AI: artificial intelligence; XAI: explainable AI; GWAS: genome-wide association studies; RF-IFRS: Random Forest Iterative Feature Reduction and Selection; MACE: major adverse cardiovascular events; XGBoost: eXtreme Gradient Boosting; ML: machine learning; SHAP: SHapley Additive exPlanations; MI: myocardial infarction; GBT: Gradient Boosted Trees; LIME: Local Interpretable Model-agnostic Explanations; SNPs: single nucleotide polymorphisms; CVD: cardiovascular disease; OR: odds ratio; AUC: area under the curve
Declarations
Author contributions
HSA: Data curation, Investigation, Visualization, Writing—original draft, Writing—review & editing. SC: Funding acquisition, Supervision, Writing—original draft, Writing—review & editing. ZS: Conceptualization, Data curation, Investigation, Visualization, Validation, Writing—original draft, Writing—review & editing. ZW: Conceptualization, Funding acquisition, Project administration, Supervision, Validation, Writing—review & editing. All authors read and approved the submitted version.
Conflicts of interest
Zhong Wang who is the Guest Editor of Exploration of Medicine had no involvement in the decision-making or the review process of this manuscript. The other authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
SC was supported by National Institute of General Medical Sciences [R35GM137795]; ZW was supported by National Institute of Health [R01HL163672]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Martin SS, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al.; American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee. 2024 Heart Disease and Stroke Statistics: A Report of US and Global Data From the American Heart Association.Circulation. 2024;149:e347–913. [DOI] [PubMed] [PMC]
Khakoo AY, Yurgin NR, Eisenberg PR, Fonarow GC. Overcoming Barriers to Development of Novel Therapies for Cardiovascular Disease: Insights From the Oncology Drug Development Experience.JACC Basic Transl Sci. 2019;4:269–74. [DOI] [PubMed] [PMC]
Fordyce CB, Roe MT, Ahmad T, Libby P, Borer JS, Hiatt WR, et al. Cardiovascular drug development: is it dead or just hibernating?J Am Coll Cardiol. 2015;65:1567–82. [DOI] [PubMed]
Qureshi SA, Hsiao WW, Hussain L, Aman H, Le TN, Rafique M. Recent Development of Fluorescent Nanodiamonds for Optical Biosensing and Disease Diagnosis.Biosensors (Basel). 2022;12:1181. [DOI] [PubMed] [PMC]
Toussaint PA, Leiser F, Thiebes S, Schlesner M, Brors B, Sunyaev A. Explainable artificial intelligence for omics data: a systematic mapping study.Brief Bioinform. 2024;25:bbad453. [DOI] [PubMed] [PMC]
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews.BMJ. 2021;372:n71. [DOI] [PubMed] [PMC]
Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease.Nat Genet. 2015;47:1121–30. [DOI] [PubMed] [PMC]
Verweij N, Eppinga RN, Hagemeijer Y, van der Harst P. Identification of 15 novel risk loci for coronary artery disease and genetic risk of recurrent events, atrial fibrillation and heart failure.Sci Rep. 2017;7:2761. [DOI] [PubMed] [PMC]
Howson JMM, Zhao W, Barnes DR, Ho WK, Young R, Paul DS, et al.; CARDIoGRAMplusC4D; Do R, Rader DJ, Johnson JA, Hazen SL, Quyyumi AA, Spertus JA, et al.; EPIC-CVD; Chen YI, Nordestgaard BG, Assimes TL, Danesh J, Butterworth AS, Saleheen D. Fifteen new risk loci for coronary artery disease highlight arterial-wall-specific mechanisms.Nat Genet. 2017;49:1113–9. [DOI] [PubMed] [PMC]
Klarin D, Zhu QM, Emdin CA, Chaffin M, Horner S, McMillan BJ, et al.; CARDIoGRAMplusC4D Consortium; Kathiresan S. Genetic analysis in UK Biobank links insulin resistance and transendothelial migration pathways to coronary artery disease.Nat Genet. 2017;49:1392–7. [DOI] [PubMed] [PMC]
Koyama S, Ito K, Terao C, Akiyama M, Horikoshi M, Momozawa Y, et al. Population-specific and trans-ancestry genome-wide analyses identify distinct and shared genetic risk loci for coronary artery disease.Nat Genet. 2020;52:1169–77. [DOI] [PubMed]
