbon receptor (AhR).Crit Rev Food Sci Nutr. 2020;60:1760–8. [DOI] [PubMed]
Shi Y, Li S, Yang S. Probiotic-derived extracellular vesicles: a novel weapon against viral infections.Biosci Microbiota Food Health. 2025;44:245–50. [DOI] [PubMed] [PMC]
Li N, Russell WM, Douglas-escobar M, Hauser N, Lopez M, Neu J. Live and heat-killed Lactobacillus rhamnosus GG: effects on proinflammatory and anti-inflammatory cytokines/chemokines in gastrostomy-fed infant rats.Pediatr Res. 2009;66:203–7. [DOI] [PubMed]
Takeuchi T, Ohno H. IgA in human health and diseases: Potential regulator of commensal microbiota.Front Immunol. 2022;13:1024330. [DOI] [PubMed] [PMC]
Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43.Mucosal Immunol. 2017;10:946–56. [DOI] [PubMed] [PMC]
Wu SI, Wu CC, Cheng LH, Noble SW, Liu CJ, Lee YH, et al. Psychobiotic supplementation of HK-PS23 improves anxiety in highly stressed clinical nurses: a double-blind randomized placebo-controlled study.Food Funct. 2022;13:8907–19. [DOI] [PubMed]
Saadh MJ, Haddad M, Dababneh MF, Bayan MF, Al-Jaidi BA. A guide for estimating the maximum safe starting dose and conversion it between animals and humans.Syst Rev Pharm. 2020;11:98–101.
Aguilar-Toalá JE, Garcia-Varela R, Garcia HS, Mata-Haro V, González-Córdova AF, Vallejo-Cordoba B, et al. Postbiotics: An evolving term within the functional foods field.Trends Food Sci Technol. 2018;75:105–14. [DOI]
Wegh CAM, Geerlings SY, Knol J, Roeselers G, Belzer C. Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond.Int J Mol Sci. 2019;20:4673. [DOI] [PubMed] [PMC]
Hirayama D, Iida T, Nakase H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis.Int J Mol Sci. 2017;19:92. [DOI] [PubMed] [PMC]
Liu L, McClements DJ, Liu X, Liu F. Overcoming Biopotency Barriers: Advanced Oral Delivery Strategies for Enhancing the Efficacy of Bioactive Food Ingredients.Adv Sci (Weinh). 2024;11:e2401172. [DOI] [PubMed] [PMC]
Divsalar E, İncili GK, Shi C, Semsari E, Hosseini SH, Ebrahimi Tirtashi F, et al. Challenges with the use of postbiotics/parabiotics in food industry.Crit Rev Food Sci Nutr. 2025;1–17. [DOI] [PubMed]
Sui Y, Hou X, Zhang J, Hong X, Wang H, Xiao Y, et al. Lipid nanoparticle-mediated targeted mRNA delivery and its application in cancer therapy.J Mater Chem B. 2025;13:10085–117. [DOI] [PubMed]
Lycke N. Recent progress in mucosal vaccine development: potential and limitations.Nat Rev Immunol. 2012;12:592–605. [DOI] [PubMed]