Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. Innate Lymphoid Cells: 10 Years On.Cell. 2018;174:1054–66. [DOI] [PubMed]
Colonna M. Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity.Immunity. 2018;48:1104–17. [DOI] [PubMed] [PMC]
Gasteiger G, Fan X, Dikiy S, Lee SY, Rudensky AY. Tissue residency of innate lymphoid cells in lymphoid and nonlymphoid organs.Science. 2015;350:981–5. [DOI] [PubMed] [PMC]
Weizman OE, Song E, Adams NM, Hildreth AD, Riggan L, Krishna C, et al. Mouse cytomegalovirus-experienced ILC1s acquire a memory response dependent on the viral glycoprotein m12.Nat Immunol. 2019;20:1004–11. [DOI] [PubMed] [PMC]
Serafini N, Jarade A, Surace L, Goncalves P, Sismeiro O, Varet H, et al. Trained ILC3 responses promote intestinal defense.Science. 2022;375:859–63. [DOI] [PubMed] [PMC]
She L, Alanazi HH, Wang J, Chupp DP, Xu Y, Zan H, et al. Non-canonical activation of human group 2 innate lymphoid cells by TLR4 signaling.BioRxiv. 2020:361345. [DOI]
Nabekura T, Shibuya A. Type 1 innate lymphoid cells: Soldiers at the front line of immunity.Biomed J. 2021;44:115–22. [DOI] [PubMed] [PMC]
Kiniwa T, Moro K. Localization and site-specific cell-cell interactions of group 2 innate lymphoid cells.Int Immunol. 2021;33:251–9. [DOI] [PubMed] [PMC]
Klose CS, Kiss EA, Schwierzeck V, Ebert K, Hoyler T, d’Hargues Y, et al. A T-bet gradient controls the fate and function of CCR6-RORγt+ innate lymphoid cells.Nature. 2013;494:261–5. [DOI] [PubMed]
Jarade A, Di Santo JP, Serafini N. Group 3 innate lymphoid cells mediate host defense against attaching and effacing pathogens.Curr Opin Microbiol. 2021;63:83–91. [DOI] [PubMed]
Meininger I, Carrasco A, Rao A, Soini T, Kokkinou E, Mjösberg J. Tissue-Specific Features of Innate Lymphoid Cells.Trends Immunol. 2020;41:902–17. [DOI] [PubMed]
Finke D, Acha-Orbea H, Mattis A, Lipp M, Kraehenbuhl J. CD4+CD3– Cells Induce Peyer’s Patch Development: role of α4β1 integrin Activation by CXCR5.Immunity. 2002;17:363–73. [DOI] [PubMed]
Cupedo T, Vondenhoff MF, Heeregrave EJ, De Weerd AE, Jansen W, Jackson DG, et al. Presumptive Lymph Node Organizers are Differentially Represented in Developing Mesenteric and Peripheral Nodes.J Immunol. 2004;173:2968–75. [DOI] [PubMed]
DuPage M, Bluestone JA. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease.Nat Rev Immunol. 2016;16:149–63. [DOI] [PubMed]
Johnson JL, Georgakilas G, Petrovic J, Kurachi M, Cai S, Harly C, et al. Lineage-Determining Transcription Factor TCF-1 Initiates the Epigenetic Identity of T Cells.Immunity. 2018;48:243–57.e10. [DOI] [PubMed] [PMC]
Bernink JH, Krabbendam L, Germar K, de Jong E, Gronke K, Kofoed-Nielsen M, et al. Interleukin-12 and -23 Control Plasticity of CD127+ Group 1 and Group 3 Innate Lymphoid Cells in the Intestinal Lamina Propria.Immunity. 2015;43:146–60. [DOI] [PubMed]
Krzywinska E, Sobecki M, Nagarajan S, Zacharjasz J, Tambuwala MM, Pelletier A, et al. The transcription factor HIF-1α mediates plasticity of NKp46+ innate lymphoid cells in the gut.J Exp Med. 2022;219:e20210909. [DOI] [PubMed] [PMC]
Dulson SJ, Watkins EE, Crossman DK, Harrington LE. STAT4 Directs a Protective Innate Lymphoid Cell Response to Gastrointestinal Infection.J Immunol. 2019;203:2472–84. [DOI] [PubMed] [PMC]
Lordo MR, Scoville SD, Goel A, Yu J, Freud AG, Caligiuri MA, et al. Unraveling the Role of Innate Lymphoid Cells in AcuteMyeloid Leukemia.Cancers (Basel). 2021;13:320. [DOI] [PubMed] [PMC]
Miller JS, Soignier Y, Panoskaltsis-Mortari A, McNearney SA, Yun GH, Fautsch SK, et al. Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.Blood. 2005;105:3051–7. [DOI] [PubMed]
Ishikawa E, Tsuboi K, Saijo K, Harada H, Takano S, Nose T, et al. Autologous Natural Killer Cell Therapy for Human Recurrent Malignant Glioma.Anticancer Res. 2004;24:1861–71.
