Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Pollard AJ, Bijker EM. A guide to vaccinology: from basic principles to new developments.Nat Rev Immunol. 2021;21:83–100. [DOI] [PubMed] [PMC]
Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al.; Oxford COVID Vaccine Trial Group. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial.Lancet. 2020;396:467–78. [DOI] [PubMed] [PMC]
Vartak A, Sucheck SJ. Recent Advances in Subunit Vaccine Carriers.Vaccines (Basel). 2016;4:12. [DOI] [PubMed] [PMC]
Alfaro-Murillo JA, Ávila-Agüero ML, Fitzpatrick MC, Crystal CJ, Falleiros-Arlant LH, Galvani AP. The case for replacing live oral polio vaccine with inactivated vaccine in the Americas.Lancet. 2020;395:1163–6. [DOI] [PubMed] [PMC]
Song L, Xiong D, Kang X, Yang Y, Wang J, Guo Y, et al. An avian influenza A (H7N9) virus vaccine candidate based on the fusion protein of hemagglutinin globular head and Salmonella typhimurium flagellin.BMC Biotechnol. 2015;15:79. [DOI] [PubMed] [PMC]
Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium.Nat Rev Immunol. 2009;9:287–93. [DOI] [PubMed] [PMC]
Corbett KS, Edwards DK, Leist SR, Abiona OM, Boyoglu-Barnum S, Gillespie RA, et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness.Nature. 2020;586:567–71. [DOI] [PubMed] [PMC]
Wallis J, Shenton DP, Carlisle RC. Novel approaches for the design, delivery and administration of vaccine technologies.Clin Exp Immunol. 2019;196:189–204. [DOI] [PubMed] [PMC]
Samatey FA, Imada K, Nagashima S, Vonderviszt F, Kumasaka T, Yamamoto M, et al. Structure of the bacterial flagellar protofilament and implications for a switch for supercoiling.Nature. 2001;410:331–7. [DOI] [PubMed]
Cunningham AF, Khan M, Ball J, Toellner KM, Serre K, Mohr E, et al. Responses to the soluble flagellar protein FliC are Th2, while those to FliC on Salmonella are Th1.Eur J Immunol. 2004;34:2986–95. [DOI] [PubMed]
Garaude J, Kent A, van Rooijen N, Blander JM. Simultaneous targeting of toll- and nod-like receptors induces effective tumor-specific immune responses.Sci Transl Med. 2012;4:120ra16. [DOI] [PubMed]
Smith KD, Andersen-Nissen E, Hayashi F, Strobe K, Bergman MA, Barrett SLR, et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility.Nat Immunol. 2003;4:1247–53. [DOI] [PubMed]
Lightfield KL, Persson J, Brubaker SW, Witte CE, von Moltke J, Dunipace EA, et al. Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin.Nat Immunol. 2008;9:1171–8. [DOI] [PubMed] [PMC]
Song L, Nakaar V, Kavita U, Price A, Huleatt J, Tang J, et al. Efficacious recombinant influenza vaccines produced by high yield bacterial expression: a solution to global pandemic and seasonal needs.PLoS One. 2008;3:e2257. [DOI] [PubMed] [PMC]
Nguyen CT, Kim SY, Kim MS, Lee SE, Rhee JH. Intranasal immunization with recombinant PspA fused with a flagellin enhances cross-protective immunity against Streptococcus pneumoniae infection in mice.Vaccine. 2011;29:5731–9. [DOI] [PubMed]
Yang J, Zhong M, Zhang Y, Zhang E, Sun Y, Cao Y, et al. Antigen replacement of domains D2 and D3 in flagellin promotes mucosal IgA production and attenuates flagellin-induced inflammatory response after intranasal immunization.Hum Vaccin Immunother. 2013;9:1084–92. [DOI] [PubMed] [PMC]
Ikeda JS, Schmitt CK, Darnell SC, Watson PR, Bispham J, Wallis TS, et al. Flagellar phase variation of Salmonella enterica serovar Typhimurium contributes to virulence in the murine typhoid infection model but does not influence Salmonella-induced enteropathogenesis.Infect Immun. 2001;69:3021–30. [DOI] [PubMed] [PMC]
Thomson NM, Ferreira JL, Matthews-Palmer TR, Beeby M, Pallen MJ. Giant flagellins form thick flagellar filaments in two species of marine γ-proteobacteria.PLoS One. 2018;13:e0206544. [DOI] [PubMed] [PMC]
Fields JL, Zhang H, Bellis NF, Petersen HA, Halder SK, Rich-New ST, et al. Structural diversity and clustering of bacterial flagellar outer domains.Nat Commun. 2024;15:9500. [DOI] [PubMed] [PMC]
Iino T. Assembly of Salmonella flagellin in vitro and in vivo.J Supramol Struct. 1974;2:372–84. [DOI] [PubMed]
