*: GRα is the only receptor proven essential for postnatal survival, serving as a master integrator of systemic homeostasis. It coordinates cross-organ communication, linking metabolic, immune, mitochondrial, neurodevelopmental, and vascular–neural–lymphatic functions through both transcriptional and rapid non-genomic pathways. MR, by contrast, governs more localized processes—such as electrolyte balance, vascular tone, and innate immune activity—that, while vital, cannot substitute for GRα’s system-wide regulatory role. The table compares their distinct and shared functions, outlining the consequences of receptor loss, including multisystem failure with GRα deletion versus compartmentalized dysfunction with MR deletion. GRα: glucocorticoid receptor alpha; MR: mineralocorticoid receptor; eNOS: endothelial nitric oxide synthase; FKBP5: FK506 binding protein 5.
Declarations
Acknowledgments
This work is dedicated to Professor George P. Chrousos’s guidance and mentorship over the past twenty years and to Don Donati, Esq., for his steadfast support of academic freedom and research integrity.
AI-Assisted Work Statement: The content of Table 1 was synthesized from structured evidence obtained via the Consensus research platform and organized with editorial assistance from ChatGPT (OpenAI) to ensure clarity, consistency, and accurate citation. Preparation of the comparative analysis of Tables 2 and 3 was supported by insights derived from Consensus (https://consensus.app), a PubMed-linked AI research synthesis platform used to verify and update biomedical references, and ChatGPT (GPT-5, OpenAI, 2025), which assisted in drafting and formatting the table, integrating reference alignment, and refining academic clarity. Both tools were used exclusively to enhance scientific precision and presentation quality; all final interpretations and conclusions reflect the author’s independent critical analysis. After using the tool/service, author(s) reviewed and edited the content as needed and take(s) full responsibility for the content of the publication.
Author contributions
GUM: Conceptualization, Investigation, Methodology, Writing—original draft, Project administration, Writing—review & editing. The author read and approved the submitted version.
Conflicts of interest
The author has no competing interests to declare or any real or perceived financial interest in any product or commodity mentioned in this paper.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Cannon W. The wisdom of the body. New York: W. W. Norton & Company, Inc.; 1929. pp. 399–431.
SELYE H. The general adaptation syndrome and the diseases of adaptation.J Clin Endocrinol Metab. 1946;6:117–230. [DOI] [PubMed]
Sterling P, Eyer J. Allostasis: a new paradigm to explain arousal pathology. In: Fisher S, Reason J, editors. Handbook of life stress, cognition and health. New York: John Wiley & Sons; 1988. pp. 629–49.
Sterling P. Allostasis: a model of predictive regulation.Physiol Behav. 2012;106:5–15. [DOI] [PubMed]
Billman GE. Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology.Front Physiol. 2020;11:200. [DOI] [PubMed] [PMC]
Meduri G. Glucocorticoid receptor alpha: origins and functions of the master regulator of homeostatic corrections in health and critical illness.Explor Endocr Metab Dis. 2025;2:101426. [DOI]
Reichardt HM, Kaestner KH, Tuckermann J, Kretz O, Wessely O, Bock R, et al. DNA binding of the glucocorticoid receptor is not essential for survival.Cell. 1998;93:531–41. [DOI] [PubMed]
Faught E, Schaaf MJM. The Mineralocorticoid Receptor Plays a Crucial Role in Macrophage Development and Function.Endocrinology. 2023;164:bqad127. [DOI] [PubMed] [PMC]
Kawano SM, Blob RW. Propulsive forces of mudskipper fins and salamander limbs during terrestrial locomotion: implications for the invasion of land.Integr Comp Biol. 2013;53:283–94. [DOI] [PubMed]
Meduri GU, Psarra AG. The Glucocorticoid System: A Multifaceted Regulator of Mitochondrial Function, Endothelial Homeostasis, and Intestinal Barrier Integrity.Semin Respir Crit Care Med. 2025;[Epub ahead of print]. [DOI] [PubMed]
Kokkinopoulou I, Moutsatsou P. Mitochondrial Glucocorticoid Receptors and Their Actions.Int J Mol Sci. 2021;22:6054. [DOI] [PubMed] [PMC]
Morgan DJ, Poolman TM, Williamson AJK, Wang Z, Clark NR, Ma’ayan A, et al. Glucocorticoid receptor isoforms direct distinct mitochondrial programs to regulate ATP production.Sci Rep. 2016;6:26419. [DOI] [PubMed] [PMC]
Du J, Wang Y, Hunter R, Wei Y, Blumenthal R, Falke C, et al. Dynamic regulation of mitochondrial function by glucocorticoids.Proc Natl Acad Sci U S A. 2009;106:3543–8. [DOI] [PubMed] [PMC]
Choi GE, Han HJ. Glucocorticoid impairs mitochondrial quality control in neurons.Neurobiol Dis. 2021;152:105301. [DOI] [PubMed]
Lapp HE, Bartlett AA, Hunter RG. Stress and glucocorticoid receptor regulation of mitochondrial gene expression.J Mol Endocrinol. 2019;62:R121–8. [DOI] [PubMed]
Belden Z, Deiuliis JA, Dobre M, Rajagopalan S. The Role of the Mineralocorticoid Receptor in Inflammation: Focus on Kidney and Vasculature.Am J Nephrol. 2017;46:298–314. [DOI] [PubMed] [PMC]
