Phenotype of T lymphocytes and pro inflammatory cytokines in newborns offspring of females with and without GDM with sucrose consumption
Immune parameters
Group A
Group B
Group C
Group D
P value
Mean ± SDn = 8
Mean ± SDn = 8
Mean ± SDn = 8
Mean ± SDn = 8
T lymphocytes phenotype
CD3+ (%)
5.33 ± 0.21
2.79 ± 0.37
6.53 ± 0.03
14.97 ± 1.73a
< 0.001
CD3+/CD4+ (%)
2.27 ± 0.03
0.86 ± 0.17
4.06 ± 0.02
16.40 ± 2.51a
< 0.001
CD3+/CD8+ (%)
0.28 ± 0.12
0.43 ± 0.25
1.93 ± 0.10
3.53 ± 0.10a
< 0.001
Pro inflammatory cytokines
IL-1β pg/mL
0.40 ± 0.04
6.13 ± 0.79a
5.0 ± 0.02
2.9 ± 0.21
< 0.001
IL-6 pg/mL
0.86 ± 0.15
11.67 ± 1.96a
5.7 ± 0.05
7.17 ± 0.82
< 0.001
IFN-γ pg/mL
0.28 ± 0.09
2.80 ± 0.58
5.61 ± 0.02
7.34 ± 1.14a
< 0.001
TNF-α pg/mL
0.54 ± 0.08
3.89 ± 0.32
2.88 ± 0.93
10.56 ± 0.21a
< 0.001
Immunoglobulins
IgA (OD)
0.082 ± 0.016
0.066 ± 0.007a
0.077 ± 0.004
0.081 ± 0.006
< 0.001
IgG (OD)
0.227 ± 0.093
0.258 ± 0.067
0.157 ± 0.028a
0.245 ± 0.07
< 0.050
The values represent the mean ± standard deviation of the percentage of T lymphocytes, pro-inflammatory cytokines and the optical density (OD) of IgG and IgA. TCD3+ total lymphocytes, CD3+/CD4+ T helper, CD3+/CD8+ cytotoxic T lymphocytes, interleukin 1 beta (IL-1β), interleukin 6 (IL-6), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α), immunoglobulin A (IgA), immunoglobulin G (IgG). Twenty-four CD1 female mice were used to obtain the offspring (n = 6 per group). To process the samples from the offspring, groups of 8 newborns were created. Group A = without GDM and without sucrose supplementation, Group B = without GDM with sucrose supplementation, Group C = with GDM without sucrose supplementation, Group D = with GDM and with sucrose supplementation. The one-way ANOVA test was performed to compare the means between groups, with Tukey’s post hoc test to identify intergroup differences a with group A. P value < 0.05 was considered statistically significant
Declarations
Author contributions
BEMC: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. EAR, CÁRG, and AARA: Investigation, Writing—original draft, Writing—review & editing. RVR, RAJL, and ALGL: Validation, Writing—review & editing, Supervision. All authors read and approved the submitted version.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Ethical approval
The protocol was approved by the Faculty’s Research Ethics Committee (CONBIOETICA-15-CEI-002-20210531). The ethical approval number is “009.2022”.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
The raw data supporting the conclusions in this manuscript will be made available by the authors to any qualified researcher without undue reservation.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Ye W, Luo C, Huang J, Li C, Liu Z, Liu F. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis.BMJ. 2022;377:e067946. [DOI] [PubMed] [PMC]
Szmuilowicz ED, Josefson JL, Metzger BE. Gestational Diabetes Mellitus.Endocrinol Metab Clin North Am. 2019;48:479–93. [DOI] [PubMed] [PMC]
Vázquez Martínez VH, Martínez Bautista H, Loera Morales J, Camarillo Coronado JD. Risk factors associated with gestational diabetes in the northern region of Mexico.Atención Primaria Práctica. 2023;5:100175. [DOI]
Mustad VA, Huynh DTT, López-Pedrosa JM, Campoy C, Rueda R. The Role of Dietary Carbohydrates in Gestational Diabetes.Nutrients. 2020;12:385. [DOI] [PubMed] [PMC]
Li Y, Long D, Liu J, Qiu D, Wang J, Cheng X, et al. Gestational diabetes mellitus in women increased the risk of neonatal infection via inflammation and autophagy in the placenta.Medicine (Baltimore). 2020;99:e22152. [DOI] [PubMed] [PMC]