Chen R, Zou J, Chen J, Zhong X, Kang R, Tang D. Pattern recognition receptors: function, regulation and therapeutic potential.Signal Transduct Target Ther. 2025;10:216. [DOI] [PubMed] [PMC]
Lu LL, Suscovich TJ, Fortune SM, Alter G. Beyond binding: antibody effector functions in infectious diseases.Nat Rev Immunol. 2018;18:46–61. [DOI] [PubMed] [PMC]
Sun L, Su Y, Jiao A, Wang X, Zhang B. T cells in health and disease.Signal Transduct Target Ther. 2023;8:235. [DOI] [PubMed] [PMC]
Reyes Ruiz VM, Ramirez J, Naseer N, Palacio NM, Siddarthan IJ, Yan BM, et al. Broad detection of bacterial type III secretion system and flagellin proteins by the human NAIP/NLRC4 inflammasome.Proc Natl Acad Sci U S A. 2017;114:13242–7. [DOI] [PubMed] [PMC]
Gay NJ, Symmons MF, Gangloff M, Bryant CE. Assembly and localization of Toll-like receptor signalling complexes.Nat Rev Immunol. 2014;14:546–58. [DOI] [PubMed]
Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines.J Immunol. 2002;168:554–61. [DOI] [PubMed]
Sebastiani G, Leveque G, Larivière L, Laroche L, Skamene E, Gros P, et al. Cloning and characterization of the murine toll-like receptor 5 (Tlr5) gene: sequence and mRNA expression studies in Salmonella-susceptible MOLF/Ei mice.Genomics. 2000;64:230–40. [DOI] [PubMed]
Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models.Science. 2008;320:226–30. [DOI] [PubMed] [PMC]
Rowley MJ, Mackay IR. Measurement of antibody-producing capacity in man. I. The normal response to flagellin from Salmonella adelaide.Clin Exp Immunol. 1969;5:407–18. [PubMed] [PMC]
Taylor DN, Treanor JJ, Strout C, Johnson C, Fitzgerald T, Kavita U, et al. Induction of a potent immune response in the elderly using the TLR-5 agonist, flagellin, with a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125, STF2.HA1 SI).Vaccine. 2011;29:4897–902. [DOI] [PubMed]
Vijay-Kumar M, Aitken JD, Sanders CJ, Frias A, Sloane VM, Xu J, et al. Flagellin treatment protects against chemicals, bacteria, viruses, and radiation.J Immunol. 2008;180:8280–5. [DOI] [PubMed]
Brackett CM, Kojouharov B, Veith J, Greene KF, Burdelya LG, Gollnick SO, et al. Toll-like receptor-5 agonist, entolimod, suppresses metastasis and induces immunity by stimulating an NK-dendritic-CD8+ T-cell axis.Proc Natl Acad Sci U S A. 2016;113:E874–83. [DOI] [PubMed] [PMC]
Hajam IA, Dar PA, Shahnawaz I, Jaume JC, Lee JH. Bacterial flagellin—a potent immunomodulatory agent.Exp Mol Med. 2017;49:e373. [DOI] [PubMed] [PMC]
López-Yglesias AH, Zhao X, Quarles EK, Lai MA, VandenBos T, Strong RK, et al. Flagellin induces antibody responses through a TLR5- and inflammasome-independent pathway.J Immunol. 2014;192:1587–96. [DOI] [PubMed] [PMC]
Strindelius L, Filler M, Sjöholm I. Mucosal immunization with purified flagellin from Salmonella induces systemic and mucosal immune responses in C3H/HeJ mice.Vaccine. 2004;22:3797–808. [DOI] [PubMed]
Sanders CJ, Yu Y, Moore DA 3rd, Williams IR, Gewirtz AT. Humoral immune response to flagellin requires T cells and activation of innate immunity.J Immunol. 2006;177:2810–8. [DOI] [PubMed]
Sanders CJ, Franchi L, Yarovinsky F, Uematsu S, Akira S, Núñez G, et al. Induction of adaptive immunity by flagellin does not require robust activation of innate immunity.Eur J Immunol. 2009;39:359–71. [DOI] [PubMed] [PMC]
Uematsu S, Fujimoto K, Jang MH, Yang BG, Jung YJ, Nishiyama M, et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5.Nat Immunol. 2008;9:769–76. [DOI] [PubMed]
Honko AN, Sriranganathan N, Lees CJ, Mizel SB. Flagellin is an effective adjuvant for immunization against lethal respiratory challenge with Yersinia pestis.Infect Immun. 2006;74:1113–20. [DOI] [PubMed] [PMC]
Stepanova LA, Mardanova ES, Shuklina MA, Blokhina EA, Kotlyarov RY, Potapchuk MV, et al. Flagellin-fused protein targeting M2e and HA2 induces potent humoral and T-cell responses and protects mice against various influenza viruses a subtypes.J Biomed Sci. 2018;25:33. [DOI] [PubMed] [PMC]
Sanos SL, Kassub R, Testori M, Geiger M, Pätzold J, Giessel R, et al. NLRC4 Inflammasome-Driven Immunogenicity of a Recombinant MVA Mucosal Vaccine Encoding Flagellin.Front Immunol. 2018;8:1988. [DOI] [PubMed] [PMC]
Huleatt JW, Jacobs AR, Tang J, Desai P, Kopp EB, Huang Y, et al. Vaccination with recombinant fusion proteins incorporating Toll-like receptor ligands induces rapid cellular and humoral immunity.Vaccine. 2007;25:763–75. [DOI] [PubMed]
Xiong D, Song L, Zhai X, Geng S, Pan Z, Jiao X. A porcine reproductive and respiratory syndrome virus (PRRSV) vaccine candidate based on the fusion protein of PRRSV glycoprotein 5 and the Toll-like Receptor-5 agonist Salmonella Typhimurium FljB.BMC Vet Res. 2015;11:121. [DOI] [PubMed] [PMC]
Vijay-Kumar M, Carvalho FA, Aitken JD, Fifadara NH, Gewirtz AT. TLR5 or NLRC4 is necessary and sufficient for promotion of humoral immunity by flagellin.Eur J Immunol. 2010;40:3528–34. [DOI] [PubMed] [PMC]
López-Yglesias AH, Lu CC, Zhao X, Chou T, VandenBos T, Strong RK, et al. FliC’s Hypervariable D3 Domain Is Required for Robust Anti-Flagellin Primary Antibody Responses.Immunohorizons. 2019;3:422–32. [DOI] [PubMed] [PMC]
Kaba SA, Karch CP, Seth L, Ferlez KMB, Storme CK, Pesavento DM, et al. Self-assembling protein nanoparticles with built-in flagellin domains increases protective efficacy of a Plasmodium falciparum based vaccine.Vaccine. 2018;36:906–14. [DOI] [PubMed]
Deng L, Kim JR, Chang TZ, Zhang H, Mohan T, Champion JA, et al. Protein nanoparticle vaccine based on flagellin carrier fused to influenza conserved epitopes confers full protection against influenza A virus challenge.Virology. 2017;509:82–9. [DOI] [PubMed] [PMC]
Karch CP, Li J, Kulangara C, Paulillo SM, Raman SK, Emadi S, et al. Vaccination with self-adjuvanted protein nanoparticles provides protection against lethal influenza challenge.Nanomedicine. 2017;13:241–51. [DOI] [PubMed]
Feldmann M. Induction of immunity and tolerance in vitro by hapten protein conjugates. I. The relationship between the degree of hapten conjugation and the immunogenicity of dinitrophenylated polymerized flagellin.J Exp Med. 1972;135:735–53. [DOI] [PubMed] [PMC]
Turner JS, Ke F, Grigorova IL. B Cell Receptor Crosslinking Augments Germinal Center B Cell Selection when T Cell Help Is Limiting.Cell Rep. 2018;25:1395–403.e4. [DOI] [PubMed] [PMC]
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions.Cell. 2019;177:524–40. [DOI] [PubMed] [PMC]
Didierlaurent A, Ferrero I, Otten LA, Dubois B, Reinhardt M, Carlsen H, et al. Flagellin promotes myeloid differentiation factor 88-dependent development of Th2-type response.J Immunol. 2004;172:6922–30. [DOI] [PubMed]
Oh JZ, Ravindran R, Chassaing B, Carvalho FA, Maddur MS, Bower M, et al. TLR5-mediated sensing of gut microbiota is necessary for antibody responses to seasonal influenza vaccination.Immunity. 2014;41:478–92. [DOI] [PubMed] [PMC]
Perez-Lopez A, Rosales-Reyes R, Alpuche-Aranda CM, Ortiz-Navarrete V. Salmonella downregulates Nod-like receptor family CARD domain containing protein 4 expression to promote its survival in B cells by preventing inflammasome activation and cell death.J Immunol. 2013;190:1201–9. [DOI] [PubMed]
Ura T, Takeuchi M, Kawagoe T, Mizuki N, Okuda K, Shimada M. Current Vaccine Platforms in Enhancing T-Cell Response.Vaccines (Basel). 2022;10:1367. [DOI] [PubMed] [PMC]
Embgenbroich M, Burgdorf S. Current Concepts of Antigen Cross-Presentation.Front Immunol. 2018;9:1643. [DOI] [PubMed] [PMC]
Lee SE, Kim SY, Jeong BC, Kim YR, Bae SJ, Ahn OS, et al. A bacterial flagellin, Vibrio vulnificus FlaB, has a strong mucosal adjuvant activity to induce protective immunity.Infect Immun. 2006;74:694–702. [DOI] [PubMed] [PMC]
Datta SK, Redecke V, Prilliman KR, Takabayashi K, Corr M, Tallant T, et al. A subset of Toll-like receptor ligands induces cross-presentation by bone marrow-derived dendritic cells.J Immunol. 2003;170:4102–10. [DOI] [PubMed]
Means TK, Hayashi F, Smith KD, Aderem A, Luster AD. The Toll-like receptor 5 stimulus bacterial flagellin induces maturation and chemokine production in human dendritic cells.J Immunol. 2003;170:5165–75. [DOI] [PubMed]
Vicente-Suarez I, Brayer J, Villagra A, Cheng F, Sotomayor EM. TLR5 ligation by flagellin converts tolerogenic dendritic cells into activating antigen-presenting cells that preferentially induce T-helper 1 responses.Immunol Lett. 2009;125:114–8. [DOI] [PubMed] [PMC]