Ruggeri L, Capanni M, Urbani E, Perruccio K, Shlomchik WD, Tosti A, et al. Effectiveness of Donor Natural Killer Cell Alloreactivity in Mismatched Hematopoietic Transplants.Science. 2002;295:2097–100. [DOI] [PubMed]
Lim AI, Li Y, Lopez-Lastra S, Stadhouders R, Paul F, Casrouge A, et al. Systemic Human ILC Precursors Provide a Substrate for Tissue ILC Differentiation.Cell. 2017;168:1086–100.e10. [DOI] [PubMed]
Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks.Nat Rev Cancer. 2016;16:7–19. [DOI] [PubMed]
Scoville SD, Nalin AP, Chen L, Chen L, Zhang MH, McConnell K, et al. Human AML activates the aryl hydrocarbon receptor pathway to impair NK cell development and function.Blood. 2018;132:1792–804. [DOI] [PubMed] [PMC]
Boeck CL, Amberger DC, Doraneh-Gard F, Sutanto W, Guenther T, Schmohl J, et al. Significance of Frequencies, Compositions, and/or Antileukemic Activity of (DC-stimulated) Invariant NKT, NK and CIK Cells on the Outcome of Patients With AML, ALL and CLL.J Immunother. 2017;40:224–48. [DOI] [PubMed]
Chretien AS, Fauriat C, Orlanducci F, Galseran C, Rey J, Bouvier Borg G, et al. Natural Killer Defective Maturation Is Associated with Adverse Clinical Outcome in Patients with Acute Myeloid Leukemia.Front Immunol. 2017;8:573. [DOI] [PubMed] [PMC]
Chretien AS, Granjeaud S, Gondois-Rey F, Harbi S, Orlanducci F, Blaise D, et al. Increased NK cell maturation in patients with acute myeloid leukemia.Front Immunol. 2015;6:564. [DOI] [PubMed] [PMC]
Stringaris K, Sekine T, Khoder A, Alsuliman A, Razzaghi B, Sargeant R, et al. Leukemia-induced phenotypic and functional defects in natural killer cells predict failure to achieve remission in acute myeloid leukemia.Haematologica. 2014;99:836–47. [DOI] [PubMed] [PMC]
Costello RT, Sivori S, Marcenaro E, Lafage-Pochitaloff M, Mozziconacci MJ, Reviron D, et al. Defective expression and function of natural killer cell-triggering receptors in patients with acute myeloid leukemia.Blood. 2002;99:3661–7. [DOI] [PubMed]
Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D, et al. Deficient expression of NCR in NK cells from acute myeloid leukemia: Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction.Blood. 2007;109:323–30. [DOI] [PubMed]
Chretien AS, Devillier R, Fauriat C, Orlanducci F, Harbi S, Le Roy A, et al. NKp46 expression on NK cells as a prognostic and predictive biomarker for response to allo-SCT in patients with AML.Oncoimmunology. 2017;6:e1307491. [DOI] [PubMed] [PMC]
Chretien AS, Fauriat C, Orlanducci F, Rey J, Borg GB, Gautherot E, et al. NKp30 expression is a prognostic immune biomarker for stratification of patients with intermediate-risk acute myeloid leukemia.Oncotarget. 2017;8:49548–63. [DOI] [PubMed] [PMC]
Epling-Burnette PK, Bai F, Painter JS, Rollison DE, Salih HR, Krusch M, et al. Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors.Blood. 2007;109:4816–24. [DOI] [PubMed] [PMC]
Zhang W, Xie X, Mi H, Sun J, Ding S, Li L, et al. Abnormal populations and functions of natural killer cells in patients with myelodysplastic syndromes.Oncol Lett. 2018;15:5497–504. [DOI] [PubMed] [PMC]
Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia.Nat Genet. 2011;43:1012–7. [DOI] [PubMed] [PMC]
Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome).Nat Genet. 2011;43:929–31. [DOI] [PubMed]
Lion E, Willemen Y, Berneman ZN, Van Tendeloo VF, Smits EL. Natural killer cell immune escape in acute myeloid leukemia.Leukemia. 2012;26:2019–26. [DOI] [PubMed]
Lowdell MW, Craston R, Samuel D, Wood ME, O’Neill E, Saha V, et al. Evidence that continued remission in patients treated for acute leukaemia is dependent upon autologous natural killer cells.Br J Haematol. 2002;117:821–7. [DOI] [PubMed]
Pizzolo G, Trentin L, Vinante F, Agostini C, Zambello R, Masciarelli M, et al. Natural killer cell function and lymphoid subpopulations in acute non-lymphoblastic leukaemia in complete remission.Br J Cancer. 1988;58:368–72. [DOI] [PubMed] [PMC]
Dauguet N, Récher C, Demur C, Fournié JJ, Poupot M, Poupot R. Pre-eminence and persistence of immature natural killer cells in acute myeloid leukemia patients in first complete remission.Am J Hematol. 2011;86:209–13. [DOI]
Szczepanski MJ, Szajnik M, Welsh A, Foon KA, Whiteside TL, Boyiadzis M. Interleukin-15 enhances natural killer cell cytotoxicity in patients with acute myeloid leukemia by upregulating the activating NK cell receptors.Cancer Immunol Immunother. 2010;59:73–9. [DOI] [PubMed] [PMC]
Weizman OE, Adams NM, Schuster IS, Krishna C, Pritykin Y, Lau C, et al. ILC1 Confer Early Host Protection at Initial Sites of Viral Infection.Cell. 2017;171:795–808.e12. [DOI] [PubMed] [PMC]