Logan KM, Gale C, Hyde MJ, Santhakumaran S, Modi N. Diabetes in pregnancy and infant adiposity: systematic review and meta-analysis.Arch Dis Child Fetal Neonatal Ed. 2017;102:F65–72. [DOI] [PubMed] [PMC]
Nijs H, Benhalima K. Gestational Diabetes Mellitus and the Long-Term Risk for Glucose Intolerance and Overweight in the Offspring: A Narrative Review.J Clin Med. 2020;9:599. [DOI] [PubMed] [PMC]
Raatz SK, Johnson LK, Picklo MJ. Consumption of Honey, Sucrose, and High-Fructose Corn Syrup Produces Similar Metabolic Effects in Glucose-Tolerant and -Intolerant Individuals.J Nutr. 2015;145:2265–72. [DOI] [PubMed]
Plows JF, Stanley JL, Baker PN, Reynolds CM, Vickers MH. The Pathophysiology of Gestational Diabetes Mellitus.Int J Mol Sci. 2018;19:3342. [DOI] [PubMed] [PMC]
Pérez-Pérez A, Vilariño-García T, Guadix P, Dueñas JL, Sánchez-Margalet V. Leptin and Nutrition in Gestational Diabetes.Nutrients. 2020;12:1970. [DOI] [PubMed] [PMC]
Olmos-Ortiz A, Flores-Espinosa P, Díaz L, Velázquez P, Ramírez-Isarraraz C, Zaga-Clavellina V. Immunoendocrine Dysregulation during Gestational Diabetes Mellitus: The Central Role of the Placenta.Int J Mol Sci. 2021;22:8087. [DOI] [PubMed] [PMC]
Ruszała M, Pilszyk A, Niebrzydowska M, Kimber-Trojnar Ż, Trojnar M, Leszczyńska-Gorzelak B. Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus 2.0.Int J Mol Sci. 2022;23:4364. [DOI] [PubMed] [PMC]
Rosado EL, Monteiro JB, Chaia V, do Lago MF. Effect of leptin in the treatment of obesity and influences of diet in the secretion and action of hormone].Nutr Hosp. 2006;21:686–93. Spanish. [PubMed]
Castellanos Jankiewicz AK, Rodríguez Peredo SM, Cardoso Saldaña G, Díaz Díaz E, Tejero Barrera ME, del Bosque Plata L, et al. Adipose tissue redistribution caused by an early consumption of a high sucrose diet in a rat model.Nutr Hosp. 2015;31:2546–53. [DOI] [PubMed]
Souza Cruz EM, Bitencourt de Morais JM, Dalto da Rosa CV, da Silva Simões M, Comar JF, de Almeida Chuffa LG, et al. Long-term sucrose solution consumption causes metabolic alterations and affects hepatic oxidative stress in Wistar rats.Biol Open. 2020;9:bio047282. [DOI] [PubMed] [PMC]
Rosas-Villegas A, Sánchez-Tapia M, Avila-Nava A, Ramírez V, Tovar AR, Torres N. Differential Effect of Sucrose and Fructose in Combination with a High Fat Diet on Intestinal Microbiota and Kidney Oxidative Stress.Nutrients. 2017;9:393. [DOI] [PubMed] [PMC]
Gobierno de México. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (SAGARPA). NOM-062-ZOO-1999. Especificaciones técnicas para la producción, cuidado y uso de los animales de laboratorio. SAGARPA; 1999.
Percie du Sert N, Hurst V, Ahluwalia A, Alam S, Avey MT, Baker M, et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research.Br J Pharmacol. 2020;177:3617–24. [DOI] [PubMed] [PMC]
Byers SL, Wiles MV, Dunn SL, Taft RA. Mouse estrous cycle identification tool and images.PLoS One. 2012;7:e35538. [DOI] [PubMed] [PMC]
Rosales-Gómez CA, Martínez-Carrillo BE, Guadarrama-López AL, Reséndiz-Albor AA, Arciniega-Martínez IM, Aguilar-Rodríguez E. Pharmacological induction of diabetes mellitus in pregnant female mice: a comparison of two doses and routes of administration.Eur Rev Med Pharmacol Sci. 2024;28:3275–86. [DOI] [PubMed]
American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022.Diabetes Care. 2022;45:S17–38. [DOI] [PubMed]
Secretaría de Salud (SSA). NOM-218-SSA1-2011. Productos y servicios. Bebidas saborizadas no alcohólicas, sus congelados, productos concentrados para prepararlas y bebidas adicionadas con cafeína. Especificaciones y disposiciones sanitarias. Métodos de prueba. SSA; 2011.
Rosales-Gómez CA, Martínez-Carrillo BE, Reséndiz-Albor AA, Ramírez-Durán N, Valdés-Ramos R, Mondragón-Velásquez T, et al. Chronic Consumption of Sweeteners and Its Effect on Glycaemia, Cytokines, Hormones, and Lymphocytes of GALT in CD1 Mice.Biomed Res Int. 2018;2018:1345282. [DOI] [PubMed] [PMC]
Arciniega-Martínez IM, Campos-Rodríguez R, Drago-Serrano ME, Sánchez-Torres LE, Cruz-Hernández TR, Reséndiz-Albor AA. Modulatory Effects of Oral Bovine Lactoferrin on the IgA Response at Inductor and Effector Sites of Distal Small Intestine from BALB/c Mice.Arch Immunol Ther Exp (Warsz). 2016;64:57–63. [DOI] [PubMed]
Martínez-Carrillo BE, Jarillo-Luna RA, Campos-Rodríguez R, Valdés-Ramos R, Rivera-Aguilar V. Effect of Diet and Exercise on the Peripheral Immune System in Young Balb/c Mice.Biomed Res Int. 2015;2015:458470. [DOI] [PubMed] [PMC]
Bédard A, Northstone K, Henderson AJ, Shaheen SO. Maternal intake of sugar during pregnancy and childhood respiratory and atopic outcomes.Eur Respir J. 2017;50:1700073. [DOI] [PubMed] [PMC]
Zhang P, Zhu D, Zhang Y, Li L, Chen X, Zhang W, et al. Synergetic Effects of Prenatal and Postnatal High Sucrose Intake on Glucose Tolerance and Hepatic Insulin Resistance in Rat Offspring.Mol Nutr Food Res. 2018;62. [DOI] [PubMed]
Kereliuk SM, Brawerman GM, Dolinsky VW. Maternal Macronutrient Consumption and the Developmental Origins of Metabolic Disease in the Offspring.Int J Mol Sci. 2017;18:1451. [DOI] [PubMed] [PMC]
Toop CR, Muhlhausler BS, O'Dea K, Gentili S. Impact of perinatal exposure to sucrose or high fructose corn syrup (HFCS-55) on adiposity and hepatic lipid composition in rat offspring.J Physiol. 2017;595:4379–98. [DOI] [PubMed] [PMC]
He A, Zhang Y, Yang Y, Li L, Feng X, Wei B, et al. Prenatal high sucrose intake affected learning and memory of aged rat offspring with abnormal oxidative stress and NMDARs/Wnt signaling in the hippocampus.Brain Res. 2017;1669:114–21. [DOI] [PubMed] [PMC]
Berglund SK, García-Valdés L, Torres-Espinola FJ, Segura MT, Martínez-Zaldívar C, Aguilar MJ, et al. Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE).BMC Public Health. 2016;16:207. [DOI] [PubMed] [PMC]
Kc K, Shakya S, Zhang H. Gestational diabetes mellitus and macrosomia: a literature review.Ann Nutr Metab. 2015;66:14–20. [DOI] [PubMed]
Martins MG, Cruz AGD, Oliveira GP, Woodside B, Horta-Júnior JACE, Kiss ACI. Effects of snack intake during pregnancy and lactation on reproductive outcome in mild hyperglycemic rats.Physiol Behav. 2021;240:113544. [DOI] [PubMed]
Jen KL, Rochon C, Zhong SB, Whitcomb L. Fructose and sucrose feeding during pregnancy and lactation in rats changes maternal and pup fuel metabolism.J Nutr. 1991;121:1999–2005. [DOI] [PubMed]
Sweeting A, Wong J, Murphy HR, Ross GP. A Clinical Update on Gestational Diabetes Mellitus.Endocr Rev. 2022;43:763–93. [DOI] [PubMed] [PMC]
Alzamendi A, Castrogiovanni D, Gaillard RC, Spinedi E, Giovambattista A. Increased male offspring's risk of metabolic-neuroendocrine dysfunction and overweight after fructose-rich diet intake by the lactating mother.Endocrinology. 2010;151:4214–23. [DOI] [PubMed]
Bianco ME, Josefson JL. Hyperglycemia During Pregnancy and Long-Term Offspring Outcomes.Curr Diab Rep. 2019;19:143. [DOI] [PubMed] [PMC]
Chen Q, Francis E, Hu G, Chen L. Metabolomic profiling of women with gestational diabetes mellitus and their offspring: Review of metabolomics studies.J Diabetes Complications. 2018;32:512–23. [DOI] [PubMed]
Kelstrup L, Damm P, Mathiesen ER, Hansen T, Vaag AA, Pedersen O, et al. Insulin resistance and impaired pancreatic β-cell function in adult offspring of women with diabetes in pregnancy.J Clin Endocrinol Metab. 2013;98:3793–801. [DOI] [PubMed] [PMC]
