Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Dong Y, Xu W, Liu C, Liu P, Li P, Wang K. Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases.Int J Biol Sci. 2019;15:680–7. [DOI] [PubMed] [PMC]
Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress.Curr Biol. 2014;24:R453–62. [DOI] [PubMed] [PMC]
Engedal N, Žerovnik E, Rudov A, Galli F, Olivieri F, Procopio AD, et al. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs.Oxid Med Cell Longev. 2018;2018:4968321. [DOI] [PubMed] [PMC]
Mohammadi M, Goodarzi M, Jaafari MR, Mirzaei HR, Mirzaei H. Circulating microRNA: a new candidate for diagnostic biomarker in neuroblastoma.Cancer Gene Ther. 2016;23:371–2. [DOI] [PubMed]
Fadakar P, Akbari A, Ghassemi F, Mobini GR, Mohebi M, Bolhassani M, et al. Evaluation of SD-208, a TGF-β-RI Kinase Inhibitor, as an Anticancer Agent in Retinoblastoma.Acta Med Iran. 2016;54:352–8. [PubMed]
O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation.Front Endocrinol (Lausanne). 2018;9:402. [DOI] [PubMed] [PMC]
Tan W, Liu B, Qu S, Liang G, Luo W, Gong C. MicroRNAs and cancer: Key paradigms in molecular therapy.Oncol Lett. 2018;15:2735–42. [DOI] [PubMed] [PMC]
Liu Y, Qiang W, Xu X, Dong R, Karst AM, Liu Z, et al. Role of miR-182 in response to oxidative stress in the cell fate of human fallopian tube epithelial cells.Oncotarget. 2015;6:38983–98. [DOI] [PubMed] [PMC]
Fierro-Fernández M, Miguel V, Lamas S. Role of redoximiRs in fibrogenesis.Redox Biol. 2016;7:58–67. [DOI] [PubMed] [PMC]
Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome.Hum Mol Genet. 2015;24:167–84. [DOI] [PubMed]
La Sala L, Mrakic-Sposta S, Micheloni S, Prattichizzo F, Ceriello A. Glucose-sensing microRNA-21 disrupts ROS homeostasis and impairs antioxidant responses in cellular glucose variability.Cardiovasc Diabetol. 2018;17:105. [DOI] [PubMed] [PMC]
He J, Jiang BH. Interplay between Reactive oxygen Species and MicroRNAs in Cancer.Curr Pharmacol Rep. 2016;2:82–90. [DOI] [PubMed] [PMC]
Gong YY, Luo JY, Wang L, Huang Y. MicroRNAs Regulating Reactive Oxygen Species in Cardiovascular Diseases.Antioxid Redox Signal. 2018;29:1092–107. [DOI] [PubMed]
Lan J, Huang Z, Han J, Shao J, Huang C. Redox regulation of microRNAs in cancer.Cancer Lett. 2018;418:250–9. [DOI] [PubMed]
Ungvari Z, Tucsek Z, Sosnowska D, Toth P, Gautam T, Podlutsky A, et al. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells.J Gerontol A Biol Sci Med Sci. 2013;68:877–91. [DOI] [PubMed] [PMC]
Shilo S, Roy S, Khanna S, Sen CK. Evidence for the involvement of miRNA in redox regulated angiogenic response of human microvascular endothelial cells.Arterioscler Thromb Vasc Biol. 2008;28:471–7. [DOI] [PubMed]
Kozakowska M, Ciesla M, Stefanska A, Skrzypek K, Was H, Jazwa A, et al. Heme oxygenase-1 inhibits myoblast differentiation by targeting myomirs.Antioxid Redox Signal. 2012;16:113–27. [DOI] [PubMed] [PMC]
Yadav P, Sharma P, Sundaram S, Venkatraman G, Bera AK, Karunagaran D. SLC7A11/ xCT is a target of miR-5096 and its restoration partially rescues miR-5096-mediated ferroptosis and anti-tumor effects in human breast cancer cells.Cancer Lett. 2021;522:211–24. [DOI] [PubMed]
Pei J, Pan X, Wei G, Hua Y. Research progress of glutathione peroxidase family (GPX) in redoxidation.Front Pharmacol. 2023;14:1147414. [DOI] [PubMed] [PMC]
Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration.Front Pharmacol. 2023;14:1269581. [DOI] [PubMed] [PMC]
Deng SH, Wu DM, Li L, Liu T, Zhang T, Li J, et al. miR-324-3p reverses cisplatin resistance by inducing GPX4-mediated ferroptosis in lung adenocarcinoma cell line A549.Biochem Biophys Res Commun. 2021;549:54–60. [DOI] [PubMed]
Wang P, Zhu CF, Ma MZ, Chen G, Song M, Zeng ZL, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer.Oncotarget. 2015;6:21148–58. [DOI] [PubMed] [PMC]
Xu Z, Chen L, Wang C, Zhang L, Xu W. MicroRNA-1287-5p promotes ferroptosis of osteosarcoma cells through inhibiting GPX4.Free Radic Res. 2021;55:1119–29. [DOI] [PubMed]
Xu P, Wang Y, Deng Z, Tan Z, Pei X. MicroRNA-15a promotes prostate cancer cell ferroptosis by inhibiting GPX4 expression.Oncol Lett. 2022;23:67. [DOI] [PubMed] [PMC]
Xu Q, Zhou L, Yang G, Meng F, Wan Y, Wang L, et al. CircIL4R facilitates the tumorigenesis and inhibits ferroptosis in hepatocellular carcinoma by regulating the miR-541-3p/GPX4 axis.Cell Biol Int. 2020;44:2344–56. [DOI] [PubMed]
Chen W, Fu J, Chen Y, Li Y, Ning L, Huang D, et al. Circular RNA circKIF4A facilitates the malignant progression and suppresses ferroptosis by sponging miR-1231 and upregulating GPX4 in papillary thyroid cancer.Aging (Albany NY). 2021;13:16500–12. [DOI] [PubMed] [PMC]
Wang S, Ma H, Fang J, Yu Y, Ren Y, Yu R. CircDTL Functions as an Oncogene and Regulates Both Apoptosis and Ferroptosis in Non-small Cell Lung Cancer Cells.Front Genet. 2021;12:743505. [DOI] [PubMed] [PMC]
Choi JY, An BC, Jung IJ, Kim JH, Lee SW. MiR-921 directly downregulates GPx3 in A549 lung cancer cells.Gene. 2019;700:163–7. [DOI] [PubMed]
Shen L, Yi S, Huang L, Li S, Bai F, Lei S, et al. miR-330-3p promotes lung cancer cells invasion, migration, and metastasis by directly targeting hSOD2b.Biotechnol Appl Biochem. 2019;66:21–32. [DOI] [PubMed]
Song YH, Wang J, Nie G, Chen YJ, Li X, Jiang X, et al. MicroRNA-509-5p functions as an anti-oncogene in breast cancer via targeting SOD2.Eur Rev Med Pharmacol Sci. 2017;21:3617–25. [PubMed]
Liu L, Yao H, Zhou X, Chen J, Chen G, Shi X, et al. MiR-15a-3p regulates ferroptosis via targeting glutathione peroxidase GPX4 in colorectal cancer.Mol Carcinog. 2022;61:301–10. [DOI] [PubMed]
Yang Y, Lin Z, Han Z, Wu Z, Hua J, Zhong R, et al. miR-539 activates the SAPK/JNK signaling pathway to promote ferropotosis in colorectal cancer by directly targeting TIPE.Cell Death Discov. 2021;7:272. [DOI] [PubMed] [PMC]
Espinosa-Diez C, Fierro-Fernández M, Sánchez-Gómez F, Rodríguez-Pascual F, Alique M, Ruiz-Ortega M, et al. Targeting of Gamma-Glutamyl-Cysteine Ligase by miR-433 Reduces Glutathione Biosynthesis and Promotes TGF-β-Dependent Fibrogenesis.Antioxid Redox Signal. 2015;23:1092–105. [DOI] [PubMed] [PMC]
Sykiotis GP, Bohmann D. Stress-activated cap'n'collar transcription factors in aging and human disease.Sci Signal. 2010;3:re3. [DOI] [PubMed] [PMC]
Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress.Biochim Biophys Acta Mol Cell Res. 2018;1865:721–33. [DOI] [PubMed]
Zhang C, Shu L, Kong ANT. MicroRNAs: New players in cancer prevention targeting Nrf2, oxidative stress and inflammatory pathways.Curr Pharmacol Rep. 2015;1:21–30. [DOI] [PubMed] [PMC]
Cheng X, Ku CH, Siow RCM. Regulation of the Nrf2 antioxidant pathway by microRNAs: New players in micromanaging redox homeostasis.Free Radic Biol Med. 2013;64:4–11. [DOI] [PubMed]
Singh A, Happel C, Manna SK, Acquaah-Mensah G, Carrerero J, Kumar S, et al. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis.J Clin Invest. 2013;123:2921–34. [DOI] [PubMed] [PMC]
Kurinna S, Schäfer M, Ostano P, Karouzakis E, Chiorino G, Bloch W, et al. A novel Nrf2-miR-29-desmocollin-2 axis regulates desmosome function in keratinocytes.Nat Commun. 2014;5:5099. [DOI] [PubMed]
Joo MS, Lee CG, Koo JH, Kim SG. miR-125b transcriptionally increased by Nrf2 inhibits AhR repressor, which protects kidney from cisplatin-induced injury.Cell Death Dis. 2013;4:e899. [DOI] [PubMed] [PMC]
Yang M, Yao Y, Eades G, Zhang Y, Zhou Q. MiR-28 regulates Nrf2 expression through a Keap1-independent mechanism.Breast Cancer Res Treat. 2011;129:983–91. [DOI] [PubMed] [PMC]
Huang X, Gao Y, Qin J, Lu S. The role of miR-34a in the hepatoprotective effect of hydrogen sulfide on ischemia/reperfusion injury in young and old rats.PLoS One. 2014;9:e113305. [DOI] [PubMed] [PMC]
Singh B, Ronghe AM, Chatterjee A, Bhat NK, Bhat HK. MicroRNA-93 regulates NRF2 expression and is associated with breast carcinogenesis.Carcinogenesis. 2013;34:1165–72. [DOI] [PubMed] [PMC]
Eades G, Yang M, Yao Y, Zhang Y, Zhou Q. miR-200a regulates Nrf2 activation by targeting Keap1 mRNA in breast cancer cells.J Biol Chem. 2011;286:40725–33. [DOI] [PubMed] [PMC]
Chen C, Jiang X, Gu S, Zhang Z. MicroRNA-155 regulates arsenite-induced malignant transformation by targeting Nrf2-mediated oxidative damage in human bronchial epithelial cells.Toxicol Lett. 2017;278:38–47. [DOI] [PubMed]
Sangokoya C, Telen MJ, Chi JT. microRNA miR-144 modulates oxidative stress tolerance and associates with anemia severity in sickle cell disease.Blood. 2010;116:4338–48. [DOI] [PubMed] [PMC]
Fallah A, Sadeghinia A, Kahroba H, Samadi A, Heidari HR, Bradaran B, et al. Therapeutic targeting of angiogenesis molecular pathways in angiogenesis-dependent diseases.Biomed Pharmacother. 2019;110:775–85. [DOI] [PubMed]
Espinosa-Diez C, Wilson R, Chatterjee N, Hudson C, Ruhl R, Hipfinger C, et al. MicroRNA regulation of the MRN complex impacts DNA damage, cellular senescence, and angiogenic signaling.Cell Death Dis. 2018;9:632. [DOI] [PubMed] [PMC]
Chu LY, Ramakrishnan DP, Silverstein RL. Thrombospondin-1 modulates VEGF signaling via CD36 by recruiting SHP-1 to VEGFR2 complex in microvascular endothelial cells.Blood. 2013;122:1822–32. [DOI] [PubMed] [PMC]
Yamakuchi M, Ferlito M, Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis.Proc Natl Acad Sci U S A. 2008;105:13421–6. [DOI] [PubMed] [PMC]
Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes.Circ Res. 2009;104:879–86. [DOI] [PubMed] [PMC]
Hou M, Zuo X, Li C, Zhang Y, Teng Y. Mir-29b Regulates Oxidative Stress by Targeting SIRT1 in Ovarian Cancer Cells.Cell Physiol Biochem. 2017;43:1767–76. [DOI] [PubMed]
Lian B, Yang D, Liu Y, Shi G, Li J, Yan X, et al. miR-128 Targets the SIRT1/ROS/DR5 Pathway to Sensitize Colorectal Cancer to TRAIL-Induced Apoptosis.Cell Physiol Biochem. 2018;49:2151–62. [DOI] [PubMed]
Wei C, Li L, Kim IK, Sun P, Gupta S. NF-κB mediated miR-21 regulation in cardiomyocytes apoptosis under oxidative stress.Free Radic Res. 2014;48:282–91. [DOI] [PubMed]
Bowie A, O’Neill LA. Oxidative stress and nuclear factor-kappaB activation: a reassessment of the evidence in the light of recent discoveries.Biochem Pharmacol. 2000;59:13–23. [DOI] [PubMed]
Thulasingam S, Massilamany C, Gangaplara A, Dai H, Yarbaeva S, Subramaniam S, et al. miR-27b*, an oxidative stress-responsive microRNA modulates nuclear factor-kB pathway in RAW 264.7 cells.Mol Cell Biochem. 2011;352:181–8. [DOI] [PubMed]
Michael MZ, O’Connor SM, van Holst Pellekaan NG, Young GP, James RJ. Reduced accumulation of specific microRNAs in colorectal neoplasia.Mol Cancer Res. 2003;1:882–91. [PubMed]
Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK, et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation.Mol Cell. 2009;35:856–67. [DOI] [PubMed] [PMC]
Borralho PM, Simões AES, Gomes SE, Lima RT, Carvalho T, Ferreira DMS, et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation.PLoS One. 2011;6:e23787. [DOI] [PubMed] [PMC]
Zhang J, Guo H, Qian G, Ge S, Ji H, Hu X, et al. MiR-145, a new regulator of the DNA fragmentation factor-45 (DFF45)-mediated apoptotic network.Mol Cancer. 2010;9:211. [DOI] [PubMed] [PMC]
Xu Q, Liu LZ, Qian X, Chen Q, Jiang Y, Li D, et al. MiR-145 directly targets p70S6K1 in cancer cells to inhibit tumor growth and angiogenesis.Nucleic Acids Res. 2012;40:761–74. [DOI] [PubMed] [PMC]
Greene CM, Varley RB, Lawless MW. MicroRNAs and liver cancer associated with iron overload: therapeutic targets unravelled.World J Gastroenterol. 2013;19:5212–26. [DOI] [PubMed] [PMC]
Wan Y, Cui R, Gu J, Zhang X, Xiang X, Liu C, et al. Identification of Four Oxidative Stress-Responsive MicroRNAs, miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p, in Hepatocellular Carcinoma.Oxid Med Cell Longev. 2017;2017:5189138. [DOI] [PubMed] [PMC]
Wilson R, Espinosa-Diez C, Kanner N, Chatterjee N, Ruhl R, Hipfinger C, et al. MicroRNA regulation of endothelial TREX1 reprograms the tumour microenvironment.Nat Commun. 2016;7:13597. [DOI] [PubMed] [PMC]
Yang Z, Wa QD, Lu C, Pan W, Lu ZM, Ao J. miR3283p enhances the radiosensitivity of osteosarcoma and regulates apoptosis and cell viability via H2AX.Oncol Rep. 2018;39:545–53. [DOI] [PubMed] [PMC]
Marampon F, Codenotti S, Megiorni F, Del Fattore A, Camero S, Gravina GL, et al. NRF2 orchestrates the redox regulation induced by radiation therapy, sustaining embryonal and alveolar rhabdomyosarcoma cells radioresistance.J Cancer Res Clin Oncol. 2019;145:881–93. [DOI] [PubMed] [PMC]