Trabanelli S, Curti A, Lecciso M, Salomé B, Riether C, Ochsenbein A, et al. CD127+ innate lymphoid cells are dysregulated in treatment naïve acute myeloid leukemia patients at diagnosis.Haematologica. 2015;100:e257–60. [DOI] [PubMed] [PMC]
Dulphy N, Haas P, Busson M, Belhadj S, Peffault de Latour R, Robin M, et al. An unusual CD56(bright) CD16(low) NK cell subset dominates the early posttransplant period following HLA-matched hematopoietic stem cell transplantation.J Immunol. 2008;181:2227–37. [DOI] [PubMed]
Linley H, Ogden A, Jaigirdar S, Buckingham L, Cox J, Priestley M, et al. CD200R1 promotes interleukin-17 production by group 3 innate lymphoid cells by enhancing signal transducer and activator of transcription 3 activation.Mucosal Immunol. 2023;16:167–79. [DOI] [PubMed] [PMC]
Coles SJ, Wang EC, Man S, Hills RK, Burnett AK, Tonks A, et al. CD200 expression suppresses natural killer cell function and directly inhibits patient anti-tumor response in acute myeloid leukemia.Leukemia. 2011;25:792–9. [DOI] [PubMed] [PMC]
Ma R, Li Z, Tang H, Wu X, Tian L, Shah Z, et al. NKp46 enhances type 1 innate lymphoid cell proliferation and function and anti-acute myeloid leukemia activity.Nat Commun. 2025;16:989. [DOI] [PubMed] [PMC]
Wu L, Lin Q, Ma Z, Chowdhury FA, Mazumder MHH, Du W. Mesenchymal PGD2 activates an ILC2-Treg axis to promote proliferation of normal and malignant HSPCs.Leukemia. 2020;34:3028–41. [DOI] [PubMed] [PMC]
Kumar V, Patel S, Tcyganov E, Gabrilovich DI. The Nature of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment.Trends Immunol. 2016;37:208–20. [DOI] [PubMed] [PMC]
Hazenberg MD, Spits H. Human innate lymphoid cells.Blood. 2014;124:700–9. [DOI] [PubMed]
Han Y, Ye A, Bi L, Wu J, Yu K, Zhang S. Th17 cells and interleukin-17 increase with poor prognosis in patients with acute myeloid leukemia.Cancer Sci. 2014;105:933–42. [DOI] [PubMed] [PMC]
Kuen DS, Kim BS, Chung Y. IL-17-Producing Cells in Tumor Immunity: Friends or Foes?Immune Netw. 2020;20:e6. [DOI] [PubMed] [PMC]
Munneke JM, Björklund AT, Mjösberg JM, Garming-Legert K, Bernink JH, Blom B, et al. Activated innate lymphoid cells are associated with a reduced susceptibility to graft-versus-host disease.Blood. 2014;124:812–21. [DOI] [PubMed]
Hanash AM, Dudakov JA, Hua G, O’Connor MH, Young LF, Singer NV, et al. Interleukin-22 Protects Intestinal Stem Cells from Immune-Mediated Tissue Damage and Regulates Sensitivity to Graft versus Host Disease.Immunity. 2012;37:339–50. [DOI] [PubMed] [PMC]
Salomé B, Gomez-Cadena A, Loyon R, Suffiotti M, Salvestrini V, Wyss T, et al. CD56 as a marker of an ILC1-like population with NK cell properties that is functionally impaired in AML.Blood Adv. 2019;3:3674–87. [DOI] [PubMed] [PMC]
Allegra A, Tonacci A, Musolino C, Pioggia G, Gangemi S. Secondary Immunodeficiency in Hematological Malignancies: Focus on Multiple Myeloma and Chronic Lymphocytic Leukemia.Front Immunol. 2021;12:738915. [DOI] [PubMed] [PMC]
Sánchez-Martínez D, Lanuza PM, Gómez N, Muntasell A, Cisneros E, Moraru M, et al. Activated Allogeneic NK Cells Preferentially Kill Poor Prognosis B-Cell Chronic Lymphocytic Leukemia Cells.Front Immunol. 2016;7:454. [DOI] [PubMed] [PMC]
Veuillen C, Aurran-Schleinitz T, Castellano R, Rey J, Mallet F, Orlanducci F, et al. Primary B-CLL Resistance to NK Cell Cytotoxicity can be Overcome In Vitro and In Vivo by Priming NK Cells and Monoclonal Antibody Therapy.J Clin Immunol. 2012;32:632–46. [DOI] [PubMed]
Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, et al. Innate or Adaptive Immunity? The Example of Natural Killer Cells.Science. 2011;331:44–9. [DOI] [PubMed] [PMC]
Bryceson YT, March ME, Ljunggren HG, Long EO. Activation, coactivation, and costimulation of resting human natural killer cells.Immunol Rev. 2006;214:73–91. [DOI] [PubMed] [PMC]
Le Garff-Tavernier M, Decocq J, de Romeuf C, Parizot C, Dutertre CA, Chapiro E, et al. Analysis of CD16+CD56dim NK cells from CLL patients: evidence supporting a therapeutic strategy with optimized anti-CD20 monoclonal antibodies.Leukemia. 2011;25:101–9. [DOI] [PubMed]
MacFarlane AW 4th, Jillab M, Smith MR, Alpaugh RK, Cole ME, Litwin S, et al. NK cell dysfunction in chronic lymphocytic leukemia is associated with loss of the mature cells expressing inhibitory killer cell Ig-like receptors.Oncoimmunology. 2017;6:e1330235. [DOI] [PubMed] [PMC]
Parry HM, Stevens T, Oldreive C, Zadran B, McSkeane T, Rudzki Z, et al. NK cell function is markedly impaired in patients with chronic lymphocytic leukaemia but is preserved in patients with small lymphocytic lymphoma.Oncotarget. 2016;7:68513–26. [DOI] [PubMed] [PMC]
Hilpert J, Grosse-Hovest L, Grünebach F, Buechele C, Nuebling T, Raum T, et al. Comprehensive analysis of NKG2D ligand expression and release in leukemia: implications for NKG2D-mediated NK cell responses.J Immunol. 2012;189:1360–71.
Reiners KS, Topolar D, Henke A, Simhadri VR, Kessler J, Sauer M, et al. Soluble ligands for NK cell receptors promote evasion of chronic lymphocytic leukemia cells from NK cell anti-tumor activity.Blood. 2013;121:3658–65. [DOI] [PubMed] [PMC]
Rizzo R, Audrito V, Vacca P, Rossi D, Brusa D, Stignani M, et al. HLA-G is a component of the chronic lymphocytic leukemia escape repertoire to generate immune suppression: impact of the HLA-G 14 base pair (rs66554220) polymorphism.Haematologica. 2014;99:888–96. [DOI] [PubMed] [PMC]
Lotz M, Ranheim E, Kipps TJ. Transforming growth factor beta as endogenous growth inhibitor of chronic lymphocytic leukemia B cells.J Exp Med. 1994;179:999–1004. [DOI] [PubMed] [PMC]
Goede V, Fischer K, Busch R, Engelke A, Eichhorst B, Wendtner CM, et al. Obinutuzumab plus Chlorambucil in Patients with CLL and Coexisting Conditions.N Engl J Med. 2014;370:1101–10. [DOI] [PubMed]
Hofland T, Eldering E, Kater AP, Tonino SH. Engaging Cytotoxic T and NK Cells for Immunotherapy in Chronic Lymphocytic Leukemia.Int J Mol Sci. 2019;20:4315. [DOI] [PubMed] [PMC]
García-Ortiz A, Rodríguez-García Y, Encinas J, Maroto-Martín E, Castellano E, Teixidó J, et al. The Role of Tumor Microenvironment in Multiple Myeloma Development and Progression.Cancers (Basel). 2021;13:217. [DOI] [PubMed] [PMC]
Bolkun L, Lemancewicz D, Jablonska E, Kulczynska A, Bolkun-Skornicka U, Kloczko J, et al. BAFF and APRIL as TNF superfamily molecules and angiogenesis parallel progression of human multiple myeloma.Ann Hematol. 2014;93:635–44. [DOI] [PubMed] [PMC]
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow?Lancet. 2001;357:539–45. [DOI] [PubMed]
Ungefroren H, Sebens S, Seidl D, Lehnert H, Hass R. Interaction of tumor cells with the microenvironment.Cell Commun Signal. 2011;9:18. [DOI] [PubMed] [PMC]
Zamarron BF, Chen W. Dual Roles of Immune Cells and Their Factors in Cancer Development and Progression.Int J Biol Sci. 2011;7:651–8. [DOI] [PubMed] [PMC]
Zhang W, Huang P. Cancer-stromal interactions: role in cell survival, metabolism and drug sensitivity.Cancer Biol Ther. 2011;11:150–6. [DOI] [PubMed] [PMC]
Lakshmi Narendra B, Eshvendar Reddy K, Shantikumar S, Ramakrishna S. Immune system: a double-edged sword in cancer.Inflamm Res. 2013;62:823–34. [DOI] [PubMed]
Lim AI, Menegatti S, Bustamante J, Le Bourhis L, Allez M, Rogge L, et al. IL-12 drives functional plasticity of human group 2 innate lymphoid cells.J Exp Med. 2016;213:569–83. [DOI] [PubMed] [PMC]
Pearson C, Thornton EE, McKenzie B, Schaupp AL, Huskens N, Griseri T, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation.Elife. 2016;5:e10066. [DOI] [PubMed] [PMC]
Lim AI, Verrier T, Vosshenrich C, Di Santo JP. Developmental options and functional plasticity of innate lymphoid cells.Curr Opin Immunol. 2017;44:61–8. [DOI]
Hinshaw DC, Shevde LA. The Tumor Microenvironment Innately Modulates Cancer Progression.Cancer Res. 2019;79:4557–66. [DOI] [PubMed] [PMC]
García-Sanz R, González M, Orfão A, Moro MJ, Hernández JM, Borrego D, et al. Analysis of natural killer-associated antigens in peripheral blood and bone marrow of multiple myeloma patients and prognostic implications.Br J Haematol. 1996;93:81–8. [DOI] [PubMed]
Exley M, Garcia J, Wilson SB, Spada F, Gerdes D, Tahir SM, et al. CD1d structure and regulation on human thymocytes, peripheral blood T cells, B cells and monocytes.Immunology. 2000;100:37–47. [DOI] [PubMed] [PMC]
Godfrey DI, Rossjohn J. New ways to turn on NKT cells.J Exp Med. 2011;208:1121–5. [DOI] [PubMed] [PMC]
Spanoudakis E, Hu M, Naresh K, Terpos E, Melo V, Reid A, et al. Regulation of multiple myeloma survival and progression by CD1d.Blood. 2009;113:2498–507. [DOI] [PubMed]
Seliger B, Ruiz-Cabello F, Garrido F. IFN Inducibility of Major Histocompatibility Antigens in Tumors.Adv Cancer Res. 2008;101:249–76. [DOI] [PubMed] [PMC]
Garrido F, Algarra I. MHC antigens and tumor escape from immune surveillance.Adv Cancer Res. 2001;83:117–58. [DOI] [PubMed]
Kelker HC, Le J, Rubin BY, Yip YK, Nagler C, Vilcek J. Three molecular weight forms of natural human interferon-gamma revealed by immunoprecipitation with monoclonal antibody.J Biol Chem. 1984;259:4301–4. [DOI]
Takaoka A, Mitani Y, Suemori H, Sato M, Yokochi T, Noguchi S, et al. Cross Talk Between Interferon-γ and -α/β Signaling Components in Caveolar Membrane Domains.Science. 2000;288:2357–60. [DOI] [PubMed]
Xu X, Fu XY, Plate J, Chong AS. IFN-γ Induces Cell Growth Inhibition by Fas-mediated Apoptosis: Requirement of STAT1 Protein for Up-Regulation of Fas and FasL Expression.Cancer Res. 1998;58:2832–7.
Miller CH, Maher SG, Young HA. Clinical Use of Interferon-γ.Ann N Y Acad Sci. 2009;1182:69–79. [DOI] [PubMed] [PMC]
Wang Q, Lian GY, Sheng SM, Xu J, Ye LL, Min C, et al. Exosomal lncRNA NEAT1 Inhibits NK-Cell Activity to Promote Multiple Myeloma Cell Immune Escape via an EZH2/PBX1 Axis.Mol Cancer Res. 2024;22:125–36. [DOI] [PubMed]
Portier M, Zhang XG, Caron E, Lu ZY, Bataille R, Klein B. Gamma-Interferon in multiple myeloma: inhibition of interleukin-6 (IL-6)-dependent myeloma cell growth and downregulation of IL-6-receptor expression in vitro.Blood. 1993;81:3076–82. [DOI] [PubMed]
Szudy-Szczyrek A, Ahern S, Kozioł M, Majowicz D, Szczyrek M, Krawczyk J, et al. Therapeutic Potential of Innate Lymphoid Cells for Multiple Myeloma Therapy.Cancers (Basel). 2021;13:4806. [DOI] [PubMed] [PMC]
Martins LNGF, Morita AA, Broto GE, Takakura É, da Silva SS, Tomiotto-Pellissier F, et al. Interferon-gamma in mobilized stem cells: A possible prognostic marker in early post-transplant management in multiple myeloma.Cytokine. 2018;108:127–35. [DOI]
Tsuyama N, Danjoh I, Otsuyama K, Obata M, Tahara H, Ohta T, et al. IL-6-induced Bcl6 variant 2 supports IL-6-dependent myeloma cell proliferation and survival through STAT3.Biochem Biophys Res Commun. 2005;337:201–8. [DOI] [PubMed]
Hideshima T, Mitsiades C, Ikeda H, Chauhan D, Raje N, Gorgun G, et al. A proto-oncogene BCL6 is up-regulated in the bone marrow microenvironment in multiple myeloma cells.Blood. 2010;115:3772–5. [DOI] [PubMed] [PMC]
Ujvari D, Nagy N, Madapura HS, Kallas T, Kröhnke MCL, Stenke L, et al. Interferon γ is a strong, STAT1-dependent direct inducer of BCL6 expression in multiple myeloma cells.Biochem Biophys Res Commun. 2018;498:502–8. [DOI] [PubMed]
Barberi C, De Pasquale C, Allegra A, Sidoti Migliore G, Oliveri D, Loiacono F, et al. Myeloma cells induce the accumulation of activated CD94low NK cells by cell-to-cell contacts involving CD56 molecules.Blood Adv. 2020;4:2297–307. [DOI] [PubMed] [PMC]
Caligiuri MA. Human natural killer cells.Blood. 2008;112:461–9. [DOI] [PubMed] [PMC]
Viel S, Charrier E, Marçais A, Rouzaire P, Bienvenu J, Karlin L, et al. Monitoring NK cell activity in patients with hematological malignancies.Oncoimmunology. 2013;2:e26011. [DOI] [PubMed] [PMC]
Kini Bailur J, Mehta S, Zhang L, Neparidze N, Parker T, Bar N, et al. Changes in bone marrow innate lymphoid cell subsets in monoclonal gammopathy: target for IMiD therapy.Blood Adv. 2017;1:2343–7. [DOI] [PubMed] [PMC]
Wang S, Wu P, Chen Y, Chai Y. Ambiguous roles and potential therapeutic strategies of innate lymphoid cells in different types of tumor (Review).Oncol Lett. 2020;20:1513–25. [DOI] [PubMed] [PMC]
Guillerey C, Stannard K, Chen J, Krumeich S, Miles K, Nakamura K, et al. Systemic administration of IL-33 induces a population of circulating KLRG1hi type 2 innate lymphoid cells and inhibits type 1 innate immunity against multiple myeloma.Immunol Cell Biol. 2021;99:65–83. [DOI]
Taylor S, Huang Y, Mallett G, Stathopoulou C, Felizardo TC, Sun MA, et al. PD-1 regulates KLRG1+ group 2 innate lymphoid cells.J Exp Med. 2017;214:1663–78. [DOI] [PubMed] [PMC]
Paiva B, Azpilikueta A, Puig N, Ocio EM, Sharma R, Oyajobi BO, et al. PD-L1/PD-1 presence in the tumor microenvironment and activity of PD-1 blockade in multiple myeloma.Leukemia. 2015;29:2110–3. [DOI] [PubMed]
Geremia A, Arancibia-Cárcamo CV, Fleming MP, Rust N, Singh B, Mortensen NJ, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease.J Exp Med. 2011;208:1127–33. [DOI] [PubMed] [PMC]
Langowski JL, Zhang X, Wu L, Mattson JD, Chen T, Smith K, et al. IL-23 promotes tumour incidence and growth.Nature. 2006;442:461–5. [DOI] [PubMed]
Grivennikov SI, Wang K, Mucida D, Stewart CA, Schnabl B, Jauch D, et al. Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth.Nature. 2012;491:254–8. [DOI] [PubMed] [PMC]
Alexandrakis MG, Tsirakis G. Anemia in Heart Failure Patients.ISRN Hematol. 2012;2012:246915. [DOI] [PubMed] [PMC]
Prabhala RH, Pelluru D, Fulciniti M, Prabhala HK, Nanjappa P, Song W, et al. Elevated IL-17 produced by TH17 cells promotes myeloma cell growth and inhibits immune function in multiple myeloma.Blood. 2010;115:5385–92. [DOI] [PubMed] [PMC]
Gu J, Huang X, Zhang Y, Bao C, Zhou Z, Jin J. Cytokine profiles in patients with newly diagnosed multiple myeloma: Survival is associated with IL-6 and IL-17A levels.Cytokine. 2021;138:155358. [DOI] [PubMed]
Roma S, Camisaschi C, Mancuso P, Trabanelli S, Vanazzi A, Villa S, et al. Dampening of cytotoxic innate lymphoid cells: A new tumour immune escape mechanism in B cell non-Hodgkin’s lymphoma.Cell Immunol. 2022;382:104615. [DOI] [PubMed]
Renukaradhya GJ, Khan MA, Vieira M, Du W, Gervay-Hague J, Brutkiewicz RR. Type I NKT cells protect (and type II NKT cells suppress) the host’s innate antitumor immune response to a B-cell lymphoma.Blood. 2008;111:5637–45. [DOI] [PubMed] [PMC]
Myrou A. Molecular Mechanisms and Treatment Strategies for Helicobacter pylori-Induced Gastric Carcinogenesis and Mucosa-Associated Lymphoid Tissue (MALT) Lymphoma.Cureus. 2024;16:e60326. [DOI] [PubMed] [PMC]
Melsen JE, Lugthart G, Lankester AC, Schilham MW. Human Circulating and Tissue-Resident CD56(bright) Natural Killer Cell Populations.Front Immunol. 2016;7:262. [DOI] [PubMed] [PMC]
Sojka DK, Tian Z, Yokoyama WM. Tissue-resident natural killer cells and their potential diversity.Semin Immunol. 2014;26:127–31. [DOI] [PubMed] [PMC]
Jonsson AH, Yokoyama WM. Natural Killer Cell Tolerance: Licensing and Other Mechanisms.Adv Immunol. 2009;101:27–79. [DOI] [PubMed]