Quagliarini F, Makris K, Friano ME, Uhlenhaut NH. EJE Prize 2023: genes on steroids-genomic control of hepatic metabolism by the glucocorticoid receptor.Eur J Endocrinol. 2023;188:R111–30. [DOI] [PubMed]
Faught E, Schaaf MJM. Molecular mechanisms of the stress-induced regulation of the inflammatory response in fish.Gen Comp Endocrinol. 2024;345:114387. [DOI] [PubMed]
Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease.J Allergy Clin Immunol. 2013;132:1033–44. [DOI] [PubMed] [PMC]
Ayroldi E, Riccardi C. Glucocorticoid-induced leucine zipper (GILZ): a new important mediator of glucocorticoid action.FASEB J. 2009;23:3649–58. [DOI] [PubMed]
Baschant U, Tuckermann J. The role of the glucocorticoid receptor in inflammation and immunity.J Steroid Biochem Mol Biol. 2010;120:69–75. [DOI] [PubMed]
Lannan EA, Galliher-Beckley AJ, Scoltock AB, Cidlowski JA. Proinflammatory actions of glucocorticoids: glucocorticoids and TNFα coregulate gene expression in vitro and in vivo.Endocrinology. 2012;153:3701–12. [DOI] [PubMed] [PMC]
González-Mayoral A, Eid A, Derounian R, Campanella VS, da Silva Ramos A, El Khoury R, et al. Mineralocorticoid receptor knockout in Schwann cells alters myelin sheath thickness.J Endocrinol. 2023;258:e220334. [DOI] [PubMed]
Abrahám I, Harkany T, Horvath KM, Veenema AH, Penke B, Nyakas C, et al. Chronic corticosterone administration dose-dependently modulates Abeta(1-42)- and NMDA-induced neurodegeneration in rat magnocellular nucleus basalis.J Neuroendocrinol. 2000;12:486–94. [DOI] [PubMed]
Charmandari E, Tsigos C, Chrousos G. Endocrinology of the stress response.Annu Rev Physiol. 2005;67:259–84. [DOI] [PubMed]
Yang S, Zhang L. Glucocorticoids and vascular reactivity.Curr Vasc Pharmacol. 2004;2:1–12. [DOI] [PubMed]
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions.Endocr Rev. 2000;21:55–89. [DOI] [PubMed]
McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain.Physiol Rev. 2007;87:873–904. [DOI] [PubMed]
Bouazza Y, Sennoun N, Strub C, Regnault V, Gibot S, Meziani F, et al. Comparative effects of recombinant human activated protein C and dexamethasone in experimental septic shock.Intensive Care Med. 2011;37:1857–64. [DOI] [PubMed]
Limbourg FP, Huang Z, Plumier JC, Simoncini T, Fujioka M, Tuckermann J, et al. Rapid nontranscriptional activation of endothelial nitric oxide synthase mediates increased cerebral blood flow and stroke protection by corticosteroids.J Clin Invest. 2002;110:1729–38. [DOI] [PubMed] [PMC]
Hafezi-Moghadam A, Simoncini T, Yang Z, Limbourg FP, Plumier J, Rebsamen MC, et al. Acute cardiovascular protective effects of corticosteroids are mediated by non-transcriptional activation of endothelial nitric oxide synthase.Nat Med. 2002;8:473–9. [DOI] [PubMed] [PMC]
Gaeggeler HP, Gonzalez-Rodriguez E, Jaeger NF, Loffing-Cueni D, Norregaard R, Loffing J, et al. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone-stimulated sodium transport in a novel renal cell line.J Am Soc Nephrol. 2005;16:878–91. [DOI] [PubMed]
Goleva E, Jackson LP, Gleason M, Leung DYM. Usefulness of PBMCs to predict clinical response to corticosteroids in asthmatic patients.J Allergy Clin Immunol. 2012;129:687–93. [DOI] [PubMed] [PMC]
Yang HH, Su SH, Ho CH, Yeh AH, Lin YJ, Yu MJ. Glucocorticoid Receptor Maintains Vasopressin Responses in Kidney Collecting Duct Cells.Front Physiol. 2022;13:816959. [DOI] [PubMed] [PMC]
Okun JG, Conway S, Schmidt KV, Schumacher J, Wang X, de Guia R, et al. Molecular regulation of urea cycle function by the liver glucocorticoid receptor.Mol Metab. 2015;4:732–40. [DOI] [PubMed] [PMC]
Przybyciński J, Drożdżal S, Domański L, Dziedziejko V, Pawlik A. Role of Endothelial Glucocorticoid Receptor in the Pathogenesis of Kidney Diseases.Int J Mol Sci. 2021;22:13295. [DOI] [PubMed] [PMC]
Jenniskens M, Weckx R, Dufour T, Vander Perre S, Pauwels L, Derde S, et al. The Hepatic Glucocorticoid Receptor Is Crucial for Cortisol Homeostasis and Sepsis Survival in Humans and Male Mice.Endocrinology. 2018;159:2790–802. [DOI] [PubMed]
Kaminsky LW, Al-Sadi R, Ma TY. IL-1β and the Intestinal Epithelial Tight Junction Barrier.Front Immunol. 2021;12:767456. [DOI] [PubMed] [PMC]
Reichardt SD, Amouret A, Muzzi C, Vettorazzi S, Tuckermann JP, Lühder F, et al. The Role of Glucocorticoids in Inflammatory Diseases.Cells. 2021;10:2921. [DOI] [PubMed] [PMC]
Huang EY, Inoue T, Leone VA, Dalal S, Touw K, Wang Y, et al. Using corticosteroids to reshape the gut microbiome: implications for inflammatory bowel diseases.Inflamm Bowel Dis. 2015;21:963–72. [DOI] [PubMed] [PMC]
Sen SK, Wang L, Brown M, Wu J, Wei Z, Matveyenko A. 1773-P: Glucocorticoid Receptor Signaling Regulates Pancreatic Beta-Cell Circadian Transcriptome and Function.Diabetes. 2023;72:1773. [DOI]
Aylward A, Okino ML, Benaglio P, Chiou J, Beebe E, Padilla JA, et al. Glucocorticoid signaling in pancreatic islets modulates gene regulatory programs and genetic risk of type 2 diabetes.PLoS Genet. 2021;17:e1009531. [DOI] [PubMed] [PMC]
Swali A, Walker EA, Lavery GG, Tomlinson JW, Stewart PM. 11beta-Hydroxysteroid dehydrogenase type 1 regulates insulin and glucagon secretion in pancreatic islets.Diabetologia. 2008;51:2003–11. [DOI] [PubMed]