Zheng J, Wang Q, Chen J, Cai G, Zhang Z, Zou H, et al. Tumor mitochondrial oxidative phosphorylation stimulated by the nuclear receptor RORγ represents an effective therapeutic opportunity in osteosarcoma.Cell Rep Med. 2024;5:101519. [DOI] [PubMed] [PMC]
La Sala L, Mrakic-Sposta S, Tagliabue E, Prattichizzo F, Micheloni S, Sangalli E, et al. Circulating microRNA-21 is an early predictor of ROS-mediated damage in subjects with high risk of developing diabetes and in drug-naïve T2D.Cardiovasc Diabetol. 2019;18:18. [DOI] [PubMed] [PMC]
Horie T, Nishino T, Baba O, Kuwabara Y, Nakao T, Nishiga M, et al. MicroRNA-33 regulates sterol regulatory element-binding protein 1 expression in mice.Nat Commun. 2013;4:2883. [DOI] [PubMed] [PMC]
Saleh AD, Savage JE, Cao L, Soule BP, Ly D, DeGraff W, et al. Cellular stress induced alterations in microRNA let-7a and let-7b expression are dependent on p53.PLoS One. 2011;6:e24429. [DOI] [PubMed] [PMC]
Zhang X, Ng WL, Wang P, Tian L, Werner E, Wang H, et al. MicroRNA-21 modulates the levels of reactive oxygen species by targeting SOD3 and TNFα.Cancer Res. 2012;72:4707–13. [DOI] [PubMed] [PMC]
Li XJ, Ren ZJ, Tang JH. MicroRNA-34a: a potential therapeutic target in human cancer.Cell Death Dis. 2014;5:e1327. [DOI] [PubMed] [PMC]
Balzano F, Cruciani S, Basoli V, Santaniello S, Facchin F, Ventura C, et al. MiR200 and miR302: Two Big Families Influencing Stem Cell Behavior.Molecules. 2018;23:282. [DOI] [PubMed] [PMC]
Kim JH, Park SG, Song SY, Kim JK, Sung JH. Reactive oxygen species-responsive miR-210 regulates proliferation and migration of adipose-derived stem cells via PTPN2.Cell Death Dis. 2013;4:e588. [DOI] [PubMed] [PMC]
Mei Y, Bian C, Li J, Du Z, Zhou H, Yang Z, et al. miR-21 modulates the ERK-MAPK signaling pathway by regulating SPRY2 expression during human mesenchymal stem cell differentiation.J Cell Biochem. 2013;114:1374–84. [DOI] [PubMed]
Yu G, Yao W, Xiao W, Li H, Xu H, Lang B. MicroRNA-34a functions as an anti-metastatic microRNA and suppresses angiogenesis in bladder cancer by directly targeting CD44.J Exp Clin Cancer Res. 2014;33:779. [DOI] [PubMed] [PMC]
Peter ME. Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression.Cell Cycle. 2009;8:843–52. [DOI] [PubMed] [PMC]
Tang T, Yang Z, Zhu Q, Wu Y, Sun K, Alahdal M, et al. Up-regulation of miR-210 induced by a hypoxic microenvironment promotes breast cancer stem cells metastasis, proliferation, and self-renewal by targeting E-cadherin.FASEB J. 2018;fj201801013R. [DOI] [PubMed]
Liu D, Xu Y. p53, oxidative stress, and aging.Antioxid Redox Signal. 2011;15:1669–78. [DOI] [PubMed] [PMC]
Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang MW, et al. High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan.Aging Cell. 2013;12:446–58. [DOI] [PubMed] [PMC]
Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, et al. miR-22 represses cancer progression by inducing cellular senescence.J Cell Biol. 2011;193:409–24. [DOI] [PubMed] [PMC]
Hu Z, Klein JD, Mitch WE, Zhang L, Martinez I, Wang XH. MicroRNA-29 induces cellular senescence in aging muscle through multiple signaling pathways.Aging (Albany NY). 2014;6:160–75. [DOI] [PubMed] [PMC]
He X, Yang A, McDonald DG, Riemer EC, Vanek KN, Schulte BA, et al. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells.Oncotarget. 2017;8:69797–807. [DOI] [PubMed] [PMC]
Hong L, Lai M, Chen M, Xie C, Liao R, Kang YJ, et al. The miR-17-92 cluster of microRNAs confers tumorigenicity by inhibiting oncogene-induced senescence.Cancer Res. 2010;70:8547–57. [DOI] [PubMed] [PMC]
Nyholm AM, Lerche CM, Manfé V, Biskup E, Johansen P, Morling N, et al. miR-125b induces cellular senescence in malignant melanoma.BMC Dermatol. 2014;14:8. [DOI] [PubMed] [PMC]
Olivieri F, Lazzarini R, Recchioni R, Marcheselli F, Rippo MR, Di Nuzzo S, et al. MiR-146a as marker of senescence-associated pro-inflammatory status in cells involved in vascular remodelling.Age (Dordr). 2013;35:1157–72. [DOI] [PubMed] [PMC]
Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1.Circulation. 2009;120:1524–32. [DOI] [PubMed]
Liu H, Wu HY, Wang WY, Zhao ZL, Liu XY, Wang LY. Regulation of miR-92a on vascular endothelial aging via mediating Nrf2-KEAP1-ARE signal pathway.Eur Rev Med Pharmacol Sci. 2017;21:2734–42. [PubMed]
Yu C, Chen DQ, Liu HX, Li WB, Lu JW, Feng JF. Rosmarinic acid reduces the resistance of gastric carcinoma cells to 5-fluorouracil by downregulating FOXO4-targeting miR-6785-5p.Biomed Pharmacother. 2019;109:2327–34. [DOI] [PubMed]
Yang H, Li TWH, Zhou Y, Peng H, Liu T, Zandi E, et al. Activation of a novel c-Myc-miR27-prohibitin 1 circuitry in cholestatic liver injury inhibits glutathione synthesis in mice.Antioxid Redox Signal. 2015;22:259–74. [DOI] [PubMed] [PMC]
Sun M, Huang S, Gao Y. Lidocaine inhibits the proliferation and metastasis of epithelial ovarian cancer through the Wnt/β-catenin pathway.Transl Cancer Res. 2021;10:3479–90. [DOI] [PubMed] [PMC]
Liu YP, Qiu ZZ, Li XH, Li EY. Propofol induces ferroptosis and inhibits malignant phenotypes of gastric cancer cells by regulating miR-125b-5p/STAT3 axis.World J Gastrointest Oncol. 2021;13:2114–28. [DOI] [PubMed] [PMC]
He GN, Bao NR, Wang S, Xi M, Zhang TH, Chen FS. Ketamine Induces Ferroptosis of Liver Cancer Cells by Targeting lncRNA PVT1/miR-214-3p/GPX4.Drug Des Devel Ther. 2021;15:3965–78. [DOI] [PubMed] [PMC]
Hou Y, Cai S, Yu S, Lin H. Metformin induces ferroptosis by targeting miR-324-3p/GPX4 axis in breast cancer.Acta Biochim Biophys Sin (Shanghai). 2021;53:333–41. [DOI] [PubMed]
Yu R, Zhou Y, Shi S, Wang X, Huang S, Ren Y. Icariside II induces ferroptosis in renal cell carcinoma cells by regulating the miR-324-3p/GPX4 axis.Phytomedicine. 2022;102:154182. [DOI] [PubMed]
Zhang R, Pan T, Xiang Y, Zhang M, Xie H, Liang Z, et al. Curcumenol triggered ferroptosis in lung cancer cells via lncRNA H19/miR-19b-3p/FTH1 axis.Bioact Mater. 2021;13:23–36. [DOI] [PubMed] [PMC]
Guo W, Wu Z, Chen J, Guo S, You W, Wang S, et al. Nanoparticle delivery of miR-21-3p sensitizes melanoma to anti-PD-1 immunotherapy by promoting ferroptosis.J Immunother Cancer. 2022;10:e004381. [DOI] [PubMed] [PMC]
Luo Y, Niu G, Yi H, Li Q, Wu Z, Wang J, et al. Nanomedicine promotes ferroptosis to inhibit tumour proliferation in vivo.Redox Biol. 2021;42:101908. [DOI] [PubMed] [PMC]
