Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025.CA Cancer J Clin. 2025;75:10–45. [DOI] [PubMed] [PMC]
Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J Clin. 2024;74:229–63. [DOI] [PubMed]
DeVita VT, Lawrence TS, Rosenberg SA, editors. DeVita, Hellman, and Rosenberg’s cancer: principles & practice of oncology. 11th ed. Philadelphia: Wolters Kluwer; 2019.
Roy PS, Saikia BJ. Cancer and cure: A critical analysis.Indian J Cancer. 2016;53:441–2. [DOI] [PubMed]
Senga SS, Grose RP. Hallmarks of cancer—the new testament.Open Biol. 2021;11:200358. [DOI] [PubMed] [PMC]
Schwartz SM. Epidemiology of Cancer.Clin Chem. 2024;70:140–9. [DOI] [PubMed]
Harbeck N, Penault-Llorca F, Cortes J, Gnant M, Houssami N, Poortmans P, et al. Breast cancer.Nat Rev Dis Primers. 2019;5:66. [DOI] [PubMed]
Buonomo OC, Caredda E, Portarena I, Vanni G, Orlandi A, Bagni C, et al. New insights into the metastatic behavior after breast cancer surgery, according to well-established clinicopathological variables and molecular subtypes.PLoS One. 2017;12:e0184680. [DOI] [PubMed] [PMC]
Cordani M, Dando I, Ambrosini G, González-Menéndez P. Signaling, cancer cell plasticity, and intratumor heterogeneity.Cell Commun Signal. 2024;22:255. [DOI] [PubMed] [PMC]
WARBURG O. On the Origin of Cancer Cells.Science. 1956;123:309–14. [DOI] [PubMed]
Mazzone M, Menga A, Castegna A. Metabolism and TAM functions—it takes two to tango.FEBS J. 2018;285:700–16. [DOI] [PubMed]
Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation.Cell. 2011;144:646–74. [DOI] [PubMed]
Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism.Cell Metab. 2016;23:27–47. [DOI] [PubMed] [PMC]
Vaupel P, Multhoff G. Revisiting the Warburg effect: historical dogma versus current understanding.J Physiol. 2021;599:1745–57. [DOI] [PubMed]
Schreier A, Zappasodi R, Serganova I, Brown KA, Demaria S, Andreopoulou E. Facts and Perspectives: Implications of tumor glycolysis on immunotherapy response in triple negative breast cancer.Front Oncol. 2022;12:1061789. [DOI] [PubMed] [PMC]
Chen P, Zuo H, Xiong H, Kolar MJ, Chu Q, Saghatelian A, et al. Gpr132 sensing of lactate mediates tumor-macrophage interplay to promote breast cancer metastasis.Proc Natl Acad Sci U S A. 2017;114:580–5. [DOI] [PubMed] [PMC]
Damaghi M, West J, Robertson-Tessi M, Xu L, Ferrall-Fairbanks MC, Stewart PA, et al. The harsh microenvironment in early breast cancer selects for a Warburg phenotype.Proc Natl Acad Sci U S A. 2021;118:e2011342118. [DOI] [PubMed] [PMC]
Lu J. The Warburg metabolism fuels tumor metastasis.Cancer Metastasis Rev. 2019;38:157–64. [DOI] [PubMed]
Dhanasekaran R, Deutzmann A, Mahauad-Fernandez WD, Hansen AS, Gouw AM, Felsher DW. The MYC oncogene—the grand orchestrator of cancer growth and immune evasion.Nat Rev Clin Oncol. 2022;19:23–36. [DOI] [PubMed] [PMC]
Larionova I, Kazakova E, Patysheva M, Kzhyshkowska J. Transcriptional, Epigenetic and Metabolic Programming of Tumor-Associated Macrophages.Cancers (Basel). 2020;12:1411. [DOI] [PubMed] [PMC]
Urban-Wojciuk Z, Khan MM, Oyler BL, Fåhraeus R, Marek-Trzonkowska N, Nita-Lazar A, et al. The Role of TLRs in Anti-cancer Immunity and Tumor Rejection.Front Immunol. 2019;10:2388. [DOI] [PubMed] [PMC]
Ostuni R, Kratochvill F, Murray PJ, Natoli G. Macrophages and cancer: from mechanisms to therapeutic implications.Trends Immunol. 2015;36:229–39. [DOI] [PubMed]
Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape.Mol Cancer. 2019;18:10. [DOI] [PubMed] [PMC]
Egeblad M, Nakasone ES, Werb Z. Tumors as Organs: Complex Tissues that Interface with the Entire Organism.Dev Cell. 2010;18:884–901. [DOI] [PubMed] [PMC]
Burgdorf S, Porubsky S, Marx A, Popovic ZV. Cancer Acidity and Hypertonicity Contribute to Dysfunction of Tumor-Associated Dendritic Cells: Potential Impact on Antigen Cross-Presentation Machinery.Cancers (Basel). 2020;12:2403. [DOI] [PubMed] [PMC]
Singh S, Mehta N, Lilan J, Budhthoki MB, Chao F, Yong L. Initiative action of tumor-associated macrophage during tumor metastasis.Biochim Open. 2017;4:8–18. [DOI] [PubMed] [PMC]
Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of Triple-Negative Breast Cancer Molecular Subtypes: Implications for Neoadjuvant Chemotherapy Selection.PLoS One. 2016;11:e0157368. [DOI] [PubMed] [PMC]
Liang L, Li W, Li X, Jin X, Liao Q, Li Y, et al. ‘Reverse Warburg effect’ of cancerassociated fibroblasts (Review).Int J Oncol. 2022;60:67. [DOI] [PubMed]
Cheng WY, Huynh H, Chen P, Peña-Llopis S, Wan Y. Macrophage PPARγ inhibits Gpr132 to mediate the anti-tumor effects of rosiglitazone.Elife. 2016;5:e18501. [DOI] [PubMed] [PMC]
Sullivan WJ, Mullen PJ, Schmid EW, Flores A, Momcilovic M, Sharpley MS, et al. Extracellular Matrix Remodeling Regulates Glucose Metabolism through TXNIP Destabilization.Cell. 2018;175:117–32.e21. [DOI] [PubMed] [PMC]
García-Cañaveras JC, Chen L, Rabinowitz JD. The Tumor Metabolic Microenvironment: Lessons from Lactate.Cancer Res. 2019;79:3155–62. [DOI] [PubMed] [PMC]
Na YR, Je S, Seok SH. Metabolic features of macrophages in inflammatory diseases and cancer.Cancer Lett. 2018;413:46–58. [DOI] [PubMed]
Huang L, Xu H, Peng G. TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy.Cell Mol Immunol. 2018;15:428–37. [DOI] [PubMed] [PMC]
Liu S, Li Y, Yuan M, Song Q, Liu M. Correlation between the Warburg effect and progression of triple-negative breast cancer.Front Oncol. 2023;12:1060495. [DOI] [PubMed] [PMC]
Noy R, Pollard JW. Tumor-Associated Macrophages: From Mechanisms to Therapy.Immunity. 2014;41:49–61. [DOI] [PubMed] [PMC]
Farahzadi R, Valipour B, Fathi E, Pirmoradi S, Molavi O, Montazersaheb S, et al. Oxidative stress regulation and related metabolic pathways in epithelial-mesenchymal transition of breast cancer stem cells.Stem Cell Res Ther. 2023;14:342. [DOI] [PubMed] [PMC]
Fedele M, Sgarra R, Battista S, Cerchia L, Manfioletti G. The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression.Int J Mol Sci. 2022;23:800. [DOI] [PubMed] [PMC]
Lendeckel U, Venz S, Wolke C. Macrophages: shapes and functions.ChemTexts. 2022;8:12. [DOI] [PubMed] [PMC]
Zhou HC, Yan XY, Yu WW, Liang XQ, Du XY, Liu ZC, et al. Lactic acid in macrophage polarization: The significant role in inflammation and cancer.Int Rev Immunol. 2022;41:4–18. [DOI] [PubMed]
de la Calle-Fabregat C, Calafell-Segura J, Gardet M, Dunsmore G, Mulder K, Ciudad L, et al. NF-κB and TET2 promote macrophage reprogramming in hypoxia that overrides the immunosuppressive effects of the tumor microenvironment.Sci Adv. 2024;10:eadq5226. [DOI] [PubMed] [PMC]
Li M, Yang Y, Xiong L, Jiang P, Wang J, Li C. Metabolism, metabolites, and macrophages in cancer.J Hematol Oncol. 2023;16:80. [DOI] [PubMed] [PMC]
Zhang A, Xu Y, Xu H, Ren J, Meng T, Ni Y, et al. Lactate-induced M2 polarization of tumor-associated macrophages promotes the invasion of pituitary adenoma by secreting CCL17.Theranostics. 2021;11:3839–52. [DOI] [PubMed] [PMC]
Kuang DM, Zhao Q, Peng C, Xu J, Zhang JP, Wu C, et al. Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1.J Exp Med. 2009;206:1327–37. [DOI] [PubMed] [PMC]
Basak U, Sarkar T, Mukherjee S, Chakraborty S, Dutta A, Dutta S, et al. Tumor-associated macrophages: an effective player of the tumor microenvironment.Front Immunol. 2023;14:1295257. [DOI] [PubMed] [PMC]
Bied M, Ho WW, Ginhoux F, Blériot C. Roles of macrophages in tumor development: a spatiotemporal perspective.Cell Mol Immunol. 2023;20:983–92. [DOI] [PubMed] [PMC]
Bak SP, Alonso A, Turk MJ, Berwin B. Murine ovarian cancer vascular leukocytes require arginase-1 activity for T cell suppression.Mol Immunol. 2008;46:258–68. [DOI] [PubMed] [PMC]
Wu K, Lin K, Li X, Yuan X, Xu P, Ni P, et al. Redefining Tumor-Associated Macrophage Subpopulations and Functions in the Tumor Microenvironment.Front Immunol. 2020;11:1731. [DOI] [PubMed] [PMC]
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas.J Clin Invest. 2012;122:787–95. [DOI] [PubMed] [PMC]
EI Kasmi KC, Stenmark KR. Contribution of metabolic reprogramming to macrophage plasticity and function.Semin Immunol. 2015;27:267–75. [DOI] [PubMed] [PMC]
Bohn T, Rapp S, Luther N, Klein M, Bruehl TJ, Kojima N, et al. Tumor immunoevasion via acidosis-dependent induction of regulatory tumor-associated macrophages.Nat Immunol. 2018;19:1319–29. [DOI] [PubMed]
Kes MMG, Van den Bossche J, Griffioen AW, Huijbers EJM. Oncometabolites lactate and succinate drive pro-angiogenic macrophage response in tumors.Biochim Biophys Acta Rev Cancer. 2020;1874:188427. [DOI] [PubMed]
Ji C, Ji JF, Yu XB, Wang ZX. Nmethyladenosine reader YTHDF2mediated AC026691.1 degradation promotes gastric cancer cell proliferation, migration and M2 macrophage polarization.Mol Med Rep. 2025;31:120. [DOI] [PubMed] [PMC]
Yang Q, Cui M, Wang J, Zhao Y, Yin W, Liao Z, et al. Circulating mitochondrial DNA promotes M2 polarization of tumor associated macrophages and HCC resistance to sorafenib.Cell Death Dis. 2025;16:153. [DOI] [PubMed] [PMC]
Padzińska-Pruszyńska I, Kucharzewska P, Matejuk A, Górczak M, Kubiak M, Taciak B, et al. Macrophages: Key Players in the Battle against Triple-Negative Breast Cancer.Int J Mol Sci. 2024;25:10781. [DOI] [PubMed] [PMC]
Yagnik G, Rutowski MJ, Shah SS, Aghi MK. Stratifying nonfunctional pituitary adenomas into two groups distinguished by macrophage subtypes.Oncotarget. 2019;10:2212–23. [DOI] [PubMed] [PMC]
Jayasingam SD, Citartan M, Thang TH, Mat Zin AA, Ang KC, Ch’ng ES. Evaluating the Polarization of Tumor-Associated Macrophages Into M1 and M2 Phenotypes in Human Cancer Tissue: Technicalities and Challenges in Routine Clinical Practice.Front Oncol. 2020;9:1512. [DOI] [PubMed] [PMC]
Ambarus CA, Krausz S, van Eijk M, Hamann J, Radstake TR, Reedquist KA, et al. Systematic validation of specific phenotypic markers for in vitro polarized human macrophages.J Immunol Methods. 2012;375:196–206. [DOI] [PubMed]
Klingen TA, Chen Y, Aas H, Wik E, Akslen LA. Tumor-associated macrophages are strongly related to vascular invasion, non-luminal subtypes, and interval breast cancer.Hum Pathol. 2017;69:72–80. [DOI] [PubMed]