Shen Y, Roh HC, Kumari M, Rosen ED. Adipocyte glucocorticoid receptor is important in lipolysis and insulin resistance due to exogenous steroids, but not insulin resistance caused by high fat feeding.Mol Metab. 2017;6:1150–60. [DOI] [PubMed] [PMC]
Vali A, Dalle H, Loubaresse A, Gilleron J, Havis E, Garcia M, et al. Adipocyte Glucocorticoid Receptor Activation With High Glucocorticoid Doses Impairs Healthy Adipose Tissue Expansion by Repressing Angiogenesis.Diabetes. 2024;73:211–24. [DOI] [PubMed]
Dalle H, Garcia M, Antoine B, Boehm V, Do TTH, Buyse M, et al. Adipocyte Glucocorticoid Receptor Deficiency Promotes Adipose Tissue Expandability and Improves the Metabolic Profile Under Corticosterone Exposure.Diabetes. 2019;68:305–17. [DOI] [PubMed]
Du X, Xu W, Shi J, Guo K, Guo C, Zheng R, et al. Glucocorticoid Receptor Alpha Targets SLC2A4 to Regulate Protein Synthesis and Breakdown in Porcine Skeletal Muscle Cells.Biomolecules. 2021;11:721. [DOI] [PubMed] [PMC]
Kuo T, Harris CA, Wang JC. Metabolic functions of glucocorticoid receptor in skeletal muscle.Mol Cell Endocrinol. 2013;380:79–88. [DOI] [PubMed] [PMC]
Wang SCM, Myers S, Dooms C, Capon R, Muscat GEO. An ERRbeta/gamma agonist modulates GRalpha expression, and glucocorticoid responsive gene expression in skeletal muscle cells.Mol Cell Endocrinol. 2010;315:146–52. [DOI] [PubMed]
Annane D, Pastores SM, Arlt W, Balk RA, Beishuizen A, Briegel J, et al. Critical Illness-Related Corticosteroid Insufficiency (CIRCI): A Narrative Review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM).Crit Care Med. 2017;45:2089–98. [DOI] [PubMed]
Meduri GU, Confalonieri M, Chaudhuri D, Rochwerg B, Meibohm B. Prolonged glucocorticoid treatment in ARDS: pathobiological rationale and pharmacological principles. In: Fink G, editor. Handbook of Stress: Stress, Immunology and Inflammation. Academic Press; 2024. pp. 289–323. [DOI]
Lu NZ, Cidlowski JA. The origin and functions of multiple human glucocorticoid receptor isoforms.Ann N Y Acad Sci. 2004;1024:102–23. [DOI] [PubMed]
Sacta MA, Chinenov Y, Rogatsky I. Glucocorticoid Signaling: An Update from a Genomic Perspective.Annu Rev Physiol. 2016;78:155–80. [DOI] [PubMed]
Kino T, Su YA, Chrousos GP. Human glucocorticoid receptor isoform beta: recent understanding of its potential implications in physiology and pathophysiology.Cell Mol Life Sci. 2009;66:3435–48. [DOI] [PubMed] [PMC]
Rodriguez JM, Monsalves-Alvarez M, Henriquez S, Llanos MN, Troncoso R. Glucocorticoid resistance in chronic diseases.Steroids. 2016;115:182–92. [DOI] [PubMed]
Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases.Lancet. 2009;373:1905–17. [DOI] [PubMed]
Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk.Proc Natl Acad Sci U S A. 2012;109:5995–9. [DOI] [PubMed] [PMC]
Meduri GU. Synergistic glucocorticoids, vitamins, and microbiome strategies for gut protection in critical illness.Explor Endocr Metab Dis. 2025;2:101432. [DOI]
Schäcke H, Döcke WD, Asadullah K. Mechanisms involved in the side effects of glucocorticoids.Pharmacol Ther. 2002;96:23–43. [DOI] [PubMed]
Meduri GU, Chrousos GP. General Adaptation in Critical Illness: Glucocorticoid Receptor-alpha Master Regulator of Homeostatic Corrections.Front Endocrinol (Lausanne). 2020;11:161. [DOI] [PubMed] [PMC]
Meduri GU, Muthiah MP, Carratu P, Eltorky M, Chrousos GP. Nuclear factor-kappaB- and glucocorticoid receptor alpha-mediated mechanisms in the regulation of systemic and pulmonary inflammation during sepsis and acute respiratory distress syndrome. Evidence for inflammation-induced target tissue resistance to glucocorticoids.Neuroimmunomodulation. 2005;12:321–38. [DOI] [PubMed]
Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, et al. The G protein-coupled receptor repertoires of human and mouse.Proc Natl Acad Sci U S A. 2003;100:4903–8. [DOI] [PubMed] [PMC]
Heng BC, Aubel D, Fussenegger M. An overview of the diverse roles of G-protein coupled receptors (GPCRs) in the pathophysiology of various human diseases.Biotechnol Adv. 2013;31:1676–94. [DOI] [PubMed]
Kroning KE, Wang W. Genetically encoded tools for in vivo G-protein-coupled receptor agonist detection at cellular resolution.Clin Transl Med. 2022;12:e1124. [DOI] [PubMed] [PMC]
Small KM, McGraw DW, Liggett SB. Pharmacology and physiology of human adrenergic receptor polymorphisms.Annu Rev Pharmacol Toxicol. 2003;43:381–411. [DOI] [PubMed]
Barnes NM, Ahern GP, Becamel C, Bockaert J, Camilleri M, Chaumont-Dubel S, et al. International Union of Basic and Clinical Pharmacology. CX. Classification of Receptors for 5-hydroxytryptamine; Pharmacology and Function.Pharmacol Rev. 2021;73:310–520. [DOI] [PubMed] [PMC]
Simard M, Rakotoarivelo V, Di Marzo V, Flamand N. Expression and Functions of the CB2 Receptor in Human Leukocytes.Front Pharmacol. 2022;13:826400. [DOI] [PubMed] [PMC]
Maßberg D, Hatt H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose.Physiol Rev. 2018;98:1739–63. [DOI] [PubMed]
Frigo DE, Bondesson M, Williams C. Nuclear receptors: from molecular mechanisms to therapeutics.Essays Biochem. 2021;65:847–56. [DOI] [PubMed] [PMC]
Morales-Perez CL, Noviello CM, Hibbs RE. X-ray structure of the human α4β2 nicotinic receptor.Nature. 2016;538:411–5. [DOI] [PubMed] [PMC]
Marzvanyan A, Alhawaj AF. Physiology, Sensory Receptors.In: StatPearls. Treasure Island (FL): StatPearls Publishing; 2025. [PubMed]
Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity.Science. 1999;286:958–61. [DOI] [PubMed]
Bsibsi M, Ravid R, Gveric D, van Noort JM. Broad expression of Toll-like receptors in the human central nervous system.J Neuropathol Exp Neurol. 2002;61:1013–21. [DOI] [PubMed]
Colonna M. The biology of TREM receptors.Nat Rev Immunol. 2023;23:580–94. [DOI] [PubMed] [PMC]
McMahan CJ, Slack JL, Mosley B, Cosman D, Lupton SD, Brunton LL, et al. A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types.EMBO J. 1991;10:2821–32. [DOI] [PubMed] [PMC]
Sapio MR, Staedtler ES, King DM, Maric D, Jahanipour J, Ghetti A, et al. Analgesic candidate adenosine A 3 receptors are expressed by perineuronal peripheral macrophages in human dorsal root ganglion and spinal cord microglia.Pain. 2024;165:2323–43. [DOI] [PubMed] [PMC]
Larhammar D, Blomqvist AG, Yee F, Jazin E, Yoo H, Wahlested C. Cloning and functional expression of a human neuropeptide Y/peptide YY receptor of the Y1 type.J Biol Chem. 1992;267:10935–8. [PubMed]
Schlicker E, Feuerstein T. Human presynaptic receptors.Pharmacol Ther. 2017;172:1–21. [DOI] [PubMed]
Karnik SS, Unal H, Kemp JR, Tirupula KC, Eguchi S, Vanderheyden PML, et al. International Union of Basic and Clinical Pharmacology. XCIX. Angiotensin Receptors: Interpreters of Pathophysiological Angiotensinergic Stimuli [corrected].Pharmacol Rev. 2015;67:754–819. [DOI] [PubMed] [PMC]
Asao H, Okuyama C, Kumaki S, Ishii N, Tsuchiya S, Foster D, et al. Cutting edge: the common gamma-chain is an indispensable subunit of the IL-21 receptor complex.J Immunol. 2001;167:1–5. [DOI] [PubMed]
Shen S, Wang D, Liu H, He X, Cao Y, Chen J, et al. Structural basis for hormone recognition and distinctive Gq protein coupling by the kisspeptin receptor.Cell Rep. 2024;43:114389. [DOI] [PubMed]
Sueyoshi T, Petrillo MG, Jewell CM, Bortner CD, Perera L, Xu X, et al. Molecular interactions of glucocorticoid and mineralocorticoid receptors define novel transcription and biological functions.J Biol Chem. 2025;301:108488. [DOI] [PubMed] [PMC]
Daskalakis NP, Meijer OC, de Kloet ER. Mineralocorticoid receptor and glucocorticoid receptor work alone and together in cell-type-specific manner: Implications for resilience prediction and targeted therapy.Neurobiol Stress. 2022;18:100455. [DOI] [PubMed] [PMC]
Hartmann J, Bajaj T, Klengel C, Chatzinakos C, Ebert T, Dedic N, et al. Mineralocorticoid receptors dampen glucocorticoid receptor sensitivity to stress via regulation of FKBP5.Cell Rep. 2021;35:109185. [DOI] [PubMed] [PMC]
Bene NC, Alcaide P, Wortis HH, Jaffe IZ. Mineralocorticoid receptors in immune cells: emerging role in cardiovascular disease.Steroids. 2014;91:38–45. [DOI] [PubMed] [PMC]
Almansa R, Heredia-Rodríguez M, Gomez-Sanchez E, Andaluz-Ojeda D, Iglesias V, Rico L, et al. Transcriptomic correlates of organ failure extent in sepsis.J Infect. 2015;70:445–56. [DOI] [PubMed]
Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, et al. Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure.Circ Res. 1986;59:297–309. [DOI] [PubMed]
Wei W, Smrcka AV. Subcellular β-Adrenergic Receptor Signaling in Cardiac Physiology and Disease.J Cardiovasc Pharmacol. 2022;80:334–41. [DOI] [PubMed] [PMC]
Cole TJ, Blendy JA, Monaghan AP, Krieglstein K, Schmid W, Aguzzi A, et al. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation.Genes Dev. 1995;9:1608–21. [DOI] [PubMed]
Planey SL, Litwack G. Glucocorticoid-induced apoptosis in lymphocytes.Biochem Biophys Res Commun. 2000;279:307–12. [DOI] [PubMed]
Adams SM, de Rivero Vaccari JC, Corriveau RA. Pronounced cell death in the absence of NMDA receptors in the developing somatosensory thalamus.J Neurosci. 2004;24:9441–50. [DOI] [PubMed] [PMC]
Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain.Science. 1999;283:70–4. [DOI] [PubMed]
Zhang S, Steijaert MN, Lau D, Schütz G, Delucinge-Vivier C, Descombes P, et al. Decoding NMDA receptor signaling: identification of genomic programs specifying neuronal survival and death.Neuron. 2007;53:549–62. [DOI] [PubMed]
Martel MA, Wyllie DJA, Hardingham GE. In developing hippocampal neurons, NR2B-containing N-methyl-D-aspartate receptors (NMDARs) can mediate signaling to neuronal survival and synaptic potentiation, as well as neuronal death.Neuroscience. 2009;158:334–43. [DOI] [PubMed] [PMC]
Wang R, Reddy PH. Role of Glutamate and NMDA Receptors in Alzheimer’s Disease.J Alzheimers Dis. 2017;57:1041–8. [DOI] [PubMed] [PMC]
Deng R, Chang M, Kao JPY, Kanold PO. Cortical inhibitory but not excitatory synaptic transmission and circuit refinement are altered after the deletion of NMDA receptors during early development.Sci Rep. 2023;13:656. [DOI] [PubMed] [PMC]
Leibold NS, Higgs NF, Kandler S, Khan A, Donato F, Andreae L. NMDA receptor activation drives early synapse formation in vivo.bioRxiv 595343 [Preprint]. 2024 [cited 2024 May 23]. Available from: https://doi.org/10.1101/2024.05.23.595343
Chittajallu R, Wester JC, Craig MT, Barksdale E, Yuan XQ, Akgül G, et al. Afferent specific role of NMDA receptors for the circuit integration of hippocampal neurogliaform cells.Nat Commun. 2017;8:152. [DOI] [PubMed] [PMC]