van der Harst P, Verweij N. Identification of 64 Novel Genetic Loci Provides an Expanded View on the Genetic Architecture of Coronary Artery Disease.Circ Res. 2018;122:433–43. [DOI] [PubMed] [PMC]
Hartiala JA, Han Y, Jia Q, Hilser JR, Huang P, Gukasyan J, et al.; INVENT Consortium; CHARGE Consortium Hemostasis Working Group; GENIUS-CHD Consortium; Seldin M, Pan C, Mehrabian M, Lusis AJ, Bazeley P, Sun YV, et al.; Biobank Japan; Stolze LK, Romanoski CE, Khan MD, Turner AW, Miller CL, Aherrahrou R, et al. Genome-wide analysis identifies novel susceptibility loci for myocardial infarction.Eur Heart J. 2021;42:919–33. [DOI] [PubMed] [PMC]
Molenaar B, Timmer LT, Droog M, Perini I, Versteeg D, Kooijman L, et al. Single-cell transcriptomics following ischemic injury identifies a role for B2M in cardiac repair.Commun Biol. 2021;4:146. [DOI] [PubMed] [PMC]
Yamada S, Ko T, Hatsuse S, Nomura S, Zhang B, Dai Z, et al. Spatiotemporal transcriptome analysis reveals critical roles for mechano-sensing genes at the border zone in remodeling after myocardial infarction.Nat Cardiovasc Res. 2022;1:1072–83. [DOI] [PubMed] [PMC]
Arif M, Klevstig M, Benfeitas R, Doran S, Turkez H, Uhlén M, et al. Integrative transcriptomic analysis of tissue-specific metabolic crosstalk after myocardial infarction.Elife. 2021;10:e66921. [DOI] [PubMed] [PMC]
Ryabov V, Gombozhapova A, Litviakov N, Ibragimova M, Tsyganov M, Rogovskaya Y, et al. Microarray Analysis for Transcriptomic Profiling of Myocardium in Patients with Fatal Myocardial Infarction.Biomedicines. 2023;11:3294. [DOI] [PubMed] [PMC]
Rask-Andersen M, Martinsson D, Ahsan M, Enroth S, Ek WE, Gyllensten U, et al. Epigenome-wide association study reveals differential DNA methylation in individuals with a history of myocardial infarction.Hum Mol Genet. 2016;25:4739–48. [DOI] [PubMed]
Malyutina S, Chervova O, Maximov V, Gafarov V, Ryabikov A. Epigenome-wide association study of myocardial infarction in a population based case-control.Atherosclerosis. 2024;395:117707. [DOI]
Meder B, Haas J, Sedaghat-Hamedani F, Kayvanpour E, Frese K, Lai A, et al. Epigenome-Wide Association Study Identifies Cardiac Gene Patterning and a Novel Class of Biomarkers for Heart Failure.Circulation. 2017;136:1528–44. [DOI] [PubMed]
Kuppe C, Ramirez Flores RO, Li Z, Hayat S, Levinson RT, Liao X, et al. Spatial multi-omic map of human myocardial infarction.Nature. 2022;608:766–77. [DOI] [PubMed] [PMC]
Luo X, Hu Y, Shen J, Liu X, Wang T, Li L, et al. Integrative analysis of DNA methylation and gene expression reveals key molecular signatures in acute myocardial infarction.Clin Epigenetics. 2022;14:46. [DOI] [PubMed] [PMC]
Bai H, Sun K, Wu JH, Zhong ZH, Xu SL, Zhang HR, et al. Proteomic and metabolomic characterization of cardiac tissue in acute myocardial ischemia injury rats.PLoS One. 2020;15:e0231797. [DOI] [PubMed] [PMC]
Ma Y, Yuan Y, Aili Z, Maitusong M, Li H, Nijiati M. Proteomics analysis of coronary blood microparticles in patients with acute myocardial infarction.Cardiol J. 2023;30:286–96. [DOI] [PubMed] [PMC]
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, et al. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach.Clin Proteomics. 2024;21:18. [DOI] [PubMed] [PMC]
Chang M, Wang H, Lei Y, Yang H, Xu J, Tang S. Proteomic study of left ventricle and cortex in rats after myocardial infarction.Sci Rep. 2024;14:6866. [DOI] [PubMed] [PMC]
Lopaschuk GD, Karwi QG, Tian R, Wende AR, Abel ED. Cardiac Energy Metabolism in Heart Failure.Circ Res. 2021;128:1487–513. [DOI] [PubMed] [PMC]
Fukushima A, Lopaschuk GD. Cardiac fatty acid oxidation in heart failure associated with obesity and diabetes.Biochim Biophys Acta. 2016;1861:1525–34. [DOI] [PubMed]