McSorley SJ, Ehst BD, Yu Y, Gewirtz AT. Bacterial flagellin is an effective adjuvant for CD4+ T cells in vivo.J Immunol. 2002;169:3914–9. [DOI] [PubMed]
Schwarz K, Storni T, Manolova V, Didierlaurent A, Sirard JC, Röthlisberger P, et al. Role of Toll-like receptors in costimulating cytotoxic T cell responses.Eur J Immunol. 2003;33:1465–70. [DOI] [PubMed]
Bouillot M, Choppin J, Cornille F, Martinon F, Papo T, Gomard E, et al. Physical association between MHC class I molecules and immunogenic peptides.Nature. 1989;339:473–5. [DOI] [PubMed]
Bergman MA, Cummings LA, Alaniz RC, Mayeda L, Fellnerova I, Cookson BT. CD4+-T-cell responses generated during murine Salmonella enterica serovar Typhimurium infection are directed towards multiple epitopes within the natural antigen FliC.Infect Immun. 2005;73:7226–35. [DOI] [PubMed] [PMC]
Letran SE, Lee SJ, Atif SM, Uematsu S, Akira S, McSorley SJ. TLR5 functions as an endocytic receptor to enhance flagellin-specific adaptive immunity.Eur J Immunol. 2011;41:29–38. [DOI] [PubMed] [PMC]
Cuadros C, Lopez-Hernandez FJ, Dominguez AL, McClelland M, Lustgarten J. Flagellin fusion proteins as adjuvants or vaccines induce specific immune responses.Infect Immun. 2004;72:2810–6. [DOI] [PubMed] [PMC]
Kim JR, Holbrook BC, Hayward SL, Blevins LK, Jorgensen MJ, Kock ND, et al. Inclusion of Flagellin during Vaccination against Influenza Enhances Recall Responses in Nonhuman Primate Neonates.J Virol. 2015;89:7291–303. [DOI] [PubMed] [PMC]
Yu X, Liu W, Chen S, Cheng X, Paez PA, Sun T, et al. Immunologically programming the tumor microenvironment induces the pattern recognition receptor NLRC4-dependent antitumor immunity.J Immunother Cancer. 2021;9:e001595. [DOI] [PubMed] [PMC]
Jeon SH, Ben-Yedidia T, Arnon R. Intranasal immunization with synthetic recombinant vaccine containing multiple epitopes of influenza virus.Vaccine. 2002;20:2772–80. [DOI] [PubMed]
Crellin NK, Garcia RV, Hadisfar O, Allan SE, Steiner TS, Levings MK. Human CD4+ T cells express TLR5 and its ligand flagellin enhances the suppressive capacity and expression of FOXP3 in CD4+CD25+ T regulatory cells.J Immunol. 2005;175:8051–9. [DOI] [PubMed]
Salerno-Gonçalves R, Wyant TL, Pasetti MF, Fernandez-Viña M, Tacket CO, Levine MM, et al. Concomitant induction of CD4+ and CD8+ T cell responses in volunteers immunized with Salmonella enterica serovar typhi strain CVD 908-htrA.J Immunol. 2003;170:2734–41. [DOI] [PubMed]
Nair-Gupta P, Baccarini A, Tung N, Seyffer F, Florey O, Huang Y, et al. TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation.Cell. 2014;158:506–21. [DOI] [PubMed] [PMC]
Braga CJM, Massis LM, Sbrogio-Almeida ME, Alencar BCG, Bargieri DY, Boscardin SB, et al. CD8+ T cell adjuvant effects of Salmonella FliCd flagellin in live vaccine vectors or as purified protein.Vaccine. 2010;28:1373–82. [DOI] [PubMed]
Bates JT, Graff AH, Phipps JP, Grayson JM, Mizel SB. Enhanced antigen processing of flagellin fusion proteins promotes the antigen-specific CD8+ T cell response independently of TLR5 and MyD88.J Immunol. 2011;186:6255–62. [DOI] [PubMed] [PMC]
Stocker BA, Newton SM. Immune responses to epitopes inserted in Salmonella flagellin.Int Rev Immunol. 1994;11:167–78. [DOI] [PubMed]
Bates JT, Uematsu S, Akira S, Mizel SB. Direct stimulation of tlr5+/+ CD11c+ cells is necessary for the adjuvant activity of flagellin.J Immunol. 2009;182:7539–47. [DOI] [PubMed] [PMC]
Mizel SB, Bates JT. Flagellin as an adjuvant: cellular mechanisms and potential.J Immunol. 2010;185:5677–82. [DOI] [PubMed] [PMC]
Treanor JJ, Taylor DN, Tussey L, Hay C, Nolan C, Fitzgerald T, et al. Safety and immunogenicity of a recombinant hemagglutinin influenza-flagellin fusion vaccine (VAX125) in healthy young adults.Vaccine. 2010;28:8268–74. [DOI] [PubMed]
Blander JM, Medzhitov R. Toll-dependent selection of microbial antigens for presentation by dendritic cells.Nature. 2006;440:808–12. [DOI] [PubMed]
Cho HJ, Hayashi T, Datta SK, Takabayashi K, Van Uden JH, Horner A, et al. IFN-alpha beta promote priming of antigen-specific CD8+ and CD4+ T lymphocytes by immunostimulatory DNA-based vaccines.J Immunol. 2002;168:4907–13. [DOI] [PubMed]
McNeilly TN, Naylor SW, Mahajan A, Mitchell MC, McAteer S, Deane D, et al. Escherichia coli O157:H7 colonization in cattle following systemic and mucosal immunization with purified H7 flagellin.Infect Immun. 2008;76:2594–602. [DOI] [PubMed] [PMC]
Newton SM, Jacob CO, Stocker BA. Immune response to cholera toxin epitope inserted in Salmonella flagellin.Science. 1989;244:70–2. [DOI] [PubMed]
Newton SM, Kotb M, Poirier TP, Stocker BA, Beachey EH. Expression and immunogenicity of a streptococcal M protein epitope inserted in Salmonella flagellin.Infect Immun. 1991;59:2158–65. [DOI] [PubMed] [PMC]
Newton SM, Joys TM, Anderson SA, Kennedy RC, Hovi ME, Stocker BA. Expression and immunogenicity of an 18-residue epitope of HIV1 gp41 inserted in the flagellar protein of a Salmonella live vaccine.Res Microbiol. 1995;146:203–16. [DOI] [PubMed]
Verma NK, Ziegler HK, Stocker BA, Schoolnik GK. Induction of a cellular immune response to a defined T-cell epitope as an insert in the flagellin of a live vaccine strain of Salmonella.Vaccine. 1995;13:235–44. [DOI] [PubMed]
Klein Á, Kovács M, Muskotál A, Jankovics H, Tóth B, Pósfai M, et al. Nanobody-displaying flagellar nanotubes.Sci Rep. 2018;8:3584. [DOI]
Delaney KN, Phipps JP, Johnson JB, Mizel SB. A recombinant flagellin-poxvirus fusion protein vaccine elicits complement-dependent protection against respiratory challenge with vaccinia virus in mice.Viral Immunol. 2010;23:201–10. [DOI] [PubMed] [PMC]
Zhao FH, Wu T, Hu YM, Wei LH, Li MQ, Huang WJ, et al. Efficacy, safety, and immunogenicity of an Escherichia coli-produced Human Papillomavirus (16 and 18) L1 virus-like-particle vaccine: end-of-study analysis of a phase 3, double-blind, randomised, controlled trial.Lancet Infect Dis. 2022;22:1756–68. [DOI] [PubMed]
Taylor DN, Treanor JJ, Sheldon EA, Johnson C, Umlauf S, Song L, et al. Development of VAX128, a recombinant hemagglutinin (HA) influenza-flagellin fusion vaccine with improved safety and immune response.Vaccine. 2012;30:5761–9. [DOI] [PubMed]
Schmitt S, Tahk S, Lohner A, Hänel G, Maiser A, Hauke M, et al. Fusion of Bacterial Flagellin to a Dendritic Cell-Targeting αCD40 Antibody Construct Coupled With Viral or Leukemia-Specific Antigens Enhances Dendritic Cell Maturation and Activates Peptide-Responsive T Cells.Front Immunol. 2020;11:602802. [DOI] [PubMed] [PMC]
Wei CJ, Crank MC, Shiver J, Graham BS, Mascola JR, Nabel GJ. Next-generation influenza vaccines: opportunities and challenges.Nat Rev Drug Discov. 2020;19:239–52. [DOI] [PubMed] [PMC]
Levi R, Arnon R. Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection.Vaccine. 1996;14:85–92. [DOI] [PubMed]
Ben-Yedidia T, Arnon R. Effect of pre-existing carrier immunity on the efficacy of synthetic influenza vaccine.Immunol Lett. 1998;64:9–15. [DOI] [PubMed]
Huleatt JW, Nakaar V, Desai P, Huang Y, Hewitt D, Jacobs A, et al. Potent immunogenicity and efficacy of a universal influenza vaccine candidate comprising a recombinant fusion protein linking influenza M2e to the TLR5 ligand flagellin.Vaccine. 2008;26:201–14. [DOI] [PubMed]
Tussey L, Strout C, Davis M, Johnson C, Lucksinger G, Umlauf S, et al. Phase 1 Safety and Immunogenicity Study of a Quadrivalent Seasonal Flu Vaccine Comprising Recombinant Hemagglutinin-Flagellin Fusion Proteins.Open Forum Infect Dis. 2016;3:ofw015. [DOI] [PubMed] [PMC]
Lord JM. The effect of ageing of the immune system on vaccination responses.Hum Vaccin Immunother. 2013;9:1364–7. [DOI] [PubMed] [PMC]
Weimer ET, Lu H, Kock ND, Wozniak DJ, Mizel SB. A fusion protein vaccine containing OprF epitope 8, OprI, and type A and B flagellins promotes enhanced clearance of nonmucoid Pseudomonas aeruginosa.Infect Immun. 2009;77:2356–66. [DOI] [PubMed] [PMC]
Döring G, Meisner C, Stern M; Group FVTS; Flagella Vaccine Trial Study Group. A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients.Proc Natl Acad Sci U S A. 2007;104:11020–5. [DOI] [PubMed] [PMC]
Frey SE, Lottenbach K, Graham I, Anderson E, Bajwa K, May RC, et al. A phase I safety and immunogenicity dose escalation trial of plague vaccine, Flagellin/F1/V, in healthy adult volunteers (DMID 08-0066).Vaccine. 2017;35:6759–65. [DOI] [PubMed]
Kim E, Erdos G, Huang S, Kenniston TW, Balmert SC, Carey CD, et al. Microneedle array delivered recombinant coronavirus vaccines: Immunogenicity and rapid translational development.EBioMedicine. 2020;55:102743. [DOI] [PubMed] [PMC]
Atmar RL, Keitel WA, Cate TR, Munoz FM, Ruben F, Couch RB. A dose-response evaluation of inactivated influenza vaccine given intranasally and intramuscularly to healthy young adults.Vaccine. 2007;25:5367–73. [DOI] [PubMed] [PMC]
Cox RJ, Haaheim LR, Ericsson JC, Madhun AS, Brokstad KA. The humoral and cellular responses induced locally and systemically after parenteral influenza vaccination in man.Vaccine. 2006;24:6577–80. [DOI] [PubMed]
Lund FE, Randall TD. Scent of a vaccine.Science. 2021;373:397–9. [DOI] [PubMed]
Moschos SA, Bramwell VW, Somavarapu S, Alpar HO. Adjuvant synergy: the effects of nasal coadministration of adjuvants.Immunol Cell Biol. 2004;82:628–37. [DOI] [PubMed]
Yusuf H, Kett V. Current prospects and future challenges for nasal vaccine delivery.Hum Vaccin Immunother. 2017;13:34–45. [DOI] [PubMed] [PMC]
Dong C, Wang Y, Gonzalez GX, Ma Y, Song Y, Wang S, et al. Intranasal vaccination with influenza HA/GO-PEI nanoparticles provides immune protection against homo- and heterologous strains.Proc Natl Acad Sci U S A. 2021;118:e2024998118. [DOI] [PubMed] [PMC]
Garg NK, Mangal S, Khambete H, Tyagi RK. Mucosal delivery of vaccines: role of mucoadhesive/biodegradable polymers.Recent Pat Drug Deliv Formul. 2010;4:114–28. [DOI] [PubMed]
George-Chandy A, Eriksson K, Lebens M, Nordström I, Schön E, Holmgren J. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD86 expression on antigen-presenting cells.Infect Immun. 2001;69:5716–25. [DOI] [PubMed] [PMC]
Mutsch M, Zhou W, Rhodes P, Bopp M, Chen RT, Linder T, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland.N Engl J Med. 2004;350:896–903. [DOI] [PubMed]
Muir A, Soong G, Sokol S, Reddy B, Gomez MI, Van Heeckeren A, et al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells.Am J Respir Cell Mol Biol. 2004;30:777–83. [DOI] [PubMed]
Rhee JH. Mucosal Vaccines. In: Kiyono H, Pascual DW, editors. Current and new approaches for mucosal vaccine delivery. 2nd ed. Amsterdam: Academic Press; 2020. pp. 325–56. [DOI] [PMC]
Bedford JG, Heinlein M, Garnham AL, Nguyen THO, Loudovaris T, Ge C, et al. Unresponsiveness to inhaled antigen is governed by conventional dendritic cells and overridden during infection by monocytes.Sci Immunol. 2020;5:eabb5439. [DOI] [PubMed]
Weiskopf K, Weissman IL. Macrophages are critical effectors of antibody therapies for cancer.MAbs. 2015;7:303–10. [DOI] [PubMed] [PMC]
Saxena M, van der Burg SH, Melief CJM, Bhardwaj N. Therapeutic cancer vaccines.Nat Rev Cancer. 2021;21:360–78. [DOI] [PubMed]
Haabeth OA, Tveita A, Fauskanger M, Hennig K, Hofgaard PO, Bogen B. Idiotype-specific CD4(+) T cells eradicate disseminated myeloma.Leukemia. 2016;30:1216–20. [DOI] [PubMed]
Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.Genome Med. 2017;9:34. [DOI] [PubMed] [PMC]
Vigneron N. Human Tumor Antigens and Cancer Immunotherapy.Biomed Res Int. 2015;2015:948501. [DOI] [PubMed] [PMC]
Meng L, Wu H, Wu J, Ding P, He J, Sang M, et al. Mechanisms of immune checkpoint inhibitors: insights into the regulation of circular RNAS involved in cancer hallmarks.Cell Death Dis. 2024;15:3. [DOI] [PubMed] [PMC]
Plummer M, de Martel C, Vignat J, Ferlay J, Bray F, Franceschi S. Global burden of cancers attributable to infections in 2012: a synthetic analysis.Lancet Glob Health. 2016;4:e609–16. [DOI] [PubMed]
Hollingsworth RE, Jansen K. Turning the corner on therapeutic cancer vaccines.NPJ Vaccines. 2019;4:7. [DOI] [PubMed] [PMC]
Chang MH, Chen CJ, Lai MS, Hsu HM, Wu TC, Kong MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group.N Engl J Med. 1997;336:1855–9. [DOI] [PubMed]
Delgado M, Garcia-Sanz JA. Therapeutic Monoclonal Antibodies against Cancer: Present and Future.Cells. 2023;12:2837. [DOI] [PubMed] [PMC]
Parkhurst MR, Yang JC, Langan RC, Dudley ME, Nathan DN, Feldman SA, et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis.Mol Ther. 2011;19:620–6. [DOI] [PubMed] [PMC]
Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al. Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis.Lancet Oncol. 2017;18:1009–21. [DOI] [PubMed]
Spaanderman IT, Peters FS, Jongejan A, Redeker EJW, Punt CJA, Bins AD. Framing the potential of public frameshift peptides as immunotherapy targets in colon cancer.PLoS One. 2021;16:e0251630. [DOI] [PubMed] [PMC]
Wells DK, van Buuren MM, Dang KK, Hubbard-Lucey VM, Sheehan KCF, Campbell KM, et al. Key Parameters of Tumor Epitope Immunogenicity Revealed Through a Consortium Approach Improve Neoantigen Prediction.Cell. 2020;183:818–34.e13. [DOI] [PubMed] [PMC]
Roberts SA, Gordenin DA. Hypermutation in human cancer genomes: footprints and mechanisms.Nat Rev Cancer. 2014;14:786–800. [DOI] [PubMed] [PMC]
Li L, Xie W, Zhan L, Wen S, Luo X, Xu S, et al. Resolving tumor evolution: a phylogenetic approach.J Natl Cancer Cent. 2024;4:97–106. [DOI] [PubMed] [PMC]
Liu X, Griffiths JI, Bishara I, Liu J, Bild AH, Chang JT. Phylogenetic inference from single-cell RNA-seq data.Sci Rep. 2023;13:12854. [DOI] [PubMed] [PMC]
Moravec JC, Lanfear R, Spector DL, Diermeier SD, Gavryushkin A. Testing for Phylogenetic Signal in Single-Cell RNA-Seq Data.J Comput Biol. 2023;30:518–37. [DOI] [PubMed] [PMC]
Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al.; TRACERx Consortium. Tracking the evolution of non-small-cell lung cancer.N Engl J Med. 2017;376:2109–21. [DOI] [PubMed]
Frankell AM, Dietzen M, Bakir MA, Lim EL, Karasaki T, Ward S, et al. The evolution of lung cancer and impact of subclonal selection in TRACERx.Nature. 2023;616:525–33. [DOI] [PubMed] [PMC]
Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, et al. A mass spectrometric-derived cell surface protein atlas.PLoS One. 2015;10:e0121314. [DOI] [PubMed] [PMC]
McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas.Iowa Orthop J. 2006;26:154–8. [PubMed] [PMC]
Kramer MG, Masner M, Ferreira FA, Hoffman RM. Bacterial Therapy of Cancer: Promises, Limitations, and Insights for Future Directions.Front Microbiol. 2018;9:16. [DOI] [PubMed] [PMC]
Bastin DJ, Montroy J, Kennedy MA, Martel AB, Shorr R, Ghiasi M, et al. Safety and efficacy of autologous cell vaccines in solid tumors: a systematic review and meta-analysis of randomized control trials.Sci Rep. 2023;13:3347. [DOI] [PubMed] [PMC]
Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions.Future Oncol. 2018;14:907–17. [DOI] [PubMed] [PMC]
Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al.; IMPACT Study Investigators. Sipuleucel-T immunotherapy for castration-resistant prostate cancer.N Engl J Med. 2010;363:411–22. [DOI] [PubMed]
Zhang H, Hong H, Li D, Ma S, Di Y, Stoten A, et al. Comparing pooled peptides with intact protein for accessing cross-presentation pathways for protective CD8+ and CD4+ T cells.J Biol Chem. 2009;284:9184–91. [DOI] [PubMed] [PMC]
Bijker MS, van den Eeden SJF, Franken KL, Melief CJM, Offringa R, van den Burg SH. CD8+ CTL priming by exact peptide epitopes in incomplete Freund's adjuvant induces a vanishing CTL response, whereas long peptides induce sustained CTL reactivity.J Immunol. 2007;179:5033–40. [DOI] [PubMed]
Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma.Nature. 2017;547:217–21. [DOI] [PubMed] [PMC]
Clifton GT, Peoples GE, Mittendorf EA. The development and use of the E75 (HER2 369-377) peptide vaccine.Future Oncol. 2016;12:1321–9. [DOI] [PubMed] [PMC]
Saavedra D, Neninger E, Rodriguez C, Viada C, Mazorra Z, Lage A, et al. CIMAvax-EGF: Toward long-term survival of advanced NSCLC.Semin Oncol. 2018;45:34–40. [DOI] [PubMed]
Hao X, Yuan F, Yao X. Advances in virus-like particle-based SARS-CoV-2 vaccines.Front Cell Infect Microbiol. 2024;14:1406091. [DOI] [PubMed] [PMC]
DiPaola RS, Plante M, Kaufman H, Petrylak DP, Israeli R, Lattime E, et al. A phase I trial of pox PSA vaccines (PROSTVAC-VF) with B7-1, ICAM-1, and LFA-3 co-stimulatory molecules (TRICOM) in patients with prostate cancer.J Transl Med. 2006;4:1. [DOI] [PubMed] [PMC]
Pérez-Martínez FC, Guerra J, Posadas I, Ceña V. Barriers to non-viral vector-mediated gene delivery in the nervous system.Pharm Res. 2011;28:1843–58. [DOI] [PubMed] [PMC]