Park DK, Stein IS, Zito K. Ion flux-independent NMDA receptor signaling.Neuropharmacology. 2022;210:109019. [DOI] [PubMed] [PMC]
Komuro H, Rakic P. Modulation of neuronal migration by NMDA receptors.Science. 1993;260:95–7. [DOI] [PubMed]
Napoli AJ, Laderwager S, Zoodsma JD, Biju B, Mucollari O, Schubel SK, et al. Developmental loss of NMDA receptors results in supernumerary forebrain neurons through delayed maturation of transit-amplifying neuroblasts.Sci Rep. 2024;14:3395. [DOI] [PubMed] [PMC]
Newton K. RIPK1 and RIPK3: critical regulators of inflammation and cell death.Trends Cell Biol. 2015;25:347–53. [DOI] [PubMed]
Clucas J, Meier P. Roles of RIPK1 as a stress sentinel coordinating cell survival and immunogenic cell death.Nat Rev Mol Cell Biol. 2023;24:835–52. [DOI] [PubMed]
Newton K. Multitasking Kinase RIPK1 Regulates Cell Death and Inflammation.Cold Spring Harb Perspect Biol. 2020;12:a036368. [DOI] [PubMed] [PMC]
Kondylis V, Kumari S, Vlantis K, Pasparakis M. The interplay of IKK, NF-κB and RIPK1 signaling in the regulation of cell death, tissue homeostasis and inflammation.Immunol Rev. 2017;277:113–27. [DOI] [PubMed]
Zhang T, Xu D, Trefts E, Lv M, Inuzuka H, Song G, et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1.Science. 2023;380:1372–80. [DOI] [PubMed] [PMC]
Wu W, Wang X, Berleth N, Deitersen J, Wallot-Hieke N, Böhler P, et al. The Autophagy-Initiating Kinase ULK1 Controls RIPK1-Mediated Cell Death.Cell Rep. 2020;31:107547. [DOI] [PubMed]
Fischer FA, Demarco B, Min FCH, Yeap HW, De Nardo D, Chen KW, et al. TBK1 and IKKε prevent premature cell death by limiting the activity of both RIPK1 and NLRP3 death pathways.Sci Adv. 2025;11:eadq1047. [DOI] [PubMed] [PMC]
Imai T, Lin J, Kaya GG, Ju E, Kondylis V, Kelepouras K, et al. The RIPK1 death domain restrains ZBP1- and TRIF-mediated cell death and inflammation.Immunity. 2024;57:1497–513. [DOI] [PubMed]
Massey CA, Thompson SJ, Ostrom RW, Drabek J, Sveinsson OA, Tomson T, et al. X-linked serotonin 2C receptor is associated with a non-canonical pathway for sudden unexpected death in epilepsy.Brain Commun. 2021;3:fcab149. [DOI] [PubMed] [PMC]
Klassen TL, Bomben VC, Patel A, Drabek J, Chen TT, Gu W, et al. High-resolution molecular genomic autopsy reveals complex sudden unexpected death in epilepsy risk profile.Epilepsia. 2014;55:e6–12. [DOI] [PubMed] [PMC]
Schoch GA, D’Arcy B, Stihle M, Burger D, Bär D, Benz J, et al. Molecular switch in the glucocorticoid receptor: active and passive antagonist conformations.J Mol Biol. 2010;395:568–77. [DOI] [PubMed]
Cubilla MA, Bermúdez V, Marquioni Ramella MD, Bachor TP, Suburo AM. Mifepristone, a blocker of glucocorticoid receptors, promotes photoreceptor death.Invest Ophthalmol Vis Sci. 2013;54:313–22. [DOI] [PubMed]
Oomen CA, Mayer JL, de Kloet ER, Joëls M, Lucassen PJ. Brief treatment with the glucocorticoid receptor antagonist mifepristone normalizes the reduction in neurogenesis after chronic stress.Eur J Neurosci. 2007;26:3395–401. [DOI] [PubMed]
Ma P, Zhang Y, Liang Q, Yin Y, Wang S, Han R, et al. Mifepristone (RU486) inhibits dietary lipid digestion by antagonizing the role of glucocorticoid receptor on lipase transcription.iScience. 2021;24:102507. [DOI] [PubMed] [PMC]
Castinetti F, Conte-Devolx B, Brue T. Medical treatment of Cushing’s syndrome: glucocorticoid receptor antagonists and mifepristone.Neuroendocrinology. 2010;92:125–30. [DOI] [PubMed]
Fleseriu M, Molitch ME, Gross C, Schteingart DE, Vaughan TB 3rd, Biller BMK. A new therapeutic approach in the medical treatment of Cushing’s syndrome: glucocorticoid receptor blockade with mifepristone.Endocr Pract. 2013;19:313–26. [DOI] [PubMed]
Koenig HN, Olive MF. The glucocorticoid receptor antagonist mifepristone reduces ethanol intake in rats under limited access conditions.Psychoneuroendocrinology. 2004;29:999–1003. [DOI] [PubMed]
Newton R, Holden NS. Separating transrepression and transactivation: a distressing divorce for the glucocorticoid receptor?Mol Pharmacol. 2007;72:799–809. [DOI] [PubMed]
Oakley RH, Cruz-Topete D, He B, Foley JF, Myers PH, Xu X, et al. Cardiomyocyte glucocorticoid and mineralocorticoid receptors directly and antagonistically regulate heart disease in mice.Sci Signal. 2019;12:eaau9685. [DOI] [PubMed] [PMC]
Meduri GU, Chrousos GA. General Adaptation in Critical Illness: The Glucocorticoid Signaling System as Master Rheostat of Homeostatic Corrections in Concerted Action with Nuclear Factor-kB. In: Fink G, editor. Handbook of Stress: Stress, Immunology and Inflammation. Academic Press; 2024. pp. 231–61. [DOI]
Bose SK, Hutson I, Harris CA. Hepatic Glucocorticoid Receptor Plays a Greater Role Than Adipose GR in Metabolic Syndrome Despite Renal Compensation.Endocrinology. 2016;157:4943–60. [DOI] [PubMed] [PMC]
Watson ML, Baehr LM, Reichardt HM, Tuckermann JP, Bodine SC, Furlow JD. A cell-autonomous role for the glucocorticoid receptor in skeletal muscle atrophy induced by systemic glucocorticoid exposure.Am J Physiol Endocrinol Metab. 2012;302:E1210–20. [DOI] [PubMed] [PMC]
de Kloet ER, Meijer OC, de Nicola AF, de Rijk RH, Joëls M. Importance of the brain corticosteroid receptor balance in metaplasticity, cognitive performance and neuro-inflammation.Front Neuroendocrinol. 2018;49:124–45. [DOI] [PubMed]