Ganal SC, Sanos SL, Kallfass C, Oberle K, Johner C, Kirschning C, et al. Priming of Natural Killer Cells by Nonmucosal Mononuclear Phagocytes Requires Instructive Signals from Commensal Microbiota.Immunity. 2012;37:171–86. [DOI] [PubMed]
Rizzello V, Bonaccorsi I, Dongarrà ML, Fink LN, Ferlazzo G. Role of Natural Killer and Dendritic Cell Crosstalk in Immunomodulation by Commensal Bacteria Probiotics.J Biomed Biotechnol. 2011;2011:473097. [DOI] [PubMed] [PMC]
Bartizal KF, Salkowski C, Pleasants JR, Balish E. The Effect of Microbial Flora, Diet, and Age on the Tumoricidal Activity of Natural Killer Cells.J Leukoc Biol. 1984;36:739–50. [DOI] [PubMed]
Herbert DR, Douglas B, Zullo K. Group 2 Innate Lymphoid Cells (ILC2): Type 2 Immunity and Helminth Immunity.Int J Mol Sci. 2019;20:2276. [DOI] [PubMed] [PMC]
Satoh-Takayama N, Kato T, Motomura Y, Kageyama T, Taguchi-Atarashi N, Kinoshita-Daitoku R, et al. Bacteria-Induced Group 2 Innate Lymphoid Cells in the Stomach Provide Immune Protection through Induction of IgA.Immunity. 2020;52:635–49.e4. [DOI] [PubMed]
Ricardo-Gonzalez RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang HE, et al. Tissue signals imprint ILC2 identity with anticipatory function.Nat Immunol. 2018;19:1093–9. [DOI] [PubMed] [PMC]
Monticelli LA, Sonnenberg GF, Abt MC, Alenghat T, Ziegler CG, Doering TA, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus.Nat Immunol. 2011;12:1045–54. [DOI] [PubMed] [PMC]
Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.CA Cancer J Clin. 2005;55:74–108. [DOI] [PubMed]
Zheng Y, Valdez PA, Danilenko DM, Hu Y, Sa SM, Gong Q, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens.Nat Med. 2008;14:282–9. [DOI] [PubMed]
Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation.Science. 2014;345:1254009. [DOI] [PubMed] [PMC]
Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, et al. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4+ T cells.Science. 2015;348:1031–5. [DOI] [PubMed] [PMC]
Wang S, Qu Y, Xia P, Chen Y, Zhu X, Zhang J, et al. Transdifferentiation of tumor infiltrating innate lymphoid cells during progression of colorectal cancer.Cell Res. 2020;30:610–22. [DOI] [PubMed] [PMC]
Jiao Y, Yan Z, Yang A. The Roles of Innate Lymphoid Cells in the Gastric Mucosal Immunology and Oncogenesis of Gastric Cancer.Int J Mol Sci. 2023;24:6652. [DOI] [PubMed] [PMC]
Jahn T, Zuther M, Friedrichs B, Heuser C, Guhlke S, Abken H, et al. An Il12-Il2-Antibody Fusion Protein Targeting Hodgkin's Lymphoma Cells Potentiates Activation Of Nk And T Cells For An Anti-Tumor Attack.PLoS One. 2012;7:e44482. [DOI] [PubMed] [PMC]
Björklund AT, Carlsten M, Sohlberg E, Liu LL, Clancy T, Karimi M, et al. Complete Remission with Reduction of High-Risk Clones following Haploidentical NK-Cell Therapy against MDS and AML.Clin Cancer Res. 2018;24:1834–44. [DOI] [PubMed]
Dolstra H, Roeven MWH, Spanholtz J, Hangalapura BN, Tordoir M, Maas F, et al. Successful Transfer of Umbilical Cord Blood CD34+ Hematopoietic Stem and Progenitor-derived NK Cells in Older Acute Myeloid Leukemia Patients.Clin Cancer Res. 2017;23:4107–18. [DOI] [PubMed]
Zhao XY, Yu XX, Xu ZL, Cao XH, Huo MR, Zhao XS, et al. Donor and host coexpressing KIR ligands promote NK education after allogeneic hematopoietic stem cell transplantation.Blood Adv. 2019;3:4312–25. [DOI] [PubMed] [PMC]
Boudreau JE, Hsu KC. Natural Killer Cell Education and the Response to Infection and Cancer Therapy: Stay Tuned.Trends Immunol. 2018;39:222–39. [DOI] [PubMed] [PMC]
Verneris MR, Miller JS, Hsu KC, Wang T, Sees JA, Paczesny S, et al. Investigation of donor KIR content and matching in children undergoing hematopoietic cell transplantation for acute leukemia.Blood Adv. 2020;4:1350–6. [DOI] [PubMed] [PMC]
Feins S, Kong W, Williams EF, Milone MC, Fraietta JA. An introduction to chimeric antigen receptor (CAR) T-cell immunotherapy for human cancer.Am J Hematol. 2019;94:S3–9. [DOI] [PubMed]
Halim L, Maher J. CAR T-cell immunotherapy of B-cell malignancy: the story so far.Ther Adv Vaccines Immunother. 2020;8:2515135520927164. [DOI] [PubMed] [PMC]
Cummins KD, Gill S. Will CAR T cell therapy have a role in AML? Promises and pitfalls.Semin Hematol. 2019;56:155–63. [DOI] [PubMed]
Tang X, Yang L, Li Z, Nalin AP, Dai H, Xu T, et al. First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia.Am J Cancer Res. 2018;8:1083–9. [PubMed] [PMC]
Ciurea SO, Schafer JR, Bassett R, Denman CJ, Cao K, Willis D, et al. Phase 1 clinical trial using mbIL21 ex vivo-expanded donor-derived NK cells after haploidentical transplantation.Blood. 2017;130:1857–68. [DOI] [PubMed] [PMC]
Vasu S, Bejanyan N, Devine S, Krakow E, Krakow E, Logan B, et al. BMT CTN 1803: Haploidentical Natural Killer Cells (CSTD002) to Prevent Post-Transplant Relapse in AML and MDS (NK-REALM).Blood. 2019;136:2020. [DOI]
Liu E, Marin D, Banerjee P, Macapinlac HA, Thompson P, Basar R, et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors.N Engl J Med. 2020;382:545–53. [DOI] [PubMed] [PMC]
