SWOT (Strengths, Weaknesses, Opportunities, and Threats) analysis of neoantigen vaccines as a personalized immunotherapeutic strategy for cancer treatment
Category
Elements
Strengths
High target specificity with minimal autoimmune toxicity
Patient-specific tumor mutation targeting
Proven efficacy in melanoma and glioblastoma trials
Successful T cell response generation
Long-term immunological memory induction
Synergistic potential with checkpoint inhibitors
Limited off-target effects
Multi-omics data integration capability
Weaknesses
Neoantigen prediction algorithm accuracy issues
Complex and expensive manufacturing processes
Time-consuming production pipeline
High false positive/negative prediction rates
Limited standardization in manufacturing
Resource-intensive bioinformatics requirements
Limited scalability
Complex logistics in personalized production
Opportunities
Growing melanoma incidence creating market demand
Automation potential in manufacturing
Machine learning integration for improved predictions
This analysis systematically evaluates the intrinsic advantages and limitations of neoantigen-based vaccines, as well as external factors that could impact their clinical development and implementation. Strengths and weaknesses reflect internal capabilities, including immunogenicity, specificity, and scalability challenges, while opportunities and threats account for regulatory, technological, and market-driven influences in clinical oncology
Declarations
Author contributions
AAAA: Conceptualization, Writing—original draft, Investigation, Writing—review & editing. YH: Investigation, Writing—original draft. AA and LA: Investigation, Writing—review & editing. All authors have read and agreed to the published version of the manuscript.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Wu D, Jia S, Xing S, Ma H, Wang X, Tang Q, et al. Personalized neoantigen cancer vaccines: current progression, challenges and a bright future.Clin Exp Med. 2024;24:229. [DOI] [PubMed] [PMC]
Chakraborty C, Majumder A, Bhattacharya M, Chatterjee S, Lee SS. The landscape of neoantigens and its clinical applications: From immunobiology to cancer vaccines.Curr Res Biotechnol. 2024;7:100177. [DOI]
Zhang Q, Jia Q, Zhang J, Zhu B. Neoantigens in precision cancer immunotherapy: from identification to clinical applications.Chin Med J (Engl). 2022;135:1285–98. [DOI] [PubMed] [PMC]
Li X, You J, Hong L, Liu W, Guo P, Hao X. Neoantigen cancer vaccines: a new star on the horizon.Cancer Biol Med. 2023;21:274–311. [DOI] [PubMed] [PMC]
Ho S, Chang C, Liao H, Chou W, Guo C, Yen Y, et al. Current Trends in Neoantigen-Based Cancer Vaccines.Pharmaceuticals (Basel). 2023;16:392. [DOI] [PubMed] [PMC]
Reynolds CR, Tran S, Jain M, Narendran A. Neoantigen Cancer Vaccines: Generation, Optimization, and Therapeutic Targeting Strategies.Vaccines (Basel). 2022;10:196. [DOI] [PubMed] [PMC]
Braun DA, Moranzoni G, Chea V, McGregor BA, Blass E, Tu CR, et al. A neoantigen vaccine generates antitumour immunity in renal cell carcinoma.Nature. 2025;639:474–82. [DOI] [PubMed] [PMC]
Tang L, Zhang R, Zhang X, Yang L. Personalized Neoantigen-Pulsed DC Vaccines: Advances in Clinical Applications.Front Oncol. 2021;11:701777. [DOI] [PubMed] [PMC]
Perrinjaquet M, Schlegel CR. Personalized neoantigen cancer vaccines: An analysis of the clinical and commercial potential of ongoing development programs.Drug Discov Today. 2023;28:103773. [DOI] [PubMed]
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines.Nat Rev Clin Oncol. 2021;18:215–29. [DOI] [PubMed] [PMC]
Chen M, Jiang J, Chen H, Wu R, Xie W, Dai S, et al. Reinforcing cancer immunotherapy with engineered porous hollow mycobacterium tuberculosis loaded with tumor neoantigens.J Immunother Cancer. 2025;13:e010150. [DOI] [PubMed] [PMC]
Peng S, Chen S, Hu W, Mei J, Zeng X, Su T, et al. Combination Neoantigen-Based Dendritic Cell Vaccination and Adoptive T-Cell Transfer Induces Antitumor Responses Against Recurrence of Hepatocellular Carcinoma.Cancer Immunol Res. 2022;10:728–44. [DOI] [PubMed]
Ingels J, Cock LD, Stevens D, Mayer RL, Théry F, Sanchez GS, et al. Neoantigen-targeted dendritic cell vaccination in lung cancer patients induces long-lived T cells exhibiting the full differentiation spectrum.Cell Rep Med. 2024;5:101516. [DOI] [PubMed] [PMC]
Zhang R, Yuan F, Shu Y, Tian Y, Zhou B, Yi L, et al. Personalized neoantigen-pulsed dendritic cell vaccines show superior immunogenicity to neoantigen-adjuvant vaccines in mouse tumor models.Cancer Immunol Immunother. 2020;69:135–45. [DOI] [PubMed] [PMC]
Katsikis PD, Ishii KJ, Schliehe C. Challenges in developing personalized neoantigen cancer vaccines.Nat Rev Immunol. 2024;24:213–27. [DOI] [PubMed]
Hu Z, Leet DE, Allesøe RL, Oliveira G, Li S, Luoma AM, et al. Personal neoantigen vaccines induce persistent memory T cell responses and epitope spreading in patients with melanoma.Nat Med. 2021;27:515–25. [DOI] [PubMed] [PMC]
Supabphol S, Li L, Goedegebuure SP, Gillanders WE. Neoantigen vaccine platforms in clinical development: understanding the future of personalized immunotherapy.Expert Opin Investig Drugs. 2021;30:529–41. [DOI] [PubMed] [PMC]
Sun Y, Shen Y, Liu Q, Zhang H, Jia L, Chai Y, et al. Global trends in melanoma burden: A comprehensive analysis from the Global Burden of Disease Study, 1990-2021.J Am Acad Dermatol. 2025;92:100–7. [DOI] [PubMed]
Atkins MB, Curiel-Lewandrowski C, Fisher DE, Swetter SM, Tsao H, Aguirre-Ghiso JA, et al. The State of Melanoma: Emergent Challenges and Opportunities.Clin Cancer Res. 2021;27:2678–97. [DOI] [PubMed] [PMC]
Liu B, Zhou H, Tan L, Siu KTH, Guan X. Exploring treatment options in cancer: Tumor treatment strategies.Signal Transduct Target Ther. 2024;9:175. [DOI] [PubMed] [PMC]
Wang M, Yu F, Zhang Y. Present and future of cancer nano-immunotherapy: opportunities, obstacles and challenges.Mol Cancer. 2025;24:26. [DOI] [PubMed] [PMC]
Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy.Signal Transduct Target Ther. 2023;8:9. [DOI] [PubMed] [PMC]
Ren Y, Yue Y, Li X, Weng S, Xu H, Liu L, et al. Proteogenomics offers a novel avenue in neoantigen identification for cancer immunotherapy.Int Immunopharmacol. 2024;142:113147. [DOI] [PubMed]
Ebrahimi N, Akbari M, Ghanaatian M, Moghaddam PR, Adelian S, Boroujeni MB, et al. Development of neoantigens: from identification in cancer cells to application in cancer vaccines.Expert Rev Vaccines. 2022;21:941–55. [DOI] [PubMed]
Liu Z, Lv J, Dang Q, Liu L, Weng S, Wang L, et al. Engineering neoantigen vaccines to improve cancer personalized immunotherapy.Int J Biol Sci. 2022;18:5607–23. [DOI] [PubMed] [PMC]
Carlino MS, Larkin J, Long GV. Immune checkpoint inhibitors in melanoma.Lancet. 2021;398:1002–14. [DOI] [PubMed]
Hossain SM, Ly K, Sung YJ, Braithwaite A, Li K. Immune Checkpoint Inhibitor Therapy for Metastatic Melanoma: What Should We Focus on to Improve the Clinical Outcomes?Int J Mol Sci. 2024;25:10120. [DOI] [PubMed] [PMC]
Liu C, Liu X, Hu L, Li X, Xin H, Zhu S. Global, regional, and national burden of cutaneous malignant melanoma from 1990 to 2021 and prediction to 2045.Front Oncol. 2024;14:1512942. [DOI] [PubMed] [PMC]
Waseh S, Lee JB. Advances in melanoma: epidemiology, diagnosis, and prognosis.Front Med (Lausanne). 2023;10:1268479. [DOI] [PubMed] [PMC]
Gorantla VC, Kirkwood JM. State of melanoma: an historic overview of a field in transition.Hematol Oncol Clin North Am. 2014;28:415–35. [DOI] [PubMed] [PMC]
Saeed W, Shahbaz E, Maqsood Q, Ali SW, Mahnoor M. Cutaneous Oncology: Strategies for Melanoma Prevention, Diagnosis, and Therapy.Cancer Control. 2024;31:10732748241274978. [DOI] [PubMed] [PMC]
Fateeva A, Eddy K, Chen S. Current State of Melanoma Therapy and Next Steps: Battling Therapeutic Resistance.Cancers (Basel). 2024;16:1571. [DOI] [PubMed] [PMC]
Shalata W, Attal ZG, Solomon A, Shalata S, Saleh OA, Tourkey L, et al. Melanoma Management: Exploring Staging, Prognosis, and Treatment Innovations.Int J Mol Sci. 2024;25:5794. [DOI] [PubMed] [PMC]
Lee S, Bennett AV, Zhou X, Betof Warner A, Trogdon JG, Kent EE, Lund JL. Real-world treatment patterns and outcomes for patients with advanced melanoma treated with immunotherapy or targeted therapy.Pharmacoepidemiol Drug Saf. 2023;32:988–1000.
Arnold M, Singh D, Laversanne M, Vignat J, Vaccarella S, Meheus F, et al. Global Burden of Cutaneous Melanoma in 2020 and Projections to 2040.JAMA Dermatol. 2022;158:495–503. [DOI] [PubMed] [PMC]
Kumar A, Weller KP, Vilgelm AE. Personalized cancer immunotherapy. In: Amiji MM, Milane LS, editors. Engineering Technologies and Clinical Translation. Academic Press; 2022. pp. 399–426. [DOI]
Met Ö, Jensen KM, Chamberlain CA, Donia M, Svane IM. Principles of adoptive T cell therapy in cancer.Semin Immunopathol. 2019;41:49–58. [DOI] [PubMed]
Moreno V, Hernandez T, Miguel Md, Doger B, Calvo E. Adoptive cell therapy for solid tumors: Chimeric antigen receptor T cells and beyond.Curr Opin Pharmacol. 2021;59:70–84. [DOI] [PubMed]
Bethune MT, Joglekar AV. Personalized T cell-mediated cancer immunotherapy: progress and challenges.Curr Opin Biotechnol. 2017;48:142–52. [DOI] [PubMed]
He J, Xiong X, Yang H, Li D, Liu X, Li S, et al. Defined tumor antigen-specific T cells potentiate personalized TCR-T cell therapy and prediction of immunotherapy response.Cell Res. 2022;32:530–42. [DOI] [PubMed] [PMC]
Kiyotani K, Toyoshima Y, Nakamura Y. Personalized immunotherapy in cancer precision medicine.Cancer Biol Med. 2021;18:955–65. [DOI] [PubMed] [PMC]
Diao L, Liu M. Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell.Adv Sci (Weinh). 2023;10:e2300121. [DOI] [PubMed] [PMC]
Golikova EA, Alshevskaya AA, Alrhmoun S, Sivitskaya NA, Sennikov SV. TCR-T cell therapy: current development approaches, preclinical evaluation, and perspectives on regulatory challenges.J Transl Med. 2024;22:897. [DOI] [PubMed] [PMC]
Zhao X, Shao S, Hu L. The recent advancement of TCR-T cell therapies for cancer treatment.Acta Biochim Biophys Sin (Shanghai). 2024;56:663–74. [DOI] [PubMed] [PMC]
Ma P, Jiang Y, Zhao G, Wang W, Xing S, Tang Q, et al. Toward a comprehensive solution for treating solid tumors using T-cell receptor therapy: A review.Eur J Cancer. 2024;209:114224. [DOI] [PubMed]
Leisegang M, Kammertoens T, Uckert W, Blankenstein T. Targeting human melanoma neoantigens by T cell receptor gene therapy.J Clin Invest. 2016;126:854–8. [DOI] [PubMed] [PMC]
Tan CL, Lindner K, Boschert T, Meng Z, Ehrenfried AR, Roia AD, et al. Prediction of tumor-reactive T cell receptors from scRNA-seq data for personalized T cell therapy.Nat Biotechnol. 2025;43:134–42. [DOI] [PubMed] [PMC]
Zhong S, Malecek K, Johnson LA, Yu Z, Vega-Saenz de Miera E, Darvishian F, et al. T-cell receptor affinity and avidity defines antitumor response and autoimmunity in T-cell immunotherapy.Proc Natl Acad Sci U S A. 2013;110:6973–8. [DOI] [PubMed] [PMC]
McKee M, Dunnell K, Anderson M, Brayne C, Charlesworth A, Johnston-Webber C, et al. The changing health needs of the UK population.Lancet. 2021;397:1979–91. [DOI] [PubMed] [PMC]
Shi R, Ran L, Tian Y, Guo W, Zhao L, Jin S, et al. Prospects and challenges of neoantigen applications in oncology.Int Immunopharmacol. 2024;143:113329. [DOI] [PubMed]
Guan H, Wu Y, Li LU, Yang Y, Qiu S, Zhao Z, et al. Tumor neoantigens: Novel strategies for application of cancer immunotherapy.Oncol Res. 2023;31:437–48. [DOI] [PubMed] [PMC]
Serratì S, Summa SD, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-generation sequencing: advances and applications in cancer diagnosis.Onco Targets Ther. 2016;9:7355–65. [DOI] [PubMed] [PMC]
Fernandez-Marmiesse A, Gouveia S, Couce ML. NGS Technologies as a Turning Point in Rare Disease Research , Diagnosis and Treatment.Curr Med Chem. 2018;25:404–32. [DOI] [PubMed] [PMC]
Robles-Remacho A, Sanchez-Martin RM, Diaz-Mochon JJ. Spatial Transcriptomics: Emerging Technologies in Tissue Gene Expression Profiling.Anal Chem. 2023;95:15450–60. [DOI] [PubMed] [PMC]
Satam H, Joshi K, Mangrolia U, Waghoo S, Zaidi G, Rawool S, et al. Next-Generation Sequencing Technology: Current Trends and Advancements.Biology (Basel). 2023;12:997. [DOI] [PubMed] [PMC]
Nagahashi M, Shimada Y, Ichikawa H, Kameyama H, Takabe K, Okuda S, et al. Next generation sequencing-based gene panel tests for the management of solid tumors.Cancer Sci. 2019;110:6–15. [DOI] [PubMed] [PMC]
Lim RM, Silver AJ, Silver MJ, Borroto C, Spurrier B, Petrossian TC, et al. Targeted mutation screening panels expose systematic population bias in detection of cystic fibrosis risk.Genet Med. 2016;18:174–9. [DOI] [PubMed]
Li BT, Janku F, Jung B, Hou C, Madwani K, Alden R, et al. Ultra-deep next-generation sequencing of plasma cell-free DNA in patients with advanced lung cancers: results from the Actionable Genome Consortium.Ann Oncol. 2019;30:597–603. [DOI] [PubMed] [PMC]
Salk JJ, Schmitt MW, Loeb LA. Enhancing the accuracy of next-generation sequencing for detecting rare and subclonal mutations.Nat Rev Genet. 2018;19:269–85. [DOI] [PubMed] [PMC]
Yadav D, Patil-Takbhate B, Khandagale A, Bhawalkar J, Tripathy S, Khopkar-Kale P. Next-Generation sequencing transforming clinical practice and precision medicine.Clin Chim Acta. 2023;551:117568. [DOI] [PubMed]
Wang H, Chen R. Whole-exome sequencing and whole-genome sequencing. In: Gao XR, editor. Genetics and Genomics of Eye Disease. Academic Press; 2020. pp. 27–39. [DOI]
Sutton KM, Crinnion LA, Wallace D, Harrison S, Roberts P, Watson CM, et al. Detection of somatic mutations in tumors using unaligned clonal sequencing data.Lab Invest. 2014;94:1173–83. [DOI] [PubMed]
Liu L, So AYL, Fan JB. Analysis of cancer genomes through microarrays and next-generation sequencing.Transl Cancer Res. 2015;4:212–8. [DOI]
do Valle ÍF, Giampieri E, Simonetti G, Padella A, Manfrini M, Ferrari A, et al. Optimized pipeline of MuTect and GATK tools to improve the detection of somatic single nucleotide polymorphisms in whole-exome sequencing data.BMC Bioinformatics. 2016;17:341. [DOI] [PubMed] [PMC]
Boutros A, Croce E, Ferrari M, Gili R, Massaro G, Marconcini R, et al. The treatment of advanced melanoma: Current approaches and new challenges.Crit Rev Oncol Hematol. 2024;196:104276. [DOI] [PubMed]
Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens.Annu Rev Immunol. 2019;37:173–200. [DOI] [PubMed]
Zhang Z, Lu M, Qin Y, Gao W, Tao L, Su W, et al. Neoantigen: A New Breakthrough in Tumor Immunotherapy.Front Immunol. 2021;12:672356. [DOI] [PubMed] [PMC]
Aparicio B, Theunissen P, Hervas-Stubbs S, Fortes P, Sarobe P. Relevance of mutation-derived neoantigens and non-classical antigens for anticancer therapies.Hum Vaccin Immunother. 2024;20:2303799. [DOI] [PubMed] [PMC]
Lee C, Yelensky R, Jooss K, Chan TA. Update on Tumor Neoantigens and Their Utility: Why It Is Good to Be Different.Trends Immunol. 2018;39:536–48. [DOI] [PubMed] [PMC]
Huber F, Arnaud M, Stevenson BJ, Michaux J, Benedetti F, Thevenet J, et al. A comprehensive proteogenomic pipeline for neoantigen discovery to advance personalized cancer immunotherapy.Nat Biotechnol. 2024. [DOI] [PubMed]
Boegel S, Castle JC, Kodysh J, O’Donnell T, Rubinsteyn A. Bioinformatic methods for cancer neoantigen prediction.Prog Mol Biol Transl Sci. 2019;164:25–60. [DOI] [PubMed]
Rieder D, Fotakis G, Ausserhofer M, René G, Paster W, Trajanoski Z, et al. nextNEOpi: a comprehensive pipeline for computational neoantigen prediction.Bioinformatics. 2022;38:1131–2. [DOI] [PubMed] [PMC]
Schäfer RA, Guo Q, Yang R. ScanNeo2: a comprehensive workflow for neoantigen detection and immunogenicity prediction from diverse genomic and transcriptomic alterations.Bioinformatics. 2023;39:btad659. [DOI] [PubMed] [PMC]
Schenck RO, Lakatos E, Gatenbee C, Graham TA, Anderson ARA. NeoPredPipe: high-throughput neoantigen prediction and recognition potential pipeline.BMC Bioinformatics. 2019;20:264. [DOI] [PubMed] [PMC]
De Mattos-Arruda L, Vazquez M, Finotello F, Lepore R, Porta E, Hundal J, et al. Neoantigen prediction and computational perspectives towards clinical benefit: recommendations from the ESMO Precision Medicine Working Group.Ann Oncol. 2020;31:978–90. [DOI] [PubMed] [PMC]
Richters MM, Xia H, Campbell KM, Gillanders WE, Griffith OL, Griffith M. Best practices for bioinformatic characterization of neoantigens for clinical utility.Genome Med. 2019;11:56. [DOI] [PubMed] [PMC]
Tang Y, Wang Y, Wang J, Li M, Peng L, Wei G, et al. TruNeo: an integrated pipeline improves personalized true tumor neoantigen identification.BMC Bioinformatics. 2020;21:532. [DOI] [PubMed] [PMC]
Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, et al. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy.Front Oncol. 2023;12:1054231. [DOI] [PubMed] [PMC]
El-Sayes N, Vito A, Mossman K. Tumor Heterogeneity: A Great Barrier in the Age of Cancer Immunotherapy.Cancers (Basel). 2021;13:806. [DOI] [PubMed] [PMC]
McGranahan N, Swanton C. Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future.Cell. 2017;168:613–28. [DOI] [PubMed]
Aguadé-Gorgorió G, Solé R. Tumour neoantigen heterogeneity thresholds provide a time window for combination immunotherapy.J R Soc Interface. 2020;17:20200736. [DOI] [PubMed] [PMC]
Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. Neoantigen-directed immune escape in lung cancer evolution.Nature. 2019;567:479–85. [DOI] [PubMed] [PMC]
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches.Cancer Discov. 2021;11:1024–39. [DOI] [PubMed] [PMC]
Jacoby MA, Duncavage EJ, Walter MJ. Implications of Tumor Clonal Heterogeneity in the Era of Next-Generation Sequencing.Trends Cancer. 2015;1:231–41. [DOI] [PubMed]
Wang Z, Fang Y, Wang R, Kong L, Liang S, Tao S. Reconstructing tumor clonal heterogeneity and evolutionary relationships based on tumor DNA sequencing data.Brief Bioinform. 2024;25:bbae516. [DOI] [PubMed] [PMC]
Biswas N, Chakrabarti S, Padul V, Jones LD, Ashili S. Designing neoantigen cancer vaccines, trials, and outcomes.Front Immunol. 2023;14:1105420. [DOI] [PubMed] [PMC]
Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial.Nature. 2019;565:234–9. [DOI] [PubMed] [PMC]
Mandhane A, Tripathy CS, Behera SK. Peptide and protein in vaccine delivery. In: Jain A, Malik S, editors. Peptide and Protein Drug Delivery Using Polysaccharides. Academic Press; 2024. pp. 217–34. [DOI]
Bouazzaoui A, Abdellatif AAH. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy.Vaccine X. 2024;19:100500. [DOI] [PubMed] [PMC]
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, et al. Leveraging artificial intelligence in vaccine development: A narrative review.J Microbiol Methods. 2024;224:106998. [DOI] [PubMed]
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, et al. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy?Int J Biol Macromol. 2024;279:135541. [DOI] [PubMed]
Nelde A, Rammensee H, Walz JS. The Peptide Vaccine of the Future.Mol Cell Proteomics. 2021;20:100022. [DOI] [PubMed] [PMC]
Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape.Trends Immunol. 2017;38:577–93. [DOI] [PubMed]
Fu C, Zhou L, Mi Q, Jiang A. DC-Based Vaccines for Cancer Immunotherapy.Vaccines (Basel). 2020;8:706. [DOI] [PubMed] [PMC]
Galati D, Zanotta S. Dendritic Cell and Cancer Therapy.Int J Mol Sci. 2023;24:4253. [DOI] [PubMed] [PMC]
Pastor Y, Ghazzaui N, Hammoudi A, Centlivre M, Cardinaud S, Levy Y. Refining the DC-targeting vaccination for preventing emerging infectious diseases.Front Immunol. 2022;13:949779. [DOI] [PubMed] [PMC]
Wang C, Yuan F. A comprehensive comparison of DNA and RNA vaccines.Adv Drug Deliv Rev. 2024;210:115340. [DOI] [PubMed]
Whitley J, Zwolinski C, Denis C, Maughan M, Hayles L, Clarke D, et al. Development of mRNA manufacturing for vaccines and therapeutics: mRNA platform requirements and development of a scalable production process to support early phase clinical trials.Transl Res. 2022;242:38–55. [DOI] [PubMed] [PMC]
Márquez PG, Wolman FJ, Glisoni RJ. Nanotechnology platforms for antigen and immunostimulant delivery in vaccine formulations.Nano Trends. 2024;8:100058.
Chen X, Yang J, Wang L, Liu B. Personalized neoantigen vaccination with synthetic long peptides: recent advances and future perspectives.Theranostics. 2020;10:6011–23. [DOI] [PubMed] [PMC]
Barajas A, Amengual-Rigo P, Pons-Grífols A, Ortiz R, Carmona OG, Urrea V, et al. Virus-like particle-mediated delivery of structure-selected neoantigens demonstrates immunogenicity and antitumoral activity in mice.J Transl Med. 2024;22:14. [DOI] [PubMed] [PMC]
Zheng W, Li S, Shi Z, Su K, Ding Y, Zhang L, et al. Recombinant ferritin-based nanoparticles as neoantigen carriers significantly inhibit tumor growth and metastasis.J Nanobiotechnology. 2024;22:562. [DOI] [PubMed] [PMC]
Zhang W, Guan J, Wang W, Chen G, Fan L, Lu Z. Neoantigen-specific mRNA/DC vaccines for effective anticancer immunotherapy.Genes Immun. 2024;25:514–24. [DOI] [PubMed]
Zhao T, Cai Y, Jiang Y, He X, Wei Y, Yu Y, et al. Vaccine adjuvants: mechanisms and platforms.Signal Transduct Target Ther. 2023;8:283. [DOI] [PubMed] [PMC]
Shi S, Zhu H, Xia X, Liang Z, Ma X, Sun B. Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity.Vaccine. 2019;37:3167–78. [DOI] [PubMed]
Coffman RL, Sher A, Seder RA. Vaccine adjuvants: putting innate immunity to work.Immunity. 2010;33:492–503. [DOI] [PubMed] [PMC]
Schijns V, Fernández-Tejada A, Barjaktarović Ž, Bouzalas I, Brimnes J, Chernysh S, et al. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination.Immunol Rev. 2020;296:169–90. [DOI] [PubMed] [PMC]
Hines JB, Kacew AJ, Sweis RF. The Development of STING Agonists and Emerging Results as a Cancer Immunotherapy.Curr Oncol Rep. 2023;25:189–99. [DOI] [PubMed] [PMC]
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer.Nat Immunol. 2024;25:1144–57. [DOI] [PubMed]
Rahman T, Das A, Abir MH, Nafiz IH, Mahmud AR, Sarker MR, et al. Cytokines and their role as immunotherapeutics and vaccine Adjuvants: The emerging concepts.Cytokine. 2023;169:156268. [DOI] [PubMed]
Tovey MG, Lallemand C. Adjuvant activity of cytokines.Methods Mol Biol. 2010;626:287–309. [DOI] [PubMed]
Barbari C, Fontaine T, Parajuli P, Lamichhane N, Jakubski S, Lamichhane P, et al. Immunotherapies and Combination Strategies for Immuno-Oncology.Int J Mol Sci. 2020;21:5009. [DOI] [PubMed] [PMC]
Rappaport AR, Kyi C, Lane M, Hart MG, Johnson ML, Henick BS, et al. A shared neoantigen vaccine combined with immune checkpoint blockade for advanced metastatic solid tumors: phase 1 trial interim results.Nat Med. 2024;30:1013–22. [DOI] [PubMed]
Li Q, Lei X, Zhu J, Zhong Y, Yang J, Wang J, et al. Radiotherapy/Chemotherapy-Immunotherapy for Cancer Management: From Mechanisms to Clinical Implications.Oxid Med Cell Longev. 2023;2023:7530794. [DOI] [PubMed] [PMC]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.Nat Rev Cancer. 2012;12:252–64. [DOI] [PubMed] [PMC]
Fan K, Weng J. The progress of combination therapy with immune checkpoint inhibitors in breast cancer.Biocell. 2023;47;1199–211. [DOI]
Cella E, Zullo L, Marconi S, Rossi G, Coco S, Dellepiane C, et al. Immunotherapy-chemotherapy combinations for non-small cell lung cancer: current trends and future perspectives.Expert Opin Biol Ther. 2022;22:1259–73. [DOI] [PubMed]
Li L, Goedegebuure SP, Gillanders WE. Preclinical and clinical development of neoantigen vaccines.Ann Oncol. 2017;28:xii11–7. [DOI] [PubMed] [PMC]
Ivy SP, Siu LL, Garrett-Mayer E, Rubinstein L. Approaches to phase 1 clinical trial design focused on safety, efficiency, and selected patient populations: a report from the clinical trial design task force of the national cancer institute investigational drug steering committee.Clin Cancer Res. 2010;16:1726–36. [DOI] [PubMed] [PMC]
Li S, Simoni Y, Zhuang S, Gabel A, Ma S, Chee J, et al. Characterization of neoantigen-specific T cells in cancer resistant to immune checkpoint therapies.Proc Natl Acad Sci U S A. 2021;118:e2025570118. [DOI] [PubMed] [PMC]
de Graaf JF, Pesic T, Spitzer FS, Oosterhuis K, Camps MGM, Zoutendijk I, et al. Neoantigen-specific T cell help outperforms non-specific help in multi-antigen DNA vaccination against cancer.Mol Ther Oncol. 2024;32:200835. [DOI] [PubMed] [PMC]
Yang Y, Zhao Y, Liu X, Huang J. Artificial intelligence for prediction of response to cancer immunotherapy.Semin Cancer Biol. 2022;87:137–47. [DOI] [PubMed]
Abbott CW, Boyle SM, Pyke RM, McDaniel LD, Levy E, Navarro FCP, et al. Prediction of Immunotherapy Response in Melanoma through Combined Modeling of Neoantigen Burden and Immune-Related Resistance Mechanisms.Clin Cancer Res. 2021;27:4265–76. [DOI] [PubMed] [PMC]
Spall HGCV, Bastien A, Gersh B, Greenberg B, Mohebi R, Min J, et al. The role of early-phase trials and real-world evidence in drug development.Nat Cardiovasc Res. 2024;3:110–7. [DOI] [PubMed]
D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, Ruzza V, et al. Phase I Trial of Viral Vector-Based Personalized Vaccination Elicits Robust Neoantigen-Specific Antitumor T-Cell Responses.Clin Cancer Res. 2024;30:2412–23. [DOI] [PubMed] [PMC]
Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, et al. Personalized Cancer Vaccines Go Viral: Viral Vectors in the Era of Personalized Immunotherapy of Cancer.Int J Mol Sci. 2023;24:16591. [DOI] [PubMed] [PMC]
Bechter O, D’Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, Ruzza V, et al. Abstract LB196: NOUS-PEV, a personalized cancer immunotherapy targeting neoantigens, induces long lasting, tumor infiltrating memory T cells.Cancer Res. 2023;83:LB196. [DOI]
Silva V, Matos C. Recent updates in the therapeutic uses of Pembrolizumab: a brief narrative review.Clin Transl Oncol. 2024;26:2431–43. [DOI] [PubMed]
Awad MM, Govindan R, Balogh KN, Spigel DR, Garon EB, Bushway ME, et al. Personalized neoantigen vaccine NEO-PV-01 with chemotherapy and anti-PD-1 as first-line treatment for non-squamous non-small cell lung cancer.Cancer Cell. 2022;40:1010–26.e11. [DOI] [PubMed]
Yarchoan M, Gane EJ, Marron TU, Perales-Linares R, Yan J, Cooch N, et al. Personalized neoantigen vaccine and pembrolizumab in advanced hepatocellular carcinoma: a phase 1/2 trial.Nat Med. 2024;30:1044–53. [DOI] [PubMed] [PMC]