Aboumsallem JP, Shi C, De Wit S, Markousis-Mavrogenis G, Bracun V, Eijgenraam TR, et al. Multi-omics analyses identify molecular signatures with prognostic values in different heart failure aetiologies.J Mol Cell Cardiol. 2023;175:13–28. [DOI] [PubMed]
Karwi QG, Uddin GM, Ho KL, Lopaschuk GD. Loss of Metabolic Flexibility in the Failing Heart.Front Cardiovasc Med. 2018;5:68. [DOI] [PubMed] [PMC]
Dougherty BV, Rawls KD, Kolling GL, Vinnakota KC, Wallqvist A, Papin JA. Identifying functional metabolic shifts in heart failure with the integration of omics data and a heart-specific, genome-scale model.Cell Rep. 2021;34:108836. [DOI] [PubMed]
Hassija V, Chamola V, Mahapatra A, Singal A, Goel D, Huang K, et al. Interpreting Black-Box Models: A Review on Explainable Artificial Intelligence.Cogn Comput. 2024;16:45–74. [DOI]
Eames A, Chandrasekaran S. Leveraging metabolic modeling and machine learning to uncover modulators of quiescence depth.PNAS Nexus. 2024;3:pgae013. [DOI] [PubMed] [PMC]
Chung CH, Chandrasekaran S. A flux-based machine learning model to simulate the impact of pathogen metabolic heterogeneity on drug interactions.PNAS Nexus. 2022;1:pgac132. [DOI] [PubMed] [PMC]
Zampieri G, Vijayakumar S, Yaneske E, Angione C. Machine and deep learning meet genome-scale metabolic modeling.PLoS Comput Biol. 2019;15:e1007084. [DOI] [PubMed] [PMC]
Oruganty K, Campit SE, Mamde S, Lyssiotis CA, Chandrasekaran S. Common biochemical properties of metabolic genes recurrently dysregulated in tumors.Cancer Metab. 2020;8:5. [DOI] [PubMed] [PMC]
Ma J, Yu MK, Fong S, Ono K, Sage E, Demchak B, et al. Using deep learning to model the hierarchical structure and function of a cell.Nat Methods. 2018;15:290–8. [DOI] [PubMed] [PMC]
Arora HS, Lev K, Robida A, Velmurugan R, Chandrasekaran S. A mechanistic neural network model predicts both potency and toxicity of antimicrobial combination therapies.medRxiv 2025.03.19.25324270 [Preprint]. 2025 [cited 2025 Mar 20]. Available from: https://doi.org/10.1101/2025.03.19.25324270
Choi JM, Chae H. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.BMC Bioinformatics. 2023;24:169. [DOI] [PubMed] [PMC]
Chen J, Wang X, Ma A, Wang QE, Liu B, Li L, et al. Deep transfer learning of cancer drug responses by integrating bulk and single-cell RNA-seq data.Nat Commun. 2022;13:6494. [DOI] [PubMed] [PMC]
Jurenaite N, León-Periñán D, Donath V, Torge S, Jäkel R. SetQuence & SetOmic: Deep Set Transformer-based Representations of Cancer Multi-Omics. In: Proceedings of 2022 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB); 2022 Aug 15–17; Ottawa, Canada. IEEE; 2022. pp. 1–9. [DOI]
Schildcrout R, Smith K, Bhowmick R, Menon S, Kapadia M, Kurtz E, et al. Recon8D: A metabolic regulome network from oct-omics and machine learning.bioRxiv 2024.08.17.608400 [Preprint]. 2024 [cited 2024 Aug 19]. Available from: https://doi.org/10.1101/2024.08.17.608400
Karim A, Su Z, West PK, Keon M; The Nygc Als Consortium; Shamsani J, Brennan S, Wong T, Milicevic O, Teunisse G, Rad HN, et al. Molecular Classification and Interpretation of Amyotrophic Lateral Sclerosis Using Deep Convolution Neural Networks and Shapley Values.Genes (Basel). 2021;12:1754. [DOI] [PubMed] [PMC]
Jiang M, Zhao B, Luo S, Wang Q, Chu Y, Chen T, et al. NeuroPpred-Fuse: an interpretable stacking model for prediction of neuropeptides by fusing sequence information and feature selection methods.Brief Bioinform. 2021;22:bbab310. [DOI] [PubMed]
Hasan MM, Alam MA, Shoombuatong W, Deng HW, Manavalan B, Kurata H. NeuroPred-FRL: an interpretable prediction model for identifying neuropeptide using feature representation learning.Brief Bioinform. 2021;22:bbab167. [DOI] [PubMed]
Mohammadi S, Davila-Velderrain J, Kellis M. A multiresolution framework to characterize single-cell state landscapes.Nat Commun. 2020;11:5399. [DOI] [PubMed] [PMC]
Kulkarni P, Mahadevