Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
McGovern SL, Caselli E, Grigorieff N, Shoichet BK. A Common Mechanism Underlying Promiscuous Inhibitors from Virtual and High-Throughput Screening.J Med Chem. 2002;45:1712–22. [DOI] [PubMed]
Sharp PM, Bailes E, Chaudhuri RR, Rodenburg CM, Santiago MO, Hahn BH. The origins of acquired immune deficiency syndrome viruses: where and when?Philos Trans R Soc Lond B Biol Sci. 2001;356:867–76. [DOI] [PubMed] [PMC]
UNAIDS, WHO. “2007 AIDS epidemic update”. UNAIDS and WHO; 2007.
Gallo RC, Sarin PS, Gelmann EP, Robert-Guroff M, Richardson E, Kalyanaraman VS, et al. Isolation of Human T-Cell Leukemia Virus in Acquired Immune Deficiency Syndrome (AIDS).Science. 1983;220:865–67. [DOI]
Barré-Sinoussi F, Chermann JC, Rey F, Nugeyre MT, Chamaret S, Gruest J, et al. Isolation of a T-Lymphotropic Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (AIDS).Science. 1983;220:868–71. [DOI] [PubMed]
Elliott T, Casey A, Lambert PA, Sandoe J. Medical Microbiology and Infection. 5th Edition. John Wiley & Sons; 2007. pp. 257–60.
Reeders JWAJ, Goodman PC. Radiology of AIDS. Berlin: Springer; 2001. p. 19.
UNAIDS. 2006 report on the global AIDS epidemic: a UNAIDS 10th anniversary special edition. Joint United Nations Programme on HIV/AIDS; 2006.
Gallo RC. A reflection on HIV/AIDS research after 25 years.Retrovirology. 2006;3:72. [DOI] [PubMed] [PMC]
Piatak M Jr, Saag MS, Yang LC, Clark SJ, Kappes JC, Luk KC, et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR.Science. 1993;259:1749–54. [DOI] [PubMed]
CDC. Getting Tested for HIV. Centers for Disease Control and Prevention. 2018.
Gantner P, Buranapraditkun S, Pagliuzza A, Dufour C, Pardons M, Mitchell JL, et al. HIV rapidly targets a diverse pool of CD4+ T cells to establish productive and latent infections.Immunity. 2023;56:653–68.e5. [DOI] [PubMed] [PMC]
Thali M, Moore JP, Furman C, Charles M, Ho DD, Robinson J, et al. Characterization of conserved human immunodeficiency virus type 1 gp120 neutralization epitopes exposed upon gp120-CD4 binding.J Virol. 1993;67:3978–88. [DOI] [PubMed] [PMC]
Chan DC, Fass D, Berger JM, Kim PS. Core Structure of gp41 from the HIV Envelope Glycoprotein.Cell. 1997;89:263–73. [DOI] [PubMed]
Wagh K, Hahn BH, Korber B. Hitting the sweet spot: exploiting HIV-1 glycan shield for induction of broadly neutralizing antibodies.Curr Opin HIV AIDS. 2020;15:267–74. [DOI] [PubMed] [PMC]
Lee JH, Crotty S. HIV vaccinology: 2021 update.Semin Immunol. 2021;51:101470. [DOI] [PubMed] [PMC]
Negi G, Sharma A, Dey M, Dhanawat G, Parveen N. Membrane attachment and fusion of HIV-1, influenza A, and SARS-CoV-2: resolving the mechanisms with biophysical methods.Biophys Rev. 2022;14:1109–40. [DOI] [PubMed] [PMC]
Scott GY, Worku D. HIV vaccination: Navigating the path to a transformative breakthrough-A review of current evidence.Health Sci Rep. 2024;7:e70089. [DOI] [PubMed] [PMC]
Zhang Z, Ohto U, Shibata T, Taoka M, Yamauchi Y, Sato R, et al. Structural Analyses of Toll-like Receptor 7 Reveal Detailed RNA Sequence Specificity and Recognition Mechanism of Agonistic Ligands.Cell Rep. 2018;25:3371–81.e5. [DOI] [PubMed]
Sundquist WI, Kräusslich HG. HIV-1 Assembly, Budding, and Maturation.Cold Spring Harb Perspect Med. 2012;2:a006924. [DOI] [PubMed] [PMC]
Shcherbatova O, Grebennikov D, Sazonov I, Meyerhans A, Bocharov G. Modeling of the HIV‐1 life cycle in productively infected cells to predict novel therapeutic targets.Pathogens. 2020;9:255. [DOI] [PubMed] [PMC]
Watts JM, Dang KK, Gorelick RJ, Leonard CW, Bess JW Jr, Swanstrom R, et al. Architecture and secondary structure of an entire HIV-1 RNA genome.Nature. 2009;460:711–6. [DOI] [PubMed] [PMC]
World Health Organization. WHO case definitions of HIV for surveillance and revised clinical staging and immunological classification of HIV-related disease in adults and children. Geneva: World Health Organization; 2007.
WHO Guidelines Approved by the Guidelines Review Committee. Guideline on When to Start Antiretroviral Therapy and on Pre-Exposure Prophylaxis for HIV. Geneva: World Health Organization; 2015. [PubMed]
Wu F, Simonetti FR. Learning from Persistent Viremia: Mechanisms and Implications for Clinical Care and HIV-1 Cure.Curr HIV/AIDS Rep. 2023;20:428–39. [DOI] [PubMed] [PMC]
Wei X, Ghosh SK, Taylor ME, Johnson VA, Emini EA, Deutsch P, et al. Viral dynamics in human immunodeficiency virus type 1 infection.Nature. 1995;373:117–22. [DOI]
Perelson AS, Neumann AU, Markowitz M, Leonard JM, Ho DD. HIV-1 Dynamics in Vivo: Virion Clearance Rate, Infected Cell Life-Span, and Viral Generation Time.Science. 1996;271:1582–6. [DOI] [PubMed]
Matsui Y, Miura Y. Advancements in Cell-Based Therapies for HIV Cure.Cells. 2023;13:64. [DOI] [PubMed] [PMC]
Dvory-Sobol H, Shaik N, Callebaut C, Rhee MS. Lenacapavir: a first-in-class HIV-1 capsid inhibitor.Curr Opin HIV AIDS. 2022;17:15–21. [DOI] [PubMed]
Bekker LG, Das M, Abdool Karim Q, Ahmed K, Batting J, Brumskine W, et al.; PURPOSE 1 Study Team. Twice-Yearly Lenacapavir or Daily F/TAF for HIV Prevention in Cisgender Women.N Engl J Med. 2024;391:1179–92. [DOI] [PubMed]
Prather C, Lee A, Yen C. Lenacapavir: A first-in-class capsid inhibitor for the treatment of highly treatment-resistant HIV.Am J Health Syst Pharm. 2023;80:1774–80. [DOI] [PubMed]
Hossain T, Lungu C, de Schrijver S, Kuali M, Crespo R, Reddy N, et al. Specific quantification of inducible HIV-1 reservoir by RT-LAMP.Commun Med. 2024;4:123. [DOI] [PubMed] [PMC]
Joos B, Fischer M, Kuster H, Pillai SK, Wong JK, Böni J, et al. HIV rebounds from latently infected cells, rather than from continuing low-level replication.Proc Natl Acad Sci. 2008;105:16725–30. [DOI]
Davey RT Jr, Bhat N, Yoder C, Chun TW, Metcalf JA, Dewar R, et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression.Proc Natl Acad Sci U S A. 1999;96:15109–14. [DOI] [PubMed] [PMC]
Lian X, Gao C, Sun X, Jiang C, Einkauf KB, Seiger KW, et al. Signatures of immune selection in intact and defective proviruses distinguish HIV-1 elite controllers.Sci Transl Med. 2021;13:eabl4097. [DOI] [PubMed] [PMC]
Turk G, Seiger K, Lian X, Sun W, Parsons EM, Gao C, et al. A Possible Sterilizing Cure of HIV-1 Infection Without Stem Cell Transplantation.Ann Intern Med. 2022;175:95–100. [DOI] [PubMed] [PMC]
Jiang C, Lian X, Gao C, Sun X, Einkauf KB, Chevalier JM, et al. Distinct viral reservoirs in individuals with spontaneous control of HIV-1.Nature. 2020;585:261–7. [DOI] [PubMed] [PMC]
Rausch JW, Parvez S, Pathak S, Capoferri AA, Kearney MF. HIV Expression in Infected T Cell Clones.Viruses. 2024;16:108. [DOI] [PubMed] [PMC]
Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase.J Virol. 1995;69:5087–94. [DOI] [PubMed] [PMC]
Chou TC, Maggirwar NS, Marsden MD. HIV Persistence, Latency, and Cure Approaches: Where Are We Now?Viruses. 2024;16:1163. [DOI] [PubMed] [PMC]
Henrich TJ, Hatano H, Bacon O, Hogan LE, Rutishauser R, Hill A, et al. HIV-1 persistence following extremely early initiation of antiretroviral therapy during acute HIV-1 infection: An observational study.PLoS Med. 2017;14:e1002417. [DOI]
Sun W, Gao C, Gladkov GT, Roseto I, Carrere L, Parsons EM, et al.; RIVER Trial Study Group. Footprints of innate immune activity during HIV-1 reservoir cell evolution in early-treated infection.J Exp Med. 2024;221:e20241091. [DOI] [PubMed] [PMC]
Whitney JB, Hill AL, Sanisetty S, Penaloza-MacMaster P, Liu J, Shetty M, et al. Rapid seeding of the viral reservoir prior to SIV viraemia in rhesus monkeys.Nature. 2014;512:74–7. [DOI]
Tang Y, Chaillon A, Gianella S, Wong LM, Li D, Simermeyer TL, et al. Brain microglia serve as a persistent HIV reservoir despite durable antiretroviral therapy.J Clin Investig. 2023;133:e167417.
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: An update on lifespan kinetics in health and disease.Immunology. 2021;163:250–61. [DOI]
Banga R, Procopio FA, Lana E, Gladkov GT, Roseto I, Parsons EM, et al. Lymph node dendritic cells harbor inducible replication-competent HIV despite years of suppressive ART.Cell Host Microbe. 2023;31:1714–31.