D’Alise AM, Scarselli E. Getting personal in metastatic melanoma: neoantigen-based vaccines as a new therapeutic strategy.Curr Opin Oncol. 2023;35:94–9. [DOI] [PubMed] [PMC]
Khattak MAA, Ascierto PA, Queirolo P, Chisamore M, Kleine-Kohlbrecher D, Lausen M, et al. 1084P Phase II study of AI-designed personalized neoantigen cancer vaccine, EVX-01, in combination with pembrolizumab in advanced melanoma.Ann Oncol. 2024;35:S718–9. [DOI]
Lausen M, Petersen NV, Long GV, Khattak MA, Ascierto PA, Queirolo P, et al. Immunogenicity of an AI-designed personalized neoantigen vaccine, EVX-01, in combination with anti-PD-1 therapy in patients with metastatic melanoma.J Clin Oncol. 2024;42:9561. [DOI]
Long GV, Ferrucci PF, Khattak A, Meniawy TM, Ott PA, Chisamore M, et al. KEYNOTE - D36: personalized immunotherapy with a neoepitope vaccine, EVX-01 and pembrolizumab in advanced melanoma.Future Oncol. 2022;18:3473–80. [DOI] [PubMed]
Mørk SK, Kadivar M, Bol KF, Draghi A, Westergaard MCW, Skadborg SK, et al. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma.Oncoimmunology. 2022;11:2023255. [DOI] [PubMed] [PMC]
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines.Nat Rev Drug Discov. 2022;21:261–82. [DOI]
Li L, Zhang X, Wang X, Kim SW, Herndon JM, Becker-Hapak MK, et al. Optimized polyepitope neoantigen DNA vaccines elicit neoantigen-specific immune responses in preclinical models and in clinical translation.Genome Med. 2021;13:56. [DOI] [PubMed] [PMC]
Christensen G. Three concepts of power: Foucault, Bourdieu, and Habermas.Power Educ. 2023;16:182–95. [DOI]
Soomers VLMN, Lidington E, Sirohi B, Gonzalez MA, Darlington A, van der Graaf WTA, et al. The Prolonged Diagnostic Pathway of Young Adults (Aged 25-39) with Cancer in the United Kingdom: Results from the Young Adult Cancer Patient Journey Study.J Clin Med. 2021;10:4646. [DOI] [PubMed] [PMC]
Yap C, Rekowski J, Ursino M, Solovyeva O, Patel D, Dimairo M, et al. Enhancing quality and impact of early phase dose-finding clinical trial protocols: SPIRIT Dose-finding Extension (SPIRIT-DEFINE) guidance.BMJ. 2023;383:e076386. [DOI] [PubMed]
Prete AD, Salvi V, Soriani A, Laffranchi M, Sozio F, Bosisio D, et al. Dendritic cell subsets in cancer immunity and tumor antigen sensing.Cell Mol Immunol. 2023;20:432–47. [DOI] [PubMed] [PMC]
Keshari S, Shavkunov AS, Miao Q, Saha A, Minowa T, Molgora M, et al. Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy.Cell Rep. 2024;43:114875. [DOI] [PubMed] [PMC]
Zanotta S, Galati D, Filippi RD, Pinto A. Enhancing Dendritic Cell Cancer Vaccination: The Synergy of Immune Checkpoint Inhibitors in Combined Therapies.Int J Mol Sci. 2024;25:7509. [DOI] [PubMed] [PMC]
Ji S, Wang F, Wu Y, Hu H, Xing Z, Zhu J, et al. Large-scale transcript variants dictate neoepitopes for cancer immunotherapy.Sci Adv. 2025;11:eado5600. [DOI] [PubMed] [PMC]
Yang X, Fan J, Wu Y, Ma Z, Huang J, Zhang Y, et al. Synthetic multiepitope neoantigen DNA vaccine for personalized cancer immunotherapy.Nanomedicine. 2021;37:102443. [DOI] [PubMed]
Goswami S, Pauken KE, Wang L, Sharma P. Next-generation combination approaches for immune checkpoint therapy.Nat Immunol. 2024;25:2186–99. [DOI] [PubMed]
Bugya Z, Prechl J, Szénási T, Nemes É, Bácsi A, Koncz G. Multiple Levels of Immunological Memory and Their Association with Vaccination.Vaccines (Basel). 2021;9:174. [DOI] [PubMed] [PMC]
Yin Z, Mander AP, de Bono JS, Zheng H, Yap C. Handling Incomplete or Late-Onset Toxicities in Early-Phase Dose-Finding Clinical Trials: Current Practice and Future Prospects.JCO Precis Oncol. 2024;8:e2300441. [DOI] [PubMed] [PMC]