Spontaneous hemorrhages in the cortical or subcortical regions, often multiple and recurrent
Cerebral microbleeds (CMBs)
Small, round hypointense lesions predominantly in lobar regions, best visualized using gradient-echo T2*-weighted or susceptibility-weighted imaging (SWI) sequences [49]
Cortical superficial siderosis (cSS)
Linear hypointensities along the cortical surface, representing chronic blood product deposition, detectable via SWI [36]
White matter hyperintensities (WMHs)
Areas of increased signal intensity on fluid-attenuated inversion recovery (FLAIR) sequences, indicating chronic small vessel ischemic changes [51], multiple punctuate subcortical FLAIR hyperintensities (i.e., a multispot pattern) [52]
Enlarged perivascular spaces (EPVS)
Dilated spaces surrounding small blood vessels, more prominent in the centrum semiovale, observable on T2-weighted images
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Walker L, Simpson H, Thomas AJ, Attems J. Prevalence, distribution, and severity of cerebral amyloid angiopathy differ between Lewy body diseases and Alzheimer’s disease.Acta Neuropathol Commun. 2024;12:28. [DOI] [PubMed] [PMC]
Sin MK, Cheng Y, Roseman JM, Zamrini E, Ahmed A. Relationships between Cerebral Vasculopathies and Microinfarcts in a Community-Based Cohort of Older Adults.J Clin Med. 2023;12:3807. [DOI] [PubMed] [PMC]
Greenberg SM, Bacskai BJ, Hernandez-Guillamon M, Pruzin J, Sperling R, van Veluw SJ. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways.Nat Rev Neurol. 2020;16:30–42. [DOI] [PubMed] [PMC]
van Veluw SJ, Scherlek AA, Freeze WM, Ter Telgte A, van der Kouwe AJ, Bacskai BJ, et al. Different microvascular alterations underlie microbleeds and microinfarcts.Ann Neurol. 2019;86:279–92. [DOI] [PubMed] [PMC]
Vonsattel JP, Myers RH, Hedley-Whyte ET, Ropper AH, Bird ED, Richardson EP Jr. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study.Ann Neurol. 1991;30:637–49. [DOI] [PubMed]
Banerjee G, Carare R, Cordonnier C, Greenberg SM, Schneider JA, Smith EE, et al. The increasing impact of cerebral amyloid angiopathy: essential new insights for clinical practice.J Neurol Neurosurg Psychiatry. 2017;88:982–94. [DOI] [PubMed] [PMC]
Dörner M, Tyndall A, Hainc N, von Känel R, Neumann K, Euler S, et al. Neuropsychiatric symptoms and lifelong mental activities in cerebral amyloid angiopathy – a cross-sectional study.Alzheimers Res Ther. 2024;16:196. [DOI] [PubMed] [PMC]
Koemans EA, Chhatwal JP, van Veluw SJ, van Etten ES, van Osch MJP, van Walderveen MAA, et al. Progression of cerebral amyloid angiopathy: a pathophysiological framework.Lancet Neurol. 2023;22:632–42. [DOI] [PubMed]
Take Y, Chikai Y, Shimamori K, Kuragano M, Kurita H, Tokuraku K. Amyloid β aggregation induces human brain microvascular endothelial cell death with abnormal actin organization.Biochem Biophys Rep. 2022;29:101189. [DOI] [PubMed] [PMC]
Khan F, Qiu H. Amyloid-β: A potential mediator of aging-related vascular pathologies.Vascul Pharmacol. 2023;152:107213. [DOI] [PubMed] [PMC]