Lutz CT, Karapetyan A, Al-Attar A, Shelton BJ, Holt KJ, Tucker JH, et al. Human NK cells proliferate and die in vivo more rapidly than T cells in healthy young and elderly adults.J Immunol. 2011;186:4590–8. [DOI] [PubMed] [PMC]
Lian X, Seiger KW, Parsons EM, Gao C, Sun W, Gladkov GT, et al. Progressive transformation of the HIV-1 reservoir cell profile over two decades of antiviral therapy.Cell Host Microbe. 2023;31:83–96.e5. [DOI] [PubMed] [PMC]
Lichterfeld M, Gao C, Yu XG. An ordeal that does not heal: understanding barriers to a cure for HIV-1 infection.Trends Immunol. 2022;43:608–16. [DOI] [PubMed] [PMC]
Baxter AE, Niessl J, Fromentin R, Richard J, Porichis F, Charlebois R, et al. Single-Cell Characterization of Viral Translation-Competent Reservoirs in HIV-Infected Individuals.Cell Host Microbe. 2016;20:368–80. [DOI] [PubMed] [PMC]
Estes JD, Kityo C, Ssali F, Swainson L, Makamdop KN, Del Prete GQ, et al. Defining total-body AIDS-virus burden with implications for curative strategies.Nat Med. 2017;23:1271–6. [DOI]
Banga R, Procopio FA, Noto A, Pollakis G, Cavassini M, Ohmiti K, et al. PD-1+ and follicular helper T cells are responsible for persistent HIV-1 transcription in treated aviremic individuals.Nat Med. 2016;22:754–61. [DOI] [PubMed]
Cochrane CR, Angelovich TA, Byrnes SJ, Waring E, Guanizo AC, Trollope GS, et al. Intact HIV Proviruses Persist in the Brain Despite Viral Suppression with ART.Ann Neurol. 2022;92:532–44. [DOI]
Lutgen V, Narasipura SD, Barbian HJ, Richards M, Wallace J, Razmpour R, et al. HIV infects astrocytes in vivo and egresses from the brain to the periphery.PLoS Pathog. 2020;16:e1008381. [DOI] [PubMed] [PMC]
Torices S, Teglas T, Naranjo O, Fattakhov N, Frydlova K, Cabrera R, et al. Occludin Regulates HIV-1 Infection by Modulation of the Interferon Stimulated OAS Gene Family.Mol Neurobiol. 2023;60:4966–82. [DOI] [PubMed] [PMC]
Nühn MM, Gumbs SBH, Buchholtz NVEJ, Jannink LM, Gharu L, de Witte LD, et al. Shock and kill within the CNS: A promising HIV eradication approach?J Leukoc Biol. 2022;112:1297–315. [DOI] [PubMed] [PMC]
Sun W, Gao C, Hartana CA, Osborn MR, Einkauf KB, Lian X, et al. Phenotypic signatures of immune selection in HIV-1 reservoir cells.Nature. 2023;614:309–17. [DOI] [PubMed] [PMC]
Kim J, Bose D, Araínga M, Haque MR, Fennessey CM, Caddell RA, et al. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo.Nat Commun. 2024;15:1348. [DOI] [PubMed] [PMC]
Yukl SA, Kaiser P, Kim P, Telwatte S, Joshi SK, Vu M, et al. HIV latency in isolated patient CD4+ T cells may be due to blocks in HIV transcriptional elongation, completion, and splicing.Sci Transl Med. 2018;10:eaap9927. [DOI] [PubMed] [PMC]
Siliciano JD, Siliciano RF. Low Inducibility of Latent Human Immunodeficiency Virus Type 1 Proviruses as a Major Barrier to Cure.J Infect Dis. 2021;223:13–21. [DOI] [PubMed] [PMC]
Moso MA, Anderson JL, Adikari S, Gray LR, Khoury G, Chang JJ, et al. HIV latency can be established in proliferating and nonproliferating resting CD4+ T cells in vitro: implications for latency reversal.AIDS. 2019;33:199–209. [DOI] [PubMed] [PMC]
Neidleman J, Luo X, Frouard J, Xie G, Hsiao F, Ma T, et al. Phenotypic analysis of the unstimulated in vivo HIV CD4 T cell reservoir.Elife. 2020;9:e60933. [DOI] [PubMed] [PMC]
Chitrakar A, Sanz M, Maggirwar SB, Soriano-Sarabia N. HIV Latency in Myeloid Cells: Challenges for a Cure.Pathogens. 2022;11:611. [DOI] [PubMed] [PMC]
Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF. Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells.PLoS Pathog. 2006;2:e68. [DOI] [PubMed] [PMC]
Sarracino A, Gharu L, Kula A, Pasternak AO, Avettand-Fenoel V, Rouzioux C, et al. Posttranscriptional Regulation of HIV-1 Gene Expression during Replication and Reactivation from Latency by Nuclear Matrix Protein MATR3.mBio. 2018;9:e02158–18. [DOI] [PubMed] [PMC]
Lewin SR, Attoye T, Bansbach C, Doehle B, Dubé K, Dybul M, et al.; Sunnylands 2019 Working Group. Multi-stakeholder consensus on a target product profile for an HIV cure.Lancet HIV. 2021;8:e42–50. [DOI] [PubMed] [PMC]
Deeks SG, Archin N, Cannon P, Collins S, Jones RB, de Jong MAWP, et al. Research priorities for an HIV cure: International AIDS Society Global Scientific Strategy 2021.Nat Med. 2021;27:2085–98. [DOI] [PubMed]
Hsu J, Van Besien K, Glesby MJ, Pahwa S, Coletti A, Warshaw MG, et al. HIV-1 remission and possible cure in a woman after haplo-cord blood transplant.Cell. 2023;186:1115–26.e8. [DOI] [PubMed] [PMC]
Xiao Q, He S, Wang C, Zhou Y, Zeng C, Liu J, et al. Deep Thought on the HIV Cured Cases: Where Have We Been and What Lies Ahead?Biomolecules. 2025;15:378. [DOI] [PubMed] [PMC]
Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, et al. Long-Term Control of HIV by CCR5 Delta32/Delta32 Stem-Cell Transplantation.N Engl J Med. 2009;360:692–8. [DOI] [PubMed]
Gupta RK, Peppa D, Hill AL, Gálvez C, Salgado M, Pace M, et al. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: a case report.Lancet HIV. 2020;7:e340–7. [DOI] [PubMed] [PMC]
Jensen BO, Knops E, Cords L, Lübke N, Salgado M, Busman-Sahay K, et al. In-depth virological and immunological characterization of HIV-1 cure after CCR5Δ32/Δ32 allogeneic hematopoietic stem cell transplantation.Nat Med. 2023;29:583–7. [DOI] [PubMed] [PMC]
Dickter JK, Aribi A, Cardoso AA, Gianella S, Gendzekhadze K, Li S, et al. HIV-1 Remission after Allogeneic Hematopoietic-Cell Transplantation.N Engl J Med. 2024;390:669–71. [DOI] [PubMed] [PMC]
Sáez-Cirión A, Mamez AC, Avettand-Fenoel V, Nabergoj M, Passaes C, Thoueille P, et al. Sustained HIV remission after allogeneic hematopoietic stem cell transplantation with wild-type CCR5 donor cells.Nat Med. 2024;30:3544–54. [DOI] [PubMed] [PMC]
Mallapaty S. Seventh patient ‘cured’ of HIV: why scientists are excited.Nature. 2024;632:235–6. [DOI] [PubMed]
Zaegel-Faucher O, Boschi C, Benkouiten S, Laroche H, Dos Santos MC, Motte A, et al. Absence of viral rebound without antiretrovirals after ccr5δ32/δ32 allogeneic hematopoietic stem cell transplantation: A new case of a potential cure of hiv?JIAS. 2024;27:10–13. [DOI]
Salgado M, Garcia-Minambres A, Dalmau J, Jiménez-Moyano E, Viciana P, Alejos B, et al. Control of HIV-1 Pathogenesis in Viremic Nonprogressors Is Independent of Gag-Specific Cytotoxic T Lymphocyte Responses.J Virol. 2018;92:e00346–18. [DOI] [PubMed] [PMC]
Wu VH, Nordin JML, Nguyen S, Joy J, Mampe F, Del Rio Estrada PM, et al. Profound phenotypic and epigenetic heterogeneity of the HIV-1-infected CD4+ T cell reservoir.Nat Immunol. 2023;24:359–70. [DOI] [PubMed] [PMC]
Sheykhhasan M, Foroutan A, Manoochehri H, Khoei SG, Poondla N, Saidijam M. Could gene therapy cure HIV?Life Sci. 2021;277:119451. [DOI] [PubMed]
Hale G, Waldmann H. From Laboratory to Clinic: The Story of CAMPATH-1.Methods Mol Med. 2000;40:243–66. [DOI] [PubMed]
Domagala A, Kurpisz M. CD52 antigen—a review.Med Sci Monit. 2001;7:325–31. [PubMed]
Rao SP, Sancho J, Campos-Rivera J, Boutin PM, Severy PB, Weeden T, et al. Human Peripheral Blood Mononuclear Cells Exhibit Heterogeneous CD52 Expression Levels and Show Differential Sensitivity to Alemtuzumab Mediated Cytolysis.PLoS One. 2012;7:e39416. [DOI] [PubMed] [PMC]
Shah A, Lowenstein H, Chant A, Khan A. CD52 ligation induces CD4 and CD8 down modulation in vivo and in vitro.Transpl Int. 2006;19:749–58. [DOI] [PubMed]
Bandala-Sanchez E, Zhang Y, Reinwald S, Dromey JA, Lee BH, Qian J, et al. T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10.Nat Immunol. 2013;14:741–8. [DOI] [PubMed]
Zhao Y, Su H, Shen X, Du J, Zhang X, Zhao Y. The immunological function of CD52 and its targeting in organ transplantation.Inflamm Res. 2017;66:571–8. [DOI] [PubMed]
Ruxrungtham K, Sirivichayakul S, Buranapraditkun S, Krause W. Alemtuzumab-induced elimination of HIV-1-infected immune cells.J Virus Erad. 2016;2:12–8. [DOI] [PubMed] [PMC]
Rasmussen TA, McMahon J, Chang JJ, Symons J, Roche M, Dantanarayana A, et al. Impact of alemtuzumab on HIV persistence in an HIV-infected individual on antiretroviral therapy with Sezary syndrome.AIDS. 2017;31:1839–45. [DOI] [PubMed] [PMC]
Varco-Merth B, Chaunzwa M, Duell DM, Marenco A, Goodwin W, Dannay R, et al. Impact of alemtuzumab-mediated lymphocyte depletion on SIV reservoir establishment and persistence.PLoS Pathog. 2024;20:e1012496. [DOI] [PubMed] [PMC]
Van Der Windt DJ, Smetanka C, Macedo C, He J, Lakomy R, Bottino R, et al. Investigation of Lymphocyte Depletion and Repopulation Using Alemtuzumab (Campath-1H) in Cynomolgus Monkeys.Am J Transplant. 2010;10:773–83. [DOI] [PubMed]
Schommers P, Kim DS, Schlotz M, Kreer C, Eggeling R, Hake A, et al. Dynamics and durability of HIV-1 neutralization are determined by viral replication.Nat Med. 2023;29:2763–74. [DOI] [PubMed] [PMC]
West AP Jr, Diskin R, Nussenzweig MC, Bjorkman PJ. Structural basis for germ-line gene usage of a potent class of antibodies targeting the CD4-binding site of HIV-1 gp120.Proc Natl Acad Sci U S A. 2012;109:E2083–90. [DOI] [PubMed] [PMC]
Zwick MB, Labrijn AF, Wang M, Spenlehauer C, Saphire EO, Binley JM, et al. Broadly Neutralizing Antibodies Targeted to the Membrane-Proximal External Region of Human Immunodeficiency Virus Type 1 Glycoprotein gp41.J Virol. 2001;75:10892–905. [DOI] [PubMed] [PMC]
West AP Jr, Scharf L, Horwitz J, Klein F, Nussenzweig MC, Bjorkman PJ. Computational analysis of anti-HIV-1 antibody neutralization panel data to identify potential functional epitope residues.Proc Natl Acad Sci U S A. 2013;110:10598–603. [DOI] [PubMed] [PMC]
Burton DR, Poignard P, Stanfield RL, Wilson IA. Broadly Neutralizing Antibodies Present New Prospects to Counter Highly Antigenically Diverse Viruses.Science. 2012;337:183–6. [DOI] [PubMed] [PMC]
Zhang R, Verkoczy L, Wiehe K, Munir Alam S, Nicely NI, Santra S, et al. Initiation of immune tolerance-controlled HIV gp41 neutralizing B cell lineages.Sci Transl Med. 2016;8:336ra62. [DOI] [PubMed] [PMC]
Julg B, Tartaglia LJ, Keele BF, Wagh K, Pegu A, Sok D, et al. Broadly neutralizing antibodies targeting the HIV-1 envelope V2 apex confer protection against a clade C SHIV challenge.Sci Transl Med. 2017;9:eaal1321. [DOI] [PubMed] [PMC]
Saunders KO, Wiehe K, Tian M, Acharya P, Bradley T, Alam SM, et al. Targeted selection of HIV-specific antibody mutations by engineering B cell maturation.Science. 2019;366:eaay7199. [DOI] [PubMed] [PMC]
Haynes BF, Wiehe K, Borrow P, Saunders KO, Korber B, Wagh K, et al. Strategies for HIV-1 vaccines that induce broadly neutralizing antibodies.Nat Rev Immunol. 2023;23:142–58. [DOI] [PubMed] [PMC]
Steichen JM, Lin YC, Havenar-Daughton C, Pecetta S, Ozorowski G, Willis JR, et al. A generalized HIV vaccine design strategy for priming of broadly neutralizing antibody responses.Science. 2019;366:eaax4380. [DOI] [PubMed] [PMC]
Eroshkin AM, LeBlanc A, Weekes D, Post K, Li Z, Rajput A, et al. bNAber: database of broadly neutralizing HIV antibodies.Nucleic Acids Res. 2014;42:D1133–9. [DOI] [PubMed] [PMC]
Liao HX, Lynch R, Zhou T, Gao F, Alam SM, Boyd SD, et al. Co-evolution of a broadly neutralizing HIV-1 antibody and founder virus.Nature. 2013;496:469–76. [DOI] [PubMed] [PMC]
Jardine JG, Sok D, Julien JP, Briney B, Sarkar A, Liang CH, et al. Minimally Mutated HIV-1 Broadly Neutralizing Antibodies to Guide Reductionist Vaccine Design.PLoS Pathog. 2016;12:e1005815. [DOI] [PubMed] [PMC]
Abana CZ, Lamptey H, Bonney EY, Kyei GB. HIV cure strategies: which ones are appropriate for Africa?Cell Mol Life Sci. 2022;79:400. [DOI] [PubMed] [PMC]
Julg B, Sok D, Schmidt SD, Abbink P, Newman RM, Broge T, et al. Protective Efficacy of Broadly Neutralizing Antibodies with Incomplete Neutralization Activity against Simian-Human Immunodeficiency Virus in Rhesus Monkeys.J Virol. 2017;91:e01187–17. [DOI] [PubMed] [PMC]
Dias J, Fabozzi G, Fourati S, Chen X, Liu C, Ambrozak DR, et al. Administration of anti-HIV-1 broadly neutralizing monoclonal antibodies with increased affinity to Fcγ receptors during acute SHIVAD8-EO infection.Nat Commun. 2024;15:7461. [DOI] [PubMed] [PMC]
Mendoza P, Gruell H, Nogueira L, Pai JA, Butler AL, Millard K, et al. Combination therapy with anti-HIV-1 antibodies maintains viral suppression.Nature. 2018;561:479–84. [DOI] [PubMed] [PMC]
Galvez NMS, Nitido AD, Yoo SB, Cao Y, Deal CE, Boutros CL, et al. HIV broadly neutralizing antibody escape dynamics drive the outcome of AAV vectored immunotherapy in humanized mice.bioRxiv. 2024:2024.07.11.603156. [DOI] [PubMed] [PMC]
Kirchhoff F. Immune evasion and counteraction of restriction factors by HIV-1 and other primate lentiviruses.Cell Host Microbe. 2010;8:55–67. [DOI] [PubMed]
McMichael AJ, Borrow P, Tomaras GD, Goonetilleke N, Haynes BF. The immune response during acute HIV-1 infection: clues for vaccine development.Nat Rev Immunol. 2010;10:11–23. [DOI]
Sanders RW, Derking R, Cupo A, Julien JP, Yasmeen A, de Val N, et al. A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies.PLoS Pathog. 2013;9:e1003618. [DOI] [PubMed] [PMC]
Palgen JL, Feraoun Y, Dzangué-Tchoupou G, Joly C, Martinon F, Grand RL, et al. Optimize Prime/Boost Vaccine Strategies: Trained Immunity as a New Player in the Game.Front Immunol. 2021;12:612747. [DOI] [PubMed] [PMC]
Hansen SG, Piatak M Jr, Ventura AB, Hughes CM, Gilbride RM, Ford JC, et al. Immune clearance of highly pathogenic SIV infection.Nature. 2013;502:100–4. [DOI] [PubMed] [PMC]
Sankaranantham M. HIV-Is a cure possible?Indian J Sex Transm Dis AIDS. 2019;40:1–5. [DOI] [PubMed] [PMC]
Palma P, Gudmundsdotter L, Finocchi A, Eriksson LE, Mora N, Santilli V, et al. Immunotherapy with an HIV-DNA Vaccine in Children and Adults.Vaccines (Basel). 2014;2:563–80. [DOI] [PubMed] [PMC]
Hinkula J, Petkov S, Ljungberg K, Hallengärd D, Bråve A, Isaguliants M, et al. HIVIS-DNA or HIVISopt-DNA priming followed by CMDR vaccinia-based boosts induce both humoral and cellular murine immune responses to HIV.Heliyon. 2017;3:e00339. [DOI] [PubMed] [PMC]
Hallengärd D, Applequist SE, Nyström S, Maltais AK, Marovich M, Moss B, et al. Immunization with Multiple Vaccine Modalities Induce Strong HIV-Specific Cellular and Humoral Immune Responses.Viral Immunol. 2012;25:423–32. [DOI] [PubMed] [PMC]
Barouch DH. Challenges in the development of an HIV-1 vaccine.Nature. 2008;455:613–9. [DOI] [PubMed] [PMC]
Krause W. mRNA-From COVID-19 Treatment to Cancer Immunotherapy.Biomedicines. 2023;11:308. [DOI] [PubMed] [PMC]
Melo M, Porter E, Zhang Y, Silva M, Li N, Dobosh B, et al. Immunogenicity of RNA Replicons Encoding HIV Env Immunogens Designed for Self-Assembly into Nanoparticles.Mol Ther. 2019;27:2080–90. [DOI] [PubMed] [PMC]
Boger DL. Editorial.Bioorg Med Chem Lett. 2015;25:4713. [DOI] [PubMed]
García F, Climent N, Guardo AC, Gil C, León A, Autran B, et al.; DCV2/MANON07-ORVACS Study Group. A Dendritic Cell–Based Vaccine Elicits T Cell Responses Associated with Control of HIV-1 Replication.Sci Transl Med. 2013;5:166ra2. [DOI] [PubMed]
Bai R, Lv S, Wu H, Dai L. Insights into the HIV-1 Latent Reservoir and Strategies to Cure HIV-1 Infection.Dis Markers. 2022;2022:6952286. [DOI] [PubMed] [PMC]
Li S, Wang H, Guo N, Su B, Lambotte O, Zhang T. Targeting the HIV reservoir: chimeric antigen receptor therapy for HIV cure.Chin Med J (Engl). 2023;136:2658–67. [DOI] [PubMed] [PMC]
Qi J, Ding C, Jiang X, Gao Y. Advances in Developing CAR T-Cell Therapy for HIV Cure.Front Immunol. 2020;11:361. [DOI] [PubMed] [PMC]
Duggan NN, Dragic T, Chanda SK, Pache L. Breaking the Silence: Regulation of HIV Transcription and Latency on the Road to a Cure.Viruses. 2023;15:2435. [DOI] [PubMed] [PMC]
Maldini CR, Claiborne DT, Okawa K, Chen T, Dopkin DL, Shan X, et al. Dual CD4-based CAR T cells with distinct costimulatory domains mitigate HIV pathogenesis in vivo.Nat Med. 2020;26:1776–87. [DOI] [PubMed] [PMC]
Mazarzaei A, Vafaei M, Ghasemian A, Mirforughi SA, Rajabi Vardanjani H, Alwan NAS. Memory and CAR-NK cell-based novel approaches for HIV vaccination and eradication.J Cell Physiol. 2019;234:14812–7. [DOI] [PubMed]
Kitchen SG, Levin BR, Bristol G, Rezek V, Kim S, Aguilera-Sandoval C, et al. In Vivo Suppression of HIV by Antigen Specific T Cells Derived from Engineered Hematopoietic Stem Cells.PLoS Pathog. 2012;8:e1002649. [DOI] [PubMed] [PMC]
Archin NM, Eron JJ, Palmer S, Hartmann-Duff A, Martinson JA, Wiegand A, et al. Valproic acid without intensified antiviral therapy has limited impact on persistent HIV infection of resting CD4+ T cells.AIDS. 2008;22:1131–5. [DOI] [PubMed] [PMC]
Boumber Y, Younes A, Garcia-Manero G. Mocetinostat (MGCD0103): a review of an isotype-specific histone deacetylase inhibitor.Expert Opin Investig Drugs. 2011;20:823–9. [DOI] [PubMed] [PMC]
Matalon S, Rasmussen TA, Dinarello CA. Histone Deacetylase Inhibitors for Purging HIV-1 from the Latent Reservoir.Mol Med. 2011;17:466–72. [DOI] [PubMed] [PMC]
Yin H, Zhang Y, Zhou X, Zhu H. Histonedeacetylase inhibitor Oxamflatin increase HIV-1 transcription by inducing histone modification in latently infected cells.Mol Biol Rep. 2011;38:5071–8. [DOI] [PubMed]
Kane M. Belinostat Therapy and UGT1A1 Genotype. In: Pratt VM, Scott SA, Pirmohamed M, Esquivel B, Kattman BL, Malheiro AJ, editors. Medical Genetics Summaries. Bethesda: National Center for Biotechnology Information; 2012. [PubMed]