Gao Y, Liu X, Chen N, Yang X, Tang F. Recent Advance of Liposome Nanoparticles for Nucleic Acid Therapy.Pharmaceutics. 2023;15:178. [DOI] [PubMed] [PMC]
Yihunie W, Nibret G, Aschale Y. Recent Advances in Messenger Ribonucleic Acid (mRNA) Vaccines and Their Delivery Systems: A Review.Clin Pharmacol. 2023;15:77–98. [DOI] [PubMed] [PMC]
Sahin U, Derhovanessian E, Miller M, Kloke BP, Simon P, Löwer M, et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer.Nature. 2017;547:222–6. [DOI] [PubMed]
Hu Z, Leet DE, Allesøe RL, Oliveira G, Li S, Luoma AM, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma.Nat Med. 2021;27:515–25. [DOI] [PubMed] [PMC]
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines.Nat Rev Clin Oncol. 2021;18:215–29. [DOI] [PubMed] [PMC]
Lei W, Zhou K, Lei Y, Li Q, Zhu H. Cancer vaccines: platforms and current progress.Mol Biomed. 2025;6:3. [DOI] [PubMed] [PMC]
Durgeau A, Virk Y, Corgnac S, Mami-Chouaib F. Recent Advances in Targeting CD8 T-Cell Immunity for More Effective Cancer Immunotherapy.Front Immunol. 2018;9:14. [DOI] [PubMed] [PMC]
Sfondrini L, Rossini A, Besusso D, Merlo A, Tagliabue E, Mènard S, et al. Antitumor activity of the TLR-5 ligand flagellin in mouse models of cancer.J Immunol. 2006;176:6624–30. [DOI] [PubMed]
Rhee SH, Im E, Pothoulakis C. Toll-like receptor 5 engagement modulates tumor development and growth in a mouse xenograft model of human colon cancer.Gastroenterology. 2008;135:518–28. [DOI] [PubMed] [PMC]
Thiruppathi J, Vijayan V, Hwang HS, Bang YJ, Loeurng V, Hong SH, et al. Thermoresistant flagellin-adjuvanted cancer vaccine combined with photothermal therapy synergizes with anti-PD-1 treatment.J Immunother Cancer. 2025;13:e010272. [DOI] [PubMed] [PMC]
Burdelya LG, Brackett CM, Kojouharov B, Gitlin II, Leonova KI, Gleiberman AS, et al. Central role of liver in anticancer and radioprotective activities of Toll-like receptor 5 agonist.Proc Natl Acad Sci U S A. 2013;110:E1857–66. [DOI] [PubMed] [PMC]
Leigh ND, Bian G, Ding X, Liu H, Aygun-Sunar S, Burdelya LG, et al. A flagellin-derived toll-like receptor 5 agonist stimulates cytotoxic lymphocyte-mediated tumor immunity.PLoS One. 2014;9:e85587. [DOI] [PubMed] [PMC]
Mett V, Komarova EA, Greene K, Bespalov I, Brackett C, Gillard B, et al. Mobilan: a recombinant adenovirus carrying Toll-like receptor 5 self-activating cassette for cancer immunotherapy.Oncogene. 2018;37:439–49. [DOI] [PubMed] [PMC]
Yu X, Guo C, Yi H, Qian J, Fisher PB, Subjeck JR, et al. A multifunctional chimeric chaperone serves as a novel immune modulator inducing therapeutic antitumor immunity.Cancer Res. 2013;73:2093–103. [DOI] [PubMed] [PMC]
Hwang HS, Cherukula K, Bang YJ, Vijayan V, Moon MJ, Thiruppathi J, et al. Combination of Photodynamic Therapy and a Flagellin-Adjuvanted Cancer Vaccine Potentiated the Anti-PD-1-Mediated Melanoma Suppression.Cells. 2020;9:2432. [DOI] [PubMed] [PMC]
Lee HH, Hong SH, Rhee JH, Lee SE. Optimal long peptide for flagellin-adjuvanted HPV E7 cancer vaccine to enhance tumor suppression in combination with anti-PD-1.Transl Cancer Res. 2022;11:1595–602. [DOI] [PubMed] [PMC]
Nguyen CT, Hong SH, Sin JI, Vu HVD, Jeong K, Cho KO, et al. Flagellin enhances tumor-specific CD8⁺ T cell immune responses through TLR5 stimulation in a therapeutic cancer vaccine model.Vaccine. 2013;31:3879–87. [DOI] [PubMed]
de Melo FM, Braga CJM, Pereira FV, Maricato JT, Origassa CST, Souza MF, et al. Anti-metastatic immunotherapy based on mucosal administration of flagellin and immunomodulatory P10.Immunol Cell Biol. 2015;93:86–98. [DOI] [PubMed]
Lin KH, Chang LS, Tian CY, Yeh YC, Chen YJ, Chuang TH, et al. Carboxyl-terminal fusion of E7 into Flagellin shifts TLR5 activation to NLRC4/NAIP5 activation and induces TLR5-independent anti-tumor immunity.Sci Rep. 2016;6:24199. [DOI] [PubMed] [PMC]
Puth S, Verma V, Hong SH, Tan W, Lee SE, Rhee JH. An all-in-one adjuvanted therapeutic cancer vaccine targeting dendritic cell cytosol induces long-lived tumor suppression through NLRC4 inflammasome activation.Biomaterials. 2022;286:121542. [DOI] [PubMed]