Samarasekera N, Smith C, Al-Shahi Salman R. The association between cerebral amyloid angiopathy and intracerebral haemorrhage: systematic review and meta-analysis.J Neurol Neurosurg Psychiatry. 2012;83:275–81. [DOI] [PubMed]
Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges.Lancet Neurol. 2010;9:689–701. [DOI] [PubMed]
Fusco L, Palamà Z, Scarà A, Borrelli A, Robles AG, De Masi De Luca G, et al. Management of cerebral amyloid angiopathy and atrial fibrillation: We are still far from precision medicine.World J Cardiol. 2024;16:231–9. [DOI] [PubMed] [PMC]
Auger CA, Perosa V, Greenberg SM, van Veluw SJ, Kozberg MG. Cortical superficial siderosis is associated with reactive astrogliosis in cerebral amyloid angiopathy.J Neuroinflammation. 2023;20:195. [DOI] [PubMed] [PMC]
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, et al. The glymphatic system: Current understanding and modeling.iScience. 2022;25:104987. [DOI] [PubMed] [PMC]
Linn J, Halpin A, Demaerel P, Ruhland J, Giese AD, Dichgans M, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy.Neurology. 2010;74:1346–50. [DOI] [PubMed] [PMC]
Malhotra K, Theodorou A, Katsanos AH, Zompola C, Shoamanesh A, Boviatsis E, et al. Prevalence of Clinical and Neuroimaging Markers in Cerebral Amyloid Angiopathy: A Systematic Review and Meta-Analysis.Stroke. 2022;53:1944–53. [DOI] [PubMed]
Jäkel L, De Kort AM, Klijn CJM, Schreuder FHBM, Verbeek MM. Prevalence of cerebral amyloid angiopathy: A systematic review and meta-analysis.Alzheimers Dement. 2022;18:10–28. [DOI] [PubMed] [PMC]
Kozberg MG, Yi I, Freeze WM, Auger CA, Scherlek AA, Greenberg SM, et al. Blood-brain barrier leakage and perivascular inflammation in cerebral amyloid angiopathy.Brain Commun. 2022;4:fcac245. [DOI] [PubMed] [PMC]
Rannikmäe K, Kalaria RN, Greenberg SM, Chui HC, Schmitt FA, Samarasekera N, et al. APOE associations with severe CAA-associated vasculopathic changes: collaborative meta-analysis.J Neurol Neurosurg Psychiatry. 2014;85:300–5. [DOI] [PubMed] [PMC]
Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G. Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies.Nat Rev Neurol. 2019;15:501–18. [DOI] [PubMed] [PMC]
Greenberg SM, Vonsattel JP, Segal AZ, Chiu RI, Clatworthy AE, Liao A, et al. Association of apolipoprotein E ϵ2 and vasculopathy in cerebral amyloid angiopathy.Neurology. 1998;50:961–5. [DOI] [PubMed]
Hu H, Wan S, Hu Y, Wang Q, Li H, Zhang N. Deciphering the role of APOE in cerebral amyloid angiopathy: from genetic insights to therapeutic horizons.Ann Med. 2025;57:2445194. [DOI] [PubMed] [PMC]
Yang Q, Sun H, Ma X, Tang L, Liu X, Huang X, et al. Apolipoprotein E genotype is associated with island sign in lobar intracerebral hemorrhage.Front Neurol. 2025;16:1540307. [DOI] [PubMed] [PMC]
Wu J, Liu Z, Yao M, Zhu Y, Peng B, Ni J. Clinical characteristics of cerebral amyloid angiopathy and risk factors of cerebral amyloid angiopathy related intracerebral hemorrhage.J Neurol. 2024;271:5025–34. [DOI] [PubMed]
Ye X, Jia Y, Song G, Liu X, Wu C, Li G, et al. Apolipoprotein E ɛ2 Is Associated with the White Matter Hyperintensity Multispot Pattern in Spontaneous Intracerebral Hemorrhage.Transl Stroke Res. 2024;15:101–9. [DOI] [PubMed]
Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, et al.; International Stroke Genetics Consortium. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study.Lancet Neurol. 2011;10:702–9. [DOI] [PubMed] [PMC]
Rosand J, Hylek EM, O’Donnell HC, Greenberg SM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study.Neurology. 2000;55:947–51. [DOI] [PubMed]
Charidimou A, Boulouis G, Frosch MP, Baron JC, Pasi M, Albucher JF, et al. The Boston criteria version 2.0 for cerebral amyloid angiopathy: a multicentre, retrospective, MRI-neuropathology diagnostic accuracy study.Lancet Neurol. 2022;21:714–25. [DOI] [PubMed] [PMC]
Sembill JA, Lusse C, Linnerbauer M, Sprügel MI, Mrochen A, Knott M, et al. Cerebrospinal fluid biomarkers for cerebral amyloid angiopathy.Brain Commun. 2023;5:fcad159. [DOI] [PubMed] [PMC]
De Kort AM, Kuiperij HB, Marques TM, Jäkel L, van den Berg E, Kersten I, et al. Decreased Cerebrospinal Fluid Amyloid β 38, 40, 42, and 43 Levels in Sporadic and Hereditary Cerebral Amyloid Angiopathy.Ann Neurol. 2023;93:1173–86. [DOI] [PubMed] [PMC]
Verbeek MM, Kremer BP, Rikkert MO, Van Domburg PH, Skehan ME, Greenberg SM. Cerebrospinal fluid amyloid β40 is decreased in cerebral amyloid angiopathy.Ann Neurol. 2009;66:245–9. [DOI] [PubMed] [PMC]
Wermer MJH, Greenberg SM. The growing clinical spectrum of cerebral amyloid angiopathy.Curr Opin Neurol. 2018;31:28–35. [DOI] [PubMed]
Charidimou A, Linn J, Vernooij MW, Opherk C, Akoudad S, Baron JC, et al. Cortical superficial siderosis: detection and clinical significance in cerebral amyloid angiopathy and related conditions.Brain. 2015;138:2126–39. [DOI] [PubMed]
Theodorou A, Chondrogianni M, Bakola E, Kaloudi G, Foska A, Michalakakou S, et al. Cortical Superficial Siderosis and Transient Focal Neurological Episode Preceding Lobar Hemorrhage in Cerebral Amyloid Angiopathy.Stroke. 2023;54:e48–51. [DOI] [PubMed]
Charidimou A, Imaizumi T, Moulin S, Biffi A, Samarasekera N, Yakushiji Y, et al. Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: A meta-analysis.Neurology. 2017;89:820–9. [DOI] [PubMed] [PMC]
Smith EE, Charidimou A, Ayata C, Werring DJ, Greenberg SM. Cerebral Amyloid Angiopathy-Related Transient Focal Neurologic Episodes.Neurology. 2021;97:231–8. [DOI] [PubMed] [PMC]
Charidimou A, Peeters A, Fox Z, Gregoire SM, Vandermeeren Y, Laloux P, et al. Spectrum of transient focal neurological episodes in cerebral amyloid angiopathy: multicentre magnetic resonance imaging cohort study and meta-analysis.Stroke. 2012;43:2324–30. [DOI] [PubMed]
Charidimou A, Boulouis G, Xiong L, Jessel MJ, Roongpiboonsopit D, Ayres A, et al. Cortical superficial siderosis and first-ever cerebral hemorrhage in cerebral amyloid angiopathy.Neurology. 2017;88:1607–14. [DOI] [PubMed] [PMC]
Charidimou A, Boulouis G, Greenberg SM, Viswanathan A. Cortical superficial siderosis and bleeding risk in cerebral amyloid angiopathy: A meta-analysis.Neurology. 2019;93:e2192–202. [DOI] [PubMed] [PMC]
Solis E Jr, Hascup KN, Hascup ER. Alzheimer’s Disease: The Link Between Amyloid-β and Neurovascular Dysfunction.J Alzheimers Dis. 2020;76:1179–98. [DOI] [PubMed] [PMC]
Muir RT, Ismail Z, Black SE, Smith EE. Comparative methods for quantifying plasma biomarkers in Alzheimer’s disease: Implications for the next frontier in cerebral amyloid angiopathy diagnostics.Alzheimers Dement. 2024;20:1436–58. [DOI] [PubMed] [PMC]
Chu S, Xu F, Su Y, Chen H, Cheng X. Cerebral Amyloid Angiopathy (CAA)-Related Inflammation: Comparison of Inflammatory CAA and Amyloid-β-Related Angiitis.J Alzheimers Dis. 2016;51:525–32. [DOI] [PubMed]
Bozovic I, Jeremic M, Pavlovic A, Jovanovic C, Kresojevic N, Vojvodic N, et al. Cerebral Amyloid Angiopathy-Related Inflammation (CAA-rI): Three Heterogeneous Case Reports and a Focused Literature Review.Brain Sci. 2023;13:747. [DOI] [PubMed] [PMC]
Kinnecom C, Lev MH, Wendell L, Smith EE, Rosand J, Frosch MP, et al. Course of cerebral amyloid angiopathy-related inflammation.Neurology. 2007;68:1411–6. [DOI] [PubMed]
Charidimou A. Diagnosing Cerebral Amyloid Angiopathy-Related Inflammation.Neurology. 2024;103:e209647. [DOI] [PubMed]
Kargiotis O, Safouris A, Magoufis G, Papageorgiou E, Fili M, Psychogios K, et al. Cerebral Microbleeds: Incidence, Imaging Characteristics, Common and Uncommon Causes.J Neurosonol Neuroimag. 2018;10:80–94. [DOI]
Bonnar O, Eyre B, van Veluw SJ. Perivascular brain clearance as a therapeutic target in cerebral amyloid angiopathy and Alzheimer’s disease.Neurotherapeutics. 2025;22:e00535. [DOI] [PubMed] [PMC]
Paniagua Bravo Á, Sánchez Hernández JJ, Ibáñez Sanz L, Alba de Cáceres I, Crespo San José JL, García-Castaño Gandariaga B. A comparative MRI study for white matter hyperintensities detection: 2D-FLAIR, FSE PD 2D, 3D-FLAIR and FLAIR MIP.Br J Radiol. 2014;87:20130360. [DOI] [PubMed] [PMC]
Charidimou A, Boulouis G, Haley K, Auriel E, van Etten ES, Fotiadis P, et al. White matter hyperintensity patterns in cerebral amyloid angiopathy and hypertensive arteriopathy.Neurology. 2016;86:505–11. [DOI] [PubMed] [PMC]
Greenberg SM, Charidimou A. Diagnosis of Cerebral Amyloid Angiopathy: Evolution of the Boston Criteria.Stroke. 2018;49:491–7. [DOI] [PubMed] [PMC]
Rodrigues MA, Samarasekera N, Lerpiniere C, Humphreys C, McCarron MO, White PM, et al. The Edinburgh CT and genetic diagnostic criteria for lobar intracerebral haemorrhage associated with cerebral amyloid angiopathy: model development and diagnostic test accuracy study.Lancet Neurol. 2018;17:232–40. [DOI] [PubMed] [PMC]
Hillal A, Apostolaki-Hansson T, Ramgren B, Hansen B, Norrving B, Wassélius J, et al. The probability of cerebral amyloid angiopathy according to the Simplified Edinburgh CT criteria in a large, unselected lobar intracerebral hemorrhage population.Neuroradiology. 2025;67:823–31. [DOI] [PubMed] [PMC]
Zhang M, Che R, Liu X, Hou C, Wang Z, Hu S, et al. Clinical diagnosis of cerebral amyloid angiopathy related hemorrhage in China: Simplified Edinburgh criteria and Boston criteria version 2.0.Eur Stroke J. 2025;10:1373–82. [DOI] [PubMed] [PMC]
Rodrigues MA, Seiffge D, Samarasekera N, Moullaali TJ, Wardlaw JM, Schreiber S, et al.; Edinburgh CAA criteria prognosis collaborators. Association between the Edinburgh CT and genetic diagnostic criteria for cerebral amyloid angiopathy-associated lobar intracerebral haemorrhage and recurrent intracerebral haemorrhage: an individual patient data meta-analysis.Lancet Neurol. 2025;24:828–39. [DOI] [PubMed]
Sembill JA, Knott M, Xu M, Roeder SS, Hagen M, Sprügel MI, et al. Simplified Edinburgh CT Criteria for Identification of Lobar Intracerebral Hemorrhage Associated With Cerebral Amyloid Angiopathy.Neurology. 2022;98:e1997–2004. [DOI] [PubMed]
Chu C, Wang Y, Ma L, Mutimer CA, Ji G, Shi H, et al. Developing and validating a prediction tool for cerebral amyloid angiopathy neuropathological severity.Alzheimers Dement. 2025;21:e14583. [DOI] [PubMed] [PMC]
Banerjee G, Ambler G, Keshavan A, Paterson RW, Foiani MS, Toombs J, et al. Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy.J Alzheimers Dis. 2020;74:1189–201. [DOI] [PubMed] [PMC]
Margraf NG, Jensen-Kondering U, Weiler C, Leypoldt F, Maetzler W, Philippen S, et al. Cerebrospinal Fluid Biomarkers in Cerebral Amyloid Angiopathy: New Data and Quantitative Meta-Analysis.Front Aging Neurosci. 2022;14:783996. [DOI] [PubMed] [PMC]
Sin MK, Dage JL, Nho K, Dowling NM, Seyfried NT, Bennett DA, et al. Plasma Biomarkers for Cerebral Amyloid Angiopathy and Implications for Amyloid-Related Imaging Abnormalities: A Comprehensive Review.J Clin Med. 2025;14:1070. [DOI] [PubMed] [PMC]
Rasing I, Voigt S, Koemans EA, de Kort AM, van Harten TW, van Etten ES, et al. Serum and cerebrospinal fluid neurofilament light chain and glial fibrillary acid protein levels in early and advanced stages of cerebral amyloid Angiopathy.Alzheimers Res Ther. 2024;16:86. [DOI] [PubMed] [PMC]
Inoue Y, Ando Y, Misumi Y, Ueda M. Current Management and Therapeutic Strategies for Cerebral Amyloid Angiopathy.Int J Mol Sci. 2021;22:3869. [DOI] [PubMed] [PMC]
Endo Y, Hasegawa K, Nomura R, Arishima H, Kikuta KI, Yamashita T, et al. Apolipoprotein E and clusterin inhibit the early phase of amyloid-β aggregation in an in vitro model of cerebral amyloid angiopathy.Acta Neuropathol Commun. 2019;7:12. [DOI] [PubMed] [PMC]
Humphreys DT, Carver JA, Easterbrook-Smith SB, Wilson MR. Clusterin has chaperone-like activity similar to that of small heat shock proteins.J Biol Chem. 1999;274:6875–81. [DOI] [PubMed]
Narayan P, Meehan S, Carver JA, Wilson MR, Dobson CM, Klenerman D. Amyloid-β oligomers are sequestered by both intracellular and extracellular chaperones.Biochemistry. 2012;51:9270–6. [DOI] [PubMed] [PMC]
Manousopoulou A, Gatherer M, Smith C, Nicoll JAR, Woelk CH, Johnson M, et al. Systems proteomic analysis reveals that clusterin and tissue inhibitor of metalloproteinases 3 increase in leptomeningeal arteries affected by cerebral amyloid angiopathy.Neuropathol Appl Neurobiol. 2017;43:492–504. [DOI] [PubMed] [PMC]