Rasmussen TA, Tolstrup M, Brinkmann CR, Olesen R, Erikstrup C, Solomon A, et al. Panobinostat, a histone deacetylase inhibitor, for latent-virus reactivation in HIV-infected patients on suppressive antiretroviral therapy: a phase 1/2, single group, clinical trial.Lancet HIV. 1:e13–21. [DOI] [PubMed]
Archin NM, Kirchherr JL, Sung JA, Clutton G, Sholtis K, Xu Y, et al. Interval dosing with the HDAC inhibitor vorinostat effectively reverses HIV latency.J Clin Invest. 2017;127:3126–35. [DOI] [PubMed] [PMC]
Gruell H, Gunst JD, Cohen YZ, Pahus MH, Malin JJ, Platten M, et al. Effect of 3BNC117 and romidepsin on the HIV-1 reservoir in people taking suppressive antiretroviral therapy (ROADMAP): a randomised, open-label, phase 2A trial.Lancet Microbe. 2022;3:e203–14. [DOI] [PubMed] [PMC]
Bosque A, Nilson KA, Macedo AB, Spivak AM, Archin NM, Van Wagoner RM, et al. Benzotriazoles Reactivate Latent HIV-1 through Inactivation of STAT5 SUMOylation.Cell Rep. 2017;18:1324–34. [DOI] [PubMed] [PMC]
Prochazkova K, Finke A, Tomaštíková ED, Filo J, Bente H, Dvořák P, et al. Zebularine induces enzymatic DNA-protein crosslinks in 45S rDNA heterochromatin of Arabidopsis nuclei.Nucleic Acids Res. 2022;50:244–58. [DOI] [PubMed] [PMC]
Banerjee C, Archin N, Michaels D, Belkina AC, Denis GV, Bradner J, et al. BET bromodomain inhibition as a novel strategy for reactivation of HIV-1.J Leukoc Biol. 2012;92:1147–54. [DOI] [PubMed] [PMC]
Williams SA, Chen LF, Kwon H, Fenard D, Bisgrove D, Verdin E, et al. Prostratin Antagonizes HIV Latency by Activating NF-κB.J Biol Chem. 2004;279:42008–17. [DOI] [PubMed]
Darcis G, Kula A, Bouchat S, Fujinaga K, Corazza F, Ait-Ammar A, et al. An In-Depth Comparison of Latency-Reversing Agent Combinations in Various In Vitro and Ex Vivo HIV-1 Latency Models Identified Bryostatin-1+JQ1 and Ingenol-B+JQ1 to Potently Reactivate Viral Gene Expression.PLoS Pathog. 2015;11:e1005063. [DOI] [PubMed] [PMC]
Miana GA, Riaz M, Shahzad-ul-Hussan S, Paracha RZ, Paracha UZ. Prostratin: An Overview.Mini Rev Med Chem. 2015;15:1122–30. [DOI] [PubMed]
Elmore S. Apoptosis: A Review of Programmed Cell Death.Toxicol Pathol. 2007;35:495–516. [DOI] [PubMed] [PMC]
Thibault S, Imbeault M, Tardif MR, Tremblay MJ. TLR5 stimulation is sufficient to trigger reactivation of latent HIV-1 provirus in T lymphoid cells and activate virus gene expression in central memory CD4+ T cells.Virology. 2009;389:20–5. [DOI] [PubMed]
Xing S, Bullen CK, Shroff NS, Shan L, Yang HC, Manucci JL, et al. Disulfiram Reactivates Latent HIV-1 in a Bcl-2-Transduced Primary CD4+ T Cell Model without Inducing Global T Cell Activation.J Virol. 2011;85:6060–4. [DOI] [PubMed] [PMC]
Hayashi T, Jean M, Huang H, Simpson S, Santoso NG, Zhu J. Screening of an FDA-approved compound library identifies levosimendan as a novel anti-HIV-1 agent that inhibits viral transcription.Antiviral Res. 2017;146:76–85. [DOI] [PubMed] [PMC]
Mousseau G, Clementz MA, Bakeman WN, Nagarsheth N, Cameron M, Shi J, et al. An Analog of the Natural Steroidal Alkaloid Cortistatin A Potently Suppresses Tat-Dependent HIV Transcription.Cell Host Microbe. 2012;12:97–108. [DOI] [PubMed] [PMC]
Mousseau G, Valente ST. Didehydro-Cortistatin A: a new player in HIV-therapy?Expert Rev Anti Infect Ther. 2016;14:145–8. [DOI] [PubMed] [PMC]
Mediouni S, Chinthalapudi K, Ekka MK, Usui I, Jablonski JA, Clementz MA, et al. Didehydro-Cortistatin A Inhibits HIV-1 by Specifically Binding to the Unstructured Basic Region of Tat.mBio. 2019. [DOI]
Lacombe B, Morel M, Margottin-Goguet F, Ramirez BC. Specific Inhibition of HIV Infection by the Action of Spironolactone in T Cells.J Virol. 2016;90:10972–80. [DOI] [PubMed] [PMC]
Wan Z, Chen X. Triptolide inhibits human immunodeficiency virus type 1 replication by promoting proteasomal degradation of Tat protein.Retrovirology. 2014;11:88. [DOI] [PubMed] [PMC]
Huang T, Cai J, Wang P, Zhou J, Zhang H, Wu Z, et al. Ponatinib Represses Latent HIV-1 by Inhibiting AKT-mTOR.Antimicrob Agents Chemother. 2023;67:e0006723. [DOI] [PubMed] [PMC]
Yoshimura K, Zou G, Fan Y, Yamashita K, Wang L, Wu J, et al. HSP90 inhibitor AUY922 suppresses tumor growth and modulates immune response through YAP1-TEAD pathway inhibition in gastric cancer.Cancer Lett. 2025;610:217354. [DOI] [PubMed]
Talaei S, Mellatyar H, Asadi A, Akbarzadeh A, Sheervalilou R, Zarghami N. Spotlight on 17-AAG as an Hsp90 inhibitor for molecular targeted cancer treatment.Chem Biol Drug Des. 2019;93:760–86. [DOI] [PubMed]