Testa U, Castelli G, Pelosi E. Emerging Role of Chimeric Antigen Receptor-Natural Killer Cells for the Treatment of Hematologic Malignancies.Cancers (Basel). 2025;17:1454. [DOI] [PubMed] [PMC]
Sadelain M, Rivière I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes.Nat Rev Cancer. 2003;3:35–45. [DOI] [PubMed]
Bridgeman JS, Hawkins RE, Hombach AA, Abken H, Gilham DE. Building better chimeric antigen receptors for adoptive T cell therapy.Curr Gene Ther. 2010;10:77–90. [DOI] [PubMed]
Fan M, Li M, Gao L, Geng S, Wang J, Wang Y, et al. Chimeric antigen receptors for adoptive T cell therapy in acute myeloid leukemia.J Hematol Oncol. 2017;10:151. [DOI] [PubMed] [PMC]
Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors.Proc Natl Acad Sci U S A. 1993;90:720–4. [DOI] [PubMed] [PMC]
Heuser C, Hombach A, Lösch C, Manista K, Abken H. T-cell activation by recombinant immunoreceptors: impact of the intracellular signalling domain on the stability of receptor expression and antigen-specific activation of grafted T cells.Gene Ther. 2003;10:1408–19. [DOI] [PubMed]
Haynes NM, Snook MB, Trapani JA, Cerruti L, Jane SM, Smyth MJ, et al. Redirecting Mouse CTL Against Colon Carcinoma: Superior Signaling Efficacy of Single-Chain Variable Domain Chimeras Containing TCR-ζ vs FcεRI-γ.J Immunol. 2001;166:182–7. [DOI] [PubMed]
Harding FA, McArthur JG, Gross JA, Raulet DH, Allison JP. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones.Nature. 1992;356:607–9. [DOI] [PubMed]
Lenschow DJ, Walunas TL, Bluestone JA. CD28/B7 system of T cell costimulation.Annu Rev Immunol. 1996;14:233–58. [DOI] [PubMed]
Bretscher PA. A two-step, two-signal model for the primary activation of precursor helper T cells.Proc Natl Acad Sci U S A. 1999;96:185–90. [DOI] [PubMed] [PMC]
Kowolik CM, Topp MS, Gonzalez S, Pfeiffer T, Olivares S, Gonzalez N, et al. CD28 Costimulation Provided through a CD19-Specific Chimeric Antigen Receptor Enhances In vivo Persistence and Antitumor Efficacy of Adoptively Transferred T Cells.Cancer Res. 2006;66:10995–04. [DOI] [PubMed]
Savoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, et al. CD28 costimulation improves expansion and persistence of chimeric antigen receptor-modified T cells in lymphoma patients.J Clin Invest. 2011;121:1822–6. [DOI] [PubMed] [PMC]
Milone MC, Fish JD, Carpenito C, Carroll RG, Binder GK, Teachey D, et al. Chimeric Receptors Containing CD137 Signal Transduction Domains Mediate Enhanced Survival of T Cells and Increased Antileukemic Efficacy In Vivo.Mol Ther. 2009;17:1453–64. [DOI] [PubMed] [PMC]
Altvater B, Landmeier S, Pscherer S, Temme J, Juergens H, Pule M, et al. 2B4 (CD244) signaling via chimeric receptors costimulates tumor-antigen specific proliferation and in vitro expansion of human T cells.Cancer Immunol Immunother. 2009;58:1991–2001. [DOI] [PubMed] [PMC]
Zhong XS, Matsushita M, Plotkin J, Riviere I, Sadelain M. Chimeric Antigen Receptors Combining 4-1BB and CD28 Signaling Domains Augment PI3kinase/AKT/Bcl-XL Activation and CD8+ T Cell–mediated Tumor Eradication.Mol Ther. 2010;18:413–20. [DOI] [PubMed] [PMC]
Wilkie S, Picco G, Foster J, Davies DM, Julien S, Cooper L, et al. Retargeting of Human T Cells to Tumor-Associated MUC1: The Evolution of a Chimeric Antigen Receptor.J Immunol. 2008;180:4901–9. [DOI] [PubMed]
Ma S, Li X, Wang X, Cheng L, Li Z, Zhang C, et al. Current Progress in CAR-T Cell Therapy for Solid Tumors.Int J Biol Sci. 2019;15:2548–60. [DOI] [PubMed] [PMC]
Shah UA, Mailankody S. CAR T and CAR NK cells in multiple myeloma: Expanding the targets.Best Pract Res Clin Haematol. 2020;33:101141. [DOI] [PubMed] [PMC]
Holthof LC, Stikvoort A, van der Horst HJ, Gelderloos AT, Poels R, Li F, et al. Bone Marrow Mesenchymal Stromal Cell-mediated Resistance in Multiple Myeloma Against NK Cells can be Overcome by Introduction of CD38-CAR or TRAIL-variant.Hemasphere. 2021;5:e561. [DOI] [PubMed] [PMC]
Goodridge JP, Bjordahl R, Mahmood S, Reiser J, Gaidarova S, Blum R, et al. FT576: Multi-Specific Off-the-Shelf CAR-NK Cell Therapy Engineered for Enhanced Persistence, Avoidance of Self-Fratricide and Optimized Mab Combination Therapy to Prevent Antigenic Escape and Elicit a Deep and Durable Response in Multiple Myeloma.Blood. 2020;136:4–5. [DOI]
Jiang H, Zhang W, Shang P, Zhang H, Fu W, Ye F, et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells.Mol Oncol. 2014;8:297–310. [DOI] [PubMed] [PMC]
Lonial S, Dimopoulos M, Palumbo A, White D, Grosicki S, Spicka I, et al.; ELOQUENT-2 Investigators. Elotuzumab Therapy for Relapsed or Refractory Multiple Myeloma.N Engl J Med. 2015;373:621–31. [DOI] [PubMed]
Chu J, Deng Y, Benson DM, He S, Hughes T, Zhang J, et al. CS1-specific chimeric antigen receptor (CAR)-engineered natural killer cells enhance in vitro and in vivo antitumor activity against human multiple myeloma.Leukemia. 2014;28:917–27. [DOI] [PubMed] [PMC]
Leivas A, Valeri A, Córdoba L, García-Ortiz A, Ortiz A, Sánchez-Vega L, et al. NKG2D-CAR-transduced natural killer cells efficiently target multiple myeloma.Blood Cancer J. 2021;11:146. [DOI] [PubMed] [PMC]