Xu J, Su Y, Sha Y, Fu J, Yan T, Xu F, et al. Circulating proteomic biomarkers for cerebral amyloid angiopathy screening and risk stratification.Alzheimers Dement. 2025;21:e70044. [DOI] [PubMed] [PMC]
Lennon MJ, Karvelas N, Ganesh A, Whitehead S, Sorond FA, Durán Laforet V, et al. The future of biomarkers for vascular contributions to cognitive impairment and dementia (VCID): proceedings of the 2025 annual workshop of the Albert research institute for white matter and cognition.Geroscience. 2025;47:6177–90. [DOI] [PubMed] [PMC]
Weiner MW, Kanoria S, Miller MJ, Aisen PS, Beckett LA, Conti C, et al.; Alzheimer’s Disease Neuroimaging Initiative. Overview of Alzheimer’s Disease Neuroimaging Initiative and future clinical trials.Alzheimers Dement. 2025;21:e14321. [DOI] [PubMed] [PMC]
Yu L, Boyle PA, Nag S, Leurgans S, Buchman AS, Wilson RS, et al. APOE and cerebral amyloid angiopathy in community-dwelling older persons.Neurobiol Aging. 2015;36:2946–53. [DOI] [PubMed] [PMC]
Premkumar DR, Cohen DL, Hedera P, Friedland RP, Kalaria RN. Apolipoprotein E-ϵ4 alleles in cerebral amyloid angiopathy and cerebrovascular pathology associated with Alzheimer’s disease.Am J Pathol. 1996;148:2083–95. [PubMed] [PMC]
Olichney JM, Hansen LA, Galasko D, Saitoh T, Hofstetter CR, Katzman R, et al. The apolipoprotein E epsilon 4 allele is associated with increased neuritic plaques and cerebral amyloid angiopathy in Alzheimer’s disease and Lewy body variant.Neurology. 1996;47:190–6. [DOI] [PubMed]
Vidoni ED, Yeh HW, Morris JK, Newell KL, Alqahtani A, Burns NC, et al. Cerebral β-Amyloid Angiopathy Is Associated with Earlier Dementia Onset in Alzheimer’s Disease.Neurodegener Dis. 2016;16:218–24. [DOI] [PubMed] [PMC]
Chui HC, Ramirez-Gomez L. Clinical and imaging features of mixed Alzheimer and vascular pathologies.Alzheimers Res Ther. 2015;7:21. [DOI] [PubMed] [PMC]
Charidimou A, Friedrich JO, Greenberg SM, Viswanathan A. Core cerebrospinal fluid biomarker profile in cerebral amyloid angiopathy: A meta-analysis.Neurology. 2018;90:e754–62. [DOI] [PubMed] [PMC]
Seifert RM, Klingebiel R, Schäbitz WR. Diagnosis, pathomechanisms and therapy of cerebral amyloid angiopathy-related inflammation (CAA-ri).Neurol Res Pract. 2025;7:26. [DOI] [PubMed] [PMC]
van Veluw SJ, Benveniste H, Bakker ENTP, Carare RO, Greenberg SM, Iliff JJ, et al. Is CAA a perivascular brain clearance disease? A discussion of the evidence to date and outlook for future studies.Cell Mol Life Sci. 2024;81:239. [DOI] [PubMed] [PMC]
Saxena SK, Ansari S, Maurya VK, Kumar S, Sharma D, Malhotra HS, et al. Neprilysin-Mediated Amyloid Beta Clearance and Its Therapeutic Implications in Neurodegenerative Disorders.ACS Pharmacol Transl Sci. 2024;7:3645–57. [DOI] [PubMed] [PMC]
Vekrellis K, Ye Z, Qiu WQ, Walsh D, Hartley D, Chesneau V, et al. Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme.J Neurosci. 2000;20:1657–65. [DOI] [PubMed] [PMC]