Haile WB, Gavegnano C, Tao S, Jiang Y, Schinazi RF, Tyor WR. The Janus kinase inhibitor ruxolitinib reduces HIV replication in human macrophages and ameliorates HIV encephalitis in a murine model.Neurobiol Dis. 2016;92:137–43. [DOI] [PubMed] [PMC]
Gavegnano C, Detorio M, Montero C, Bosque A, Planelles V, Schinazi RF. Ruxolitinib and Tofacitinib Are Potent and Selective Inhibitors of HIV-1 Replication and Virus Reactivation In Vitro.Antimicrob Agents Chemother. 2014;58:1977–86. [DOI] [PubMed] [PMC]
Suzuki K, Juelich T, Lim H, Ishida T, Watanebe T, Cooper DA, et al. Closed Chromatin Architecture Is Induced by an RNA Duplex Targeting the HIV-1 Promoter Region.J Biol Chem. 2008;283:23353–63. [DOI] [PubMed] [PMC]
Suzuki K, Ishida T, Yamagishi M, Ahlenstiel C, Swaminathan S, Marks K, et al. Transcriptional gene silencing of HIV-1 through promoter targeted RNA is highly specific.RNA Biol. 2011;8:1035–46. [DOI] [PubMed] [PMC]
Ahlenstiel CL, Symonds G, Kent SJ, Kelleher AD. Block and Lock HIV Cure Strategies to Control the Latent Reservoir.Front Cell Infect Microbiol. 2020;10:424. [DOI] [PubMed] [PMC]
Jean MJ, Hayashi T, Huang H, Brennan J, Simpson S, Purmal A, et al. Curaxin CBL0100 Blocks HIV-1 Replication and Reactivation through Inhibition of Viral Transcriptional Elongation.Front Microbiol. 2017;8:2007. [DOI] [PubMed] [PMC]
Pellaers E, Janssens J, Wils L, Denis A, Bhat A, Van Belle S, et al. BRD4 modulator ZL0580 and LEDGINs additively block and lock HIV-1 transcription.Nat Commun. 2025;16:4226. [DOI] [PubMed] [PMC]
van Praag RM, Prins JM, Roos MT, Schellekens PT, Ten Berge IJ, Yong SL, et al. OKT3 and IL-2 Treatment for Purging of the Latent HIV-1 Reservoir in Vivo Results in Selective Long-Lasting CD4+ T Cell Depletion.J Clin Immunol. 2001;21:218–26. [DOI]
Gay CL, DeBenedette MA, Tcherepanova IY, Gamble A, Lewis WE, Cope AB, et al. Immunogenicity of AGS-004 Dendritic Cell Therapy in Patients Treated During Acute HIV Infection.AIDS Res Hum Retroviruses. 2018;34:111–22. [DOI] [PubMed] [PMC]
Gay CL, Kuruc JD, Falcinelli SD, Warren JA, Reifeis SA, Kirchherr JL, et al. Assessing the impact of AGS-004, a dendritic cell-based immunotherapy, and vorinostat on persistent HIV-1 Infection.Sci Rep. 2020;10:5134. [DOI] [PubMed] [PMC]
Gay CL, James KS, Tuyishime M, Falcinelli SD, Joseph SB, Moeser MJ, et al. Stable Latent HIV Infection and Low-level Viremia Despite Treatment With the Broadly Neutralizing Antibody VRC07-523LS and the Latency Reversal Agent Vorinostat.J Infect Dis. 2022;225:856–61. [DOI] [PubMed] [PMC]
McMahon JH, Evans VA, Lau JSY, Symons J, Zerbato JM, Chang J, et al. Neurotoxicity with high-dose disulfiram and vorinostat used for HIV latency reversal.AIDS. 2022;36:75–82. [DOI] [PubMed]
Cummins NW, Sainski AM, Dai H, Natesampillai S, Pang YP, Bren GD, et al. Prime, Shock, and Kill: Priming CD4 T Cells from HIV Patients with a BCL-2 Antagonist before HIV Reactivation Reduces HIV Reservoir Size.J Virol. 2016;90:4032–48. [DOI] [PubMed] [PMC]
Kim Y, Anderson JL, Lewin SR. Getting the “Kill” into “Shock and Kill”: Strategies to Eliminate Latent HIV.Cell Host Microbe. 2018;23:14–26. [DOI] [PubMed] [PMC]
Matsuda K, Kobayakawa T, Kariya R, Tsuchiya K, Ryu S, Tsuji K, et al. A Therapeutic Strategy to Combat HIV-1 Latently Infected Cells With a Combination of Latency-Reversing Agents Containing DAG-Lactone PKC Activators.Front Microbiol. 2021;12:636276. [DOI] [PubMed] [PMC]
Kessing CF, Nixon CC, Li C, Tsai P, Takata H, Mousseau G, et al. In Vivo Suppression of HIV Rebound by Didehydro-Cortistatin A, a “Block-and-Lock” Strategy for HIV-1 Treatment.Cell Rep. 2017;21:600–11. [DOI] [PubMed] [PMC]
Desimmie BA, Schrijvers R, Demeulemeester J, Borrenberghs D, Weydert C, Thys W, et al. LEDGINs inhibit late stage HIV-1 replication by modulating integrase multimerization in the virions.Retrovirology. 2013;10:57. [DOI] [PubMed] [PMC]
Niu Q, Liu Z, Alamer E, Fan X, Chen H, Endsley J, et al. Structure-guided drug design identifies a BRD4-selective small molecule that suppresses HIV.J Clin Invest. 2019;129:3361–73. [DOI] [PubMed] [PMC]
Pasquereau S, Herbein G. CounterAKTing HIV: Toward a “Block and Clear” Strategy?Front Cell Infect Microbiol. 2022;12:827717. [DOI] [PubMed] [PMC]