Chantong B, Kratschmar DV, Nashev LG, Balazs Z, Odermatt A. Mineralocorticoid and glucocorticoid receptors differentially regulate NF-kappaB activity and pro-inflammatory cytokine production in murine BV-2 microglial cells.J Neuroinflammation. 2012;9:260. [DOI] [PubMed] [PMC]
Moran TJ, Gray S, Mikosz CA, Conzen SD. The glucocorticoid receptor mediates a survival signal in human mammary epithelial cells.Cancer Res. 2000;60:867–72. [PubMed]
Gao H, Li Y, Chen X. Interactions between nuclear receptors glucocorticoid receptor α and peroxisome proliferator-activated receptor α form a negative feedback loop.Rev Endocr Metab Disord. 2022;23:893–903. [DOI] [PubMed]
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk - defining the mechanisms for therapeutic innovation.Nat Rev Endocrinol. 2020;16:363–77. [DOI] [PubMed]
Yang F, Ma Q, Liu Z, Li W, Tan Y, Jin C, et al. Glucocorticoid Receptor: MegaTrans Switching Mediates the Repression of an ERα-Regulated Transcriptional Program.Mol Cell. 2017;66:321–31. [DOI] [PubMed] [PMC]
Lee H, Gao X, Barrasa MI, Li H, Elmes RR, Peters LL, et al. PPAR-α and glucocorticoid receptor synergize to promote erythroid progenitor self-renewal.Nature. 2015;522:474–7. [DOI] [PubMed] [PMC]
Bougarne N, Mylka V, Ratman D, Beck IM, Thommis J, De Cauwer L, et al. Mechanisms Underlying the Functional Cooperation Between PPARα and GRα to Attenuate Inflammatory Responses.Front Immunol. 2019;10:1769. [DOI] [PubMed] [PMC]
Bougarne N, Paumelle R, Caron S, Hennuyer N, Mansouri R, Gervois P, et al. PPARalpha blocks glucocorticoid receptor alpha-mediated transactivation but cooperates with the activated glucocorticoid receptor alpha for transrepression on NF-kappaB.Proc Natl Acad Sci U S A. 2009;106:7397–402. [DOI] [PubMed] [PMC]
Martinez G, Kipp Z, Stec D, Hinds T. Glucocorticoid Resistance Increases PPARγ Activity and Drives Hepatic Lipid Accumulation via Increased Eicosanoid and Monoacylglyceride Synthesis.Physiology. 2024;39:658. [DOI]
Standage SW, Bennion BG, Knowles TO, Ledee DR, Portman MA, McGuire JK, et al. PPARα augments heart function and cardiac fatty acid oxidation in early experimental polymicrobial sepsis.Am J Physiol Heart Circ Physiol. 2017;312:H239–49. [DOI] [PubMed] [PMC]
Ratman D, Mylka V, Bougarne N, Pawlak M, Caron S, Hennuyer N, et al. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα.Nucleic Acids Res. 2016;44:10539–53. [DOI] [PubMed] [PMC]
Zhong J, Ji X, Zhao Y, Jia Y, Song C, Lv J, et al. Identification of BAF60b as a Chromatin-Remodeling Checkpoint of Diet-Induced Fatty Liver Disease.Diabetes. 2024;73:1615–30. [DOI] [PubMed] [PMC]
Witzel M, Petersheim D, Fan Y, Bahrami E, Racek T, Rohlfs M, et al. Chromatin-remodeling factor SMARCD2 regulates transcriptional networks controlling differentiation of neutrophil granulocytes.Nat Genet. 2017;49:742–52. [DOI] [PubMed] [PMC]
Morrison AJ. Chromatin-remodeling links metabolic signaling to gene expression.Mol Metab. 2020;38:100973. [DOI] [PubMed] [PMC]
Tecle E, Warushavithana P, Li S, Blanchard MJ, Chhan CB, Bui T, et al. Conserved chromatin regulators control the transcriptional immune response to intracellular pathogens in Caenorhabditis elegans.PLoS Genet. 2025;21:e1011444. [DOI] [PubMed] [PMC]
Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation.Inflamm Res. 2000;49:497–505. [DOI] [PubMed]
Manoharan I, Suryawanshi A, Hong Y, Ranganathan P, Shanmugam A, Ahmad S, et al. Homeostatic PPARα Signaling Limits Inflammatory Responses to Commensal Microbiota in the Intestine.J Immunol. 2016;196:4739–49. [DOI] [PubMed] [PMC]
Koning ACAM, Buurstede JC, van Weert LTCM, Meijer OC. Glucocorticoid and Mineralocorticoid Receptors in the Brain: A Transcriptional Perspective.J Endocr Soc. 2019;3:1917–30. [DOI] [PubMed] [PMC]
Mifsud KR, Reul JMHM. Mineralocorticoid and glucocorticoid receptor-mediated control of genomic responses to stress in the brain.Stress. 2018;21:389–402. [DOI] [PubMed]
van der Heijden CDCC, Bode M, Riksen NP, Wenzel UO. The role of the mineralocorticoid receptor in immune cells in cardiovascular disease.Br J Pharmacol. 2022;179:3135–51. [DOI] [PubMed]
van der Heijden CDCC, Deinum J, Joosten LAB, Netea MG, Riksen NP. The mineralocorticoid receptor as a modulator of innate immunity and atherosclerosis.Cardiovasc Res. 2018;114:944–53. [DOI] [PubMed]
Gomez-Sanchez CE, de Rodriguez AF, Romero DG, Estess J, Warden MP, Gomez-Sanchez MT, et al. Development of a panel of monoclonal antibodies against the mineralocorticoid receptor.Endocrinology. 2006;147:1343–8. [DOI] [PubMed]
Nakamura T, Girerd S, Jaisser F, Barrera-Chimal J. Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease.Kidney Int Suppl (2011). 2022;12:12–8. [DOI] [PubMed] [PMC]
Bauersachs J, Lother A. Mineralocorticoid receptor activation and antagonism in cardiovascular disease: cellular and molecular mechanisms.Kidney Int Suppl (2011). 2022;12:19–26. [DOI] [PubMed] [PMC]
Bauersachs J, López-Andrés N. Mineralocorticoid receptor in cardiovascular diseases-Clinical trials and mechanistic insights.Br J Pharmacol. 2022;179:3119–34. [DOI] [PubMed]