Miller BC, Eckman EA, Sambamurti K, Dobbs N, Chow KM, Eckman CB, et al. Amyloid-β peptide levels in brain are inversely correlated with insulysin activity levels in vivo.Proc Natl Acad Sci U S A. 2003;100:6221–6. [DOI] [PubMed] [PMC]
Stargardt A, Gillis J, Kamphuis W, Wiemhoefer A, Kooijman L, Raspe M, et al. Reduced amyloid-β degradation in early Alzheimer’s disease but not in the APPswePS1dE9 and 3xTg-AD mouse models.Aging Cell. 2013;12:499–507. [DOI] [PubMed]
Kanekiyo T, Cirrito JR, Liu CC, Shinohara M, Li J, Schuler DR, et al. Neuronal clearance of amyloid-β by endocytic receptor LRP1.J Neurosci. 2013;33:19276–83. [DOI] [PubMed] [PMC]
Kanekiyo T, Liu CC, Shinohara M, Li J, Bu G. LRP1 in brain vascular smooth muscle cells mediates local clearance of Alzheimer’s amyloid-β.J Neurosci. 2012;32:16458–65. [DOI] [PubMed] [PMC]
Aldea R, Weller RO, Wilcock DM, Carare RO, Richardson G. Cerebrovascular Smooth Muscle Cells as the Drivers of Intramural Periarterial Drainage of the Brain.Front Aging Neurosci. 2019;11:1. [DOI] [PubMed] [PMC]
Muñoz E, Valero RA, Quintana A, Hoth M, Núñez L, Villalobos C. Nonsteroidal anti-inflammatory drugs inhibit vascular smooth muscle cell proliferation by enabling the Ca2+-dependent inactivation of calcium release-activated calcium/orai channels normally prevented by mitochondria.J Biol Chem. 2011;286:16186–96. [DOI] [PubMed] [PMC]
Maki T, Okamoto Y, Carare RO, Hase Y, Hattori Y, Hawkes CA, et al. Phosphodiesterase III inhibitor promotes drainage of cerebrovascular β-amyloid.Ann Clin Transl Neurol. 2014;1:519–33. [DOI] [PubMed] [PMC]
Saito S, Yamamoto Y, Maki T, Hattori Y, Ito H, Mizuno K, et al. Taxifolin inhibits amyloid-β oligomer formation and fully restores vascular integrity and memory in cerebral amyloid angiopathy.Acta Neuropathol Commun. 2017;5:26. [DOI] [PubMed] [PMC]
Yan P, Zhu A, Liao F, Xiao Q, Kraft A, Gonzales E, et al. Minocycline reduces spontaneous hemorrhage in mouse models of cerebral amyloid angiopathy.Stroke. 2015;46:1633–40. [DOI] [PubMed] [PMC]
Bianconi E, Del Freo G, Salvadori E, Barbato C, Formelli B, Pescini F, et al. Can CHA2DS2-VASc and HAS-BLED Foresee the Presence of Cerebral Microbleeds, Lacunar and Non-Lacunar Infarcts in Elderly Patients With Atrial Fibrillation? Data From Strat–AF Study.Front Neurol. 2022;13:883786. [DOI] [PubMed] [PMC]
Reddy VY, Doshi SK, Kar S, Gibson DN, Price MJ, Huber K, et al.; PREVAIL and PROTECT AF Investigators. 5-Year Outcomes After Left Atrial Appendage Closure: From the PREVAIL and PROTECT AF Trials.J Am Coll Cardiol. 2017;70:2964–75. [DOI] [PubMed]
Morrone CD, Liu M, Black SE, McLaurin J. Interaction between therapeutic interventions for Alzheimer’s disease and physiological Aβ clearance mechanisms.Front Aging Neurosci. 2015;7:64. [DOI] [PubMed] [PMC]
Hawkes CA, Jayakody N, Johnston DA, Bechmann I, Carare RO. Failure of perivascular drainage of β-amyloid in cerebral amyloid angiopathy.Brain Pathol. 2014;24:396–403. [DOI] [PubMed] [PMC]