Di Lorenzo G, Verde A, Scafuri L, Costabile F, Caputo V, Di Trolio R, et al. The Impact of Flavonoid Supplementation on Serum Oxidative Stress Levels Measured via D-ROMs Test in the General Population: The PREVES-FLAVON Retrospective Observational Study.Nutrients. 2024;16:3302. [DOI] [PubMed] [PMC]
Ma W, Xiao GG, Mao J, Lu Y, Song B, Wang L, et al. Dysregulation of the miR-34a-SIRT1 axis inhibits breast cancer stemness.Oncotarget. 2015;6:10432–44. [DOI] [PubMed] [PMC]
Chang M, Qiao L, Li B, Wang J, Zhang G, Shi W, et al. Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance.Oncol Rep. 2017;38:1251–8. [DOI] [PubMed]
Zhang T, Xue X, Peng H. Therapeutic Delivery of miR-29b Enhances Radiosensitivity in Cervical Cancer.Mol Ther. 2019;27:1183–94. [DOI] [PubMed] [PMC]
Li H, Liu Y, Wang X, Xu C, Zhang X, Zhang J, et al. miR-128-3p is involved in aluminum-induced cognitive impairment by regulating the Sirt1-Keap1/Nrf2 pathway.Ecotoxicol Environ Saf. 2024;271:115966. [DOI] [PubMed]
Liu G, He L, Yang X, Tang L, Shi W, She J, et al. MicroRNA-155-5p Aggravates Adriamycin-Induced Focal Segmental Glomerulosclerosis through Targeting Nrf2.Nephron. 2023;147:108–19. [DOI] [PubMed]
Kabaria S, Choi DC, Chaudhuri AD, Jain MR, Li H, Junn E. MicroRNA-7 activates Nrf2 pathway by targeting Keap1 expression.Free Radic Biol Med. 2015;89:548–56. [DOI] [PubMed] [PMC]
Cheng LB, Li KR, Yi N, Li XM, Wang F, Xue B, et al. miRNA-141 attenuates UV-induced oxidative stress via activating Keap1-Nrf2 signaling in human retinal pigment epithelium cells and retinal ganglion cells.Oncotarget. 2017;8:13186–94. [DOI] [PubMed] [PMC]
Wang J, Jiao Y, Cui L, Jiang L. miR-30 functions as an oncomiR in gastric cancer cells through regulation of P53-mediated mitochondrial apoptotic pathway.Biosci Biotechnol Biochem. 2017;81:119–26. [DOI] [PubMed]
Mahmoudi-Lamouki R, Kadkhoda S, Hussen BM, Ghafouri-Fard S. Emerging role of miRNAs in the regulation of ferroptosis.Front Mol Biosci. 2023;10:1115996. [DOI] [PubMed] [PMC]
Cui HW, Han WY, Hou LN, Yang L, Li X, Su XL. miR-1915-3p inhibits Bcl-2 expression in the development of gastric cancer.Biosci Rep. 2019;39:BSR20182321. [DOI] [PubMed] [PMC]
Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2.Proc Natl Acad Sci U S A. 2005;102:13944–9. [DOI] [PubMed] [PMC]
Guo J, Fang X, Zhou J, Zeng L, Yu B. Identification and validation of miR-509-5p as a prognosticator for favorable survival in osteosarcoma.Medicine (Baltimore). 2022;101:e29705. [DOI] [PubMed] [PMC]
Jafarzadeh A, Paknahad MH, Nemati M, Jafarzadeh S, Mahjoubin-Tehran M, Rajabi A, et al. Dysregulated expression and functions of microRNA-330 in cancers: A potential therapeutic target.Biomed Pharmacother. 2022;146:112600. [DOI] [PubMed]
Gomes SE, Pereira DM, Roma-Rodrigues C, Fernandes AR, Borralho PM, Rodrigues CMP. Convergence of miR-143 overexpression, oxidative stress and cell death in HCT116 human colon cancer cells.PLoS One. 2018;13:e0191607. [DOI] [PubMed] [PMC]
Xu X, Wells A, Padilla MT, Kato K, Kim KC, Lin Y. A signaling pathway consisting of miR-551b, catalase and MUC1 contributes to acquired apoptosis resistance and chemoresistance.Carcinogenesis. 2014;35:2457–66. [DOI] [PubMed] [PMC]