Barrera-Chimal J, Bonnard B, Jaisser F. Roles of Mineralocorticoid Receptors in Cardiovascular and Cardiorenal Diseases.Annu Rev Physiol. 2022;84:585–610. [DOI] [PubMed]
Ferrario CM, Schiffrin EL. Role of mineralocorticoid receptor antagonists in cardiovascular disease.Circ Res. 2015;116:206–13. [DOI] [PubMed] [PMC]
Cannavo A, Bencivenga L, Liccardo D, Elia A, Marzano F, Gambino G, et al. Aldosterone and Mineralocorticoid Receptor System in Cardiovascular Physiology and Pathophysiology.Oxid Med Cell Longev. 2018;2018:1204598. [DOI] [PubMed] [PMC]
Sztechman D, Czarzasta K, Cudnoch-Jedrzejewska A, Szczepanska-Sadowska E, Zera T. Aldosterone and mineralocorticoid receptors in regulation of the cardiovascular system and pathological remodelling of the heart and arteries.J Physiol Pharmacol. 2018;69:829–45. [DOI] [PubMed]
Pandey AK, Bhatt DL, Cosentino F, Marx N, Rotstein O, Pitt B, et al. Non-steroidal mineralocorticoid receptor antagonists in cardiorenal disease.Eur Heart J. 2022;43:2931–45. [DOI] [PubMed]
Feraco A, Marzolla V, Scuteri A, Armani A, Caprio M. Mineralocorticoid Receptors in Metabolic Syndrome: From Physiology to Disease.Trends Endocrinol Metab. 2020;31:205–17. [DOI] [PubMed]
Thuzar M, Abdul Halim M, Stowasser M. The mineralocorticoid system, cardiometabolic health and its interplay with adipose tissue.J Endocrinol. 2024;263:e240119. [DOI] [PubMed]
Gorini S, Kim SK, Infante M, Mammi C, La Vignera S, Fabbri A, et al. Role of Aldosterone and Mineralocorticoid Receptor in Cardiovascular Aging.Front Endocrinol (Lausanne). 2019;10:584. [DOI] [PubMed] [PMC]
Faught E, Vijayan MM. The mineralocorticoid receptor is essential for stress axis regulation in zebrafish larvae.Sci Rep. 2018;8:18081. [DOI] [PubMed] [PMC]
Paul B, Sterner ZR, Bhawal R, Anderson ET, Zhang S, Buchholz DR. Impaired negative feedback and death following acute stress in glucocorticoid receptor knockout Xenopus tropicalis tadpoles.Gen Comp Endocrinol. 2022;326:114072. [DOI] [PubMed]
de Kloet ER, Joëls M. The cortisol switch between vulnerability and resilience.Mol Psychiatry. 2024;29:20–34. [DOI] [PubMed]
de Kloet ER, Otte C, Kumsta R, Kok L, Hillegers MHJ, Hasselmann H, et al. Stress and Depression: a Crucial Role of the Mineralocorticoid Receptor.J Neuroendocrinol. 2016;28:12379. [DOI] [PubMed]
Almeida OF, Condé GL, Crochemore C, Demeneix BA, Fischer D, Hassan AH, et al. Subtle shifts in the ratio between pro- and antiapoptotic molecules after activation of corticosteroid receptors decide neuronal fate.FASEB J. 2000;14:779–90. [DOI] [PubMed]
Sousa N, Cerqueira JJ, Almeida OFX. Corticosteroid receptors and neuroplasticity.Brain Res Rev. 2008;57:561–70. [DOI] [PubMed]
Le Menuet D, Lombès M. The neuronal mineralocorticoid receptor: from cell survival to neurogenesis.Steroids. 2014;91:11–9. [DOI] [PubMed]
Garcia A, Steiner B, Kronenberg G, Bick-Sander A, Kempermann G. Age-dependent expression of glucocorticoid- and mineralocorticoid receptors on neural precursor cell populations in the adult murine hippocampus.Aging Cell. 2004;3:363–71. [DOI] [PubMed]
Oakley RH, Whirledge SD, Petrillo MG, Riddick NV, Xu X, Moy SS, et al. Combinatorial actions of glucocorticoid and mineralocorticoid stress hormone receptors are required for preventing neurodegeneration of the mouse hippocampus.Neurobiol Stress. 2021;15:100369. [DOI] [PubMed] [PMC]
De Kloet ER, Vreugdenhil E, Oitzl MS, Joëls M. Brain corticosteroid receptor balance in health and disease.Endocr Rev. 1998;19:269–301. [DOI] [PubMed]
Derijk RH, de Kloet ER. Corticosteroid receptor polymorphisms: determinants of vulnerability and resilience.Eur J Pharmacol. 2008;583:303–11. [DOI] [PubMed]
Anderson SR, Roberts JM, Ghena N, Irvin EA, Schwakopf J, Cooperstein IB, et al. Neuronal apoptosis drives remodeling states of microglia and shifts in survival pathway dependence.Elife. 2022;11:e76564. [DOI] [PubMed] [PMC]
Spiess KL, Geden MJ, Romero SE, Hollville E, Hammond ES, Patterson RL, et al. Apoptosis signaling is activated as a transient pulse in neurons.Cell Death Differ. 2025;32:521–9. [DOI] [PubMed]
Sarubin N, Hilbert S, Naumann F, Zill P, Wimmer AM, Nothdurfter C, et al. The sex-dependent role of the glucocorticoid receptor in depression: variations in the NR3C1 gene are associated with major depressive disorder in women but not in men.Eur Arch Psychiatry Clin Neurosci. 2017;267:123–33. [DOI] [PubMed]
Palma-Gudiel H, Córdova-Palomera A, Leza JC, Fañanás L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: A critical review.Neurosci Biobehav Rev. 2015;55:520–35. [DOI] [PubMed]
Kumsta R, Kliegel D, Linden M, DeRijk R, de Kloet ER. Genetic variation of the mineralocorticoid receptor gene (MR, NR3C2) is associated with a conceptual endophenotype of “CRF-hypoactivity”.Psychoneuroendocrinology. 2019;105:79–85. [DOI] [PubMed]
Schmid W, Cole TJ, Blendy JA, Schütz G. Molecular genetic analysis of glucocorticoid signalling in development.J Steroid Biochem Mol Biol. 1995;53:33–5. [DOI] [PubMed]
Goldfeld AE, Firestone GL, Shaw PA, Gluecksohn-Waelsch S. Recessive lethal deletion on mouse chromosome 7 affects glucocorticoid receptor binding activities.Proc Natl Acad Sci U S A. 1983;80:1431–4. [DOI] [PubMed] [PMC]
Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, et al. Mineralocorticoid receptor knockout mice: pathophysiology of Na+ metabolism.Proc Natl Acad Sci U S A. 1998;95:9424–9. [DOI] [PubMed] [PMC]
Berger S, Bleich M, Schmid W, Greger R, Schütz G. Mineralocorticoid receptor knockout mice: lessons on Na+ metabolism.Kidney Int. 2000;57:1295–8. [DOI] [PubMed]
Cole TJ, Young MJ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor null mice: informing cell-type-specific roles.J Endocrinol. 2017;234:T83–92. [DOI] [PubMed]
Joëls M, Karst H, DeRijk R, de Kloet ER. The coming out of the brain mineralocorticoid receptor.Trends Neurosci. 2008;31:1–7. [DOI] [PubMed]
Rhen T, Cidlowski JA. Antiinflammatory action of glucocorticoids--new mechanisms for old drugs.N Engl J Med. 2005;353:1711–23. [DOI] [PubMed]
Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schütz G, et al. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice.J Clin Invest. 2010;120:3350–64. [DOI] [PubMed] [PMC]
Ehrchen J, Steinmüller L, Barczyk K, Tenbrock K, Nacken W, Eisenacher M, et al. Glucocorticoids induce differentiation of a specifically activated, anti-inflammatory subtype of human monocytes.Blood. 2007;109:1265–74. [DOI] [PubMed]
Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT. Aldosterone-induced inflammation in the rat heart: role of oxidative stress.Am J Pathol. 2002;161:1773–81. [DOI] [PubMed] [PMC]
Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK, Blomme EAG, et al. Aldosterone induces a vascular inflammatory phenotype in the rat heart.Am J Physiol Heart Circ Physiol. 2002;283:H1802–10. [DOI] [PubMed]
Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, et al. Modification of mineralocorticoid receptor function by Rac1 GTPase: implication in proteinuric kidney disease.Nat Med. 2008;14:1370–6. [DOI] [PubMed]
Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt-induced cardiac fibrosis and increased blood pressure.Hypertension. 2009;54:537–43. [DOI] [PubMed]
Tonsing-Carter E, Hernandez KM, Kim CR, Harkless RV, Oh A, Bowie KR, et al. Glucocorticoid receptor modulation decreases ER-positive breast cancer cell proliferation and suppresses wild-type and mutant ER chromatin association.Breast Cancer Res. 2019;21:82. [DOI] [PubMed] [PMC]
Liu Y, Brent GA. Thyroid hormone crosstalk with nuclear receptor signaling in metabolic regulation.Trends Endocrinol Metab. 2010;21:166–73. [DOI] [PubMed] [PMC]
Bagamasbad P, Denver RJ. Mechanisms and significance of nuclear receptor auto- and cross-regulation.Gen Comp Endocrinol. 2011;170:3–17. [DOI] [PubMed] [PMC]
Wang L, Zhang X, Farrar WL, Yang X. Transcriptional crosstalk between nuclear receptors and cytokine signal transduction pathways in immunity.Cell Mol Immunol. 2004;1:416–24. [PubMed]
Pascussi JM, Gerbal-Chaloin S, Duret C, Daujat-Chavanieu M, Vilarem MJ, Maurel P. The tangle of nuclear receptors that controls xenobiotic metabolism and transport: crosstalk and consequences.Annu Rev Pharmacol Toxicol. 2008;48:1–32. [DOI] [PubMed]
Ogawa S, Lozach J, Benner C, Pascual G, Tangirala RK, Westin S, et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors.Cell. 2005;122:707–21. [DOI] [PubMed] [PMC]
Noh K, Chow ECY, Quach HP, Groothuis GMM, Tirona RG, Pang KS. Significance of the Vitamin D Receptor on Crosstalk with Nuclear Receptors and Regulation of Enzymes and Transporters.AAPS J. 2022;24:71. [DOI] [PubMed]
Meduri GU, Psarra AM, Amrein K. General Adaptation in Critical Illness 2: The Glucocorticoid Signaling System as a Master Rheostat of Homeostatic Corrections in Concerted Action with Mitochondrial and Essential Micronutrient Support. In: Fink G, editor. Handbook of Stress: Stress, Immunology and Inflammation. Academic Press; 2024. pp. 263–87. [DOI]
Meduri GU, Annane D, Chrousos GP, Marik PE, Sinclair SE. Activation and regulation of systemic inflammation in ARDS: rationale for prolonged glucocorticoid therapy.Chest. 2009;136:1631–43. [DOI] [PubMed]
Natsaridis E, Perdikaris P, Fokos S, Dermon CR. Neuronal and Astroglial Localization of Glucocorticoid Receptor GRα in Adult Zebrafish Brain (Danio rerio).Brain Sci. 2023;13:861. [DOI] [PubMed] [PMC]
Jiang C, Liu L, Tasker JG. Why do we need nongenomic glucocorticoid mechanisms?Front Neuroendocrinol. 2014;35:72–5. [DOI] [PubMed]
Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View.Trends Pharmacol Sci. 2019;40:38–49. [DOI] [PubMed] [PMC]
Mom R, Réty S, Auguin D. Cortisol Interaction with Aquaporin-2 Modulates Its Water Permeability: Perspectives for Non-Genomic Effects of Corticosteroids.Int J Mol Sci. 2023;24:1499. [DOI] [PubMed] [PMC]
Groeneweg FL, Karst H, de Kloet ER, Joëls M. Rapid non-genomic effects of corticosteroids and their role in the central stress response.J Endocrinol. 2011;209:153–67. [DOI] [PubMed]
Joëls M. Corticosteroids and the brain.J Endocrinol. 2018;238:R121–30. [DOI] [PubMed]
Karst H, den Boon FS, Vervoort N, Adrian M, Kapitein LC, Joëls M. Non-genomic steroid signaling through the mineralocorticoid receptor: Involvement of a membrane-associated receptor?Mol Cell Endocrinol. 2022;541:111501. [DOI] [PubMed]
Meduri GU. Glucocorticoids and GRα Signaling in Critical Illness: Phase-Specific Homeostatic Corrections Across Systems.Semin Respir Crit Care Med. 2025;[Epub ahead of print]. [DOI] [PubMed]