Brentjens R, Yeh R, Bernal Y, Riviere I, Sadelain M. Treatment of Chronic Lymphocytic Leukemia With Genetically Targeted Autologous T Cells: Case Report of an Unforeseen Adverse Event in a Phase I Clinical Trial.Mol Ther. 2010;18:666–8. [DOI] [PubMed] [PMC]
Maude SL, Barrett D, Teachey DT, Grupp SA. Managing Cytokine Release Syndrome Associated With Novel T Cell-Engaging Therapies.Cancer J. 2014;20:119–22. [DOI] [PubMed] [PMC]
Lee DW, Gardner R, Porter DL, Louis CU, Ahmed N, Jensen M, et al. Current concepts in the diagnosis and management of cytokine release syndrome.Blood. 2014;124:188–95. [DOI] [PubMed] [PMC]
Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, et al. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia.N Engl J Med. 2013;368:1509–18. [DOI] [PubMed] [PMC]
Richman SA, Nunez-Cruz S, Moghimi B, Li LZ, Gershenson ZT, Mourelatos Z, et al. High-Affinity GD2-Specific CAR T Cells Induce Fatal Encephalitis in a Preclinical Neuroblastoma Model.Cancer Immunol Res. 2018;6:36–46. [DOI] [PubMed] [PMC]
Liu Y, Cao X. Immunosuppressive cells in tumor immune escape and metastasis.J Mol Med (Berl). 2016;94:509–22. [DOI] [PubMed]
Turtle CJ, Hanafi LA, Berger C, Hudecek M, Pender B, Robinson E, et al. Immunotherapy of non-Hodgkin’s lymphoma with a defined ratio of CD8+ and CD4+ CD19-specific chimeric antigen receptor-modified T cells.Sci Transl Med. 2016;8:355ra116. [DOI] [PubMed] [PMC]
Di Stasi A, Tey SK, Dotti G, Fujita Y, Kennedy-Nasser A, Martinez C, et al. Inducible Apoptosis as a Safety Switch for Adoptive Cell Therapy.N Engl J Med. 2011;365:1673–83. [DOI] [PubMed] [PMC]
Vély F, Barlogis V, Vallentin B, Neven B, Piperoglou C, Ebbo M, et al. Evidence of innate lymphoid cell redundancy in humans.Nat Immunol. 2016;17:1291–9. [DOI] [PubMed] [PMC]
Allegra A, Casciaro M, Lo Presti E, Musolino C, Gangemi S. Harnessing Unconventional T Cells and Innate Lymphoid Cells to Prevent and Treat Hematological Malignancies: Prospects for New Immunotherapy.Biomolecules. 2022;12:754. [DOI] [PubMed] [PMC]
Lo Presti E, De Gaetano A, Pioggia G, Gangemi S. Comprehensive Analysis of the ILCs and Unconventional T Cells in Virus Infection: Profiling and Dynamics Associated with COVID-19 Disease for a Future Monitoring System and Therapeutic Opportunities.Cells. 2022;11:542. [DOI] [PubMed] [PMC]
Imbesi S, Musolino C, Allegra A, Saija A, Morabito F, Calapai G, et al. Oxidative stress in oncohematologic diseases: an update.Expert Rev Hematol. 2013;6:317–25. [DOI] [PubMed]
Gangemi S, Allegra A, Alonci A, Cristani M, Russo S, Speciale A, et al. Increase of novel biomarkers for oxidative stress in patients with plasma cell disorders and in multiple myeloma patients with bone lesions.Inflamm Res. 2012;61:1063–7. [DOI] [PubMed]
Gangemi S, Allegra A, Aguennouz M, Alonci A, Speciale A, Cannavò A, et al. Relationship Between Advanced Oxidation Protein Products, Advanced Glycation End Products, and S-Nitrosylated Proteins With Biological Risk and MDR-1 Polymorphisms in Patients Affected by B-Chronic Lymphocytic Leukemia.Cancer Invest. 2012;30:20–6. [DOI] [PubMed]
Musolino C, Allegra A, Saija A, Alonci A, Russo S, Spatari G, et al. Changes in advanced oxidation protein products, advanced glycation end products, and s-nitrosylated proteins, in patients affected by polycythemia vera and essential thrombocythemia.Clin Biochem. 2012;45:1439–43. [DOI] [PubMed]
Allegra A, Pioggia G, Tonacci A, Musolino C, Gangemi S. Oxidative Stress and Photodynamic Therapy of Skin Cancers: Mechanisms, Challenges and Promising Developments.Antioxidants (Basel). 2020;9:448. [DOI] [PubMed] [PMC]
Musolino C, Allegra A, Pioggia G, Gangemi S. Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review).Oncol Rep. 2017;37:671–83. [DOI] [PubMed]
Hellstrand K. Histamine in cancer immunotherapy: a preclinical background.Semin Oncol. 2002;29:35–40. [DOI] [PubMed]
Kono K, Ressing ME, Brandt RM, Melief CJ, Potkul RK, Andersson B, et al. Decreased expression of signal-transducing zeta chain in peripheral T cells and natural killer cells in patients with cervical cancer.Clin Cancer Res. 1996;2:1825–8. [PubMed]
Otsuji M, Kimura Y, Aoe T, Okamoto Y, Saito T. Oxidative stress by tumor-derived macrophages suppresses the expression of CD3 ζ chain of T-cell receptor complex and antigen-specific T-cell responses.Proc Natl Acad Sci U S A. 1996;93:13119–24. [DOI] [PubMed] [PMC]
Stiff A, Trikha P, Mundy-Bosse B, McMichael E, Mace TA, Benner B, et al. Nitric Oxide Production by Myeloid-Derived Suppressor Cells Plays a Role in Impairing Fc Receptor-Mediated Natural Killer Cell Function.Clin Cancer Res. 2018;24:1891–904. [DOI] [PubMed] [PMC]
Fleming V, Hu X, Weber R, Nagibin V, Groth C, Altevogt P, et al. Targeting Myeloid-Derived Suppressor Cells to Bypass Tumor-Induced Immunosuppression.Front Immunol. 2018;9:398. [DOI] [PubMed] [PMC]
Brune M, Castaigne S, Catalano J, Gehlsen K, Ho AD, Hofmann WK, et al. Improved leukemia-free survival after postconsolidation immunotherapy with histamine dihydrochloride and interleukin-2 in acute myeloid leukemia: results of a randomized phase 3 trial.Blood. 2006;108:88–96. [DOI] [PubMed]