Pereira TJ, Fonseca MA, Campbell KE, Moyce BL, Cole LK, Hatch GM, et al. Maternal obesity characterized by gestational diabetes increases the susceptibility of rat offspring to hepatic steatosis via a disrupted liver metabolome.J Physiol. 2015;593:3181–97. [DOI] [PubMed] [PMC]
Ott R, Stupin JH, Melchior K, Schellong K, Ziska T, Dudenhausen JW, et al. Alterations of adiponectin gene expression and DNA methylation in adipose tissues and blood cells are associated with gestational diabetes and neonatal outcome.Clin Epigenetics. 2018;10:131. [DOI] [PubMed] [PMC]
Makker K, Zhang M, Wang G, Hong X, Aziz KB, Wang X. Maternal and fetal factors affecting cord plasma leptin and adiponectin levels and their ratio in preterm and term newborns: New insight on fetal origins of metabolic dysfunction.Precis Nutr. 2022;1:e00013. [DOI] [PubMed] [PMC]
Manoharan B, Bobby Z, Dorairajan G, Vinayagam V, Packirisamy RM. Adipokine levels and their association with insulin resistance and fetal outcomes among the newborns of Indian gestational diabetic mothers.Saudi Med J. 2019;40:353–9. [DOI] [PubMed] [PMC]
Houshmand-Oeregaard A, Hansen NS, Hjort L, Kelstrup L, Broholm C, Mathiesen ER, et al. Differential adipokine DNA methylation and gene expression in subcutaneous adipose tissue from adult offspring of women with diabetes in pregnancy.Clin Epigenetics. 2017;9:37. [DOI] [PubMed] [PMC]
Wang B, Xue M. Early neonatal complications in pregnant women with gestational diabetes mellitus and the effects of glycemic control on neonatal infection.World J Diabetes. 2023;14:1393–402. [DOI] [PubMed] [PMC]
Lapolla A, Dalfrà MG, Sanzari M, Fedele D, Betterle C, Masin M, et al. Lymphocyte subsets and cytokines in women with gestational diabetes mellitus and their newborn.Cytokine. 2005;31:280–7. [DOI] [PubMed]
Saucedo R, Valencia J, Moreno-González LE, Peña-Cano MI, Aranda-Martínez A, García Y, et al. Maternal serum adipokines and inflammatory markers at late gestation and newborn weight in mothers with and without gestational diabetes mellitus.Ginekol Pol. 2021. [DOI] [PubMed]
Li Q, Pereira TJ, Moyce BL, Mahood TH, Doucette CA, Rempel J, et al. In utero exposure to gestational diabetes mellitus conditions TLR4 and TLR2 activated IL-1beta responses in spleen cells from rat offspring.Biochim Biophys Acta. 2016;1862:2137–46. [DOI] [PubMed]
Vuong B, Odero G, Rozbacher S, Stevenson M, Kereliuk SM, Pereira TJ, et al. Exposure to gestational diabetes mellitus induces neuroinflammation, derangement of hippocampal neurons, and cognitive changes in rat offspring.J Neuroinflammation. 2017;14:80. [DOI] [PubMed] [PMC]
Dong X, Lin D, Sheng J, Xie Y. Intrauterine hyperglycemia induces liver inflammation in mouse male offspring.Int Immunopharmacol. 2021;99:107974. [DOI] [PubMed]
Mahmoud MH, Badr G, Shinnawy NAE. Camel whey protein improves lymphocyte function and protects against diabetes in the offspring of diabetic mouse dams.Int J Immunopathol Pharmacol. 2016;29:632–46. [DOI] [PubMed] [PMC]
Rodrigo S, Rodríguez L, Otero P, Panadero MI, García A, Barbas C, et al. Fructose during pregnancy provokes fetal oxidative stress: The key role of the placental heme oxygenase-1.Mol Nutr Food Res. 2016;60:2700–11. [DOI] [PubMed]
Piconi L, Quagliaro L, Ceriello A. Oxidative stress in diabetes.Clin Chem Lab Med. 2003;41:1144–9. [DOI] [PubMed]
Albertella M, Gentyala RR, Paraskevas T, Ehret D, Bruschettini M, Soll R. Superoxide dismutase for bronchopulmonary dysplasia in preterm infants.Cochrane Database Syst Rev. 2023;10:CD013232. [DOI] [PubMed] [PMC]
Ponce ACP, Monsalve MCR, Garibay MAP, Andrade SI. Effect of maternal diabetes on human and rat fetal development.Ginecol Obstet Mex. 2005;73:544–52. Spanish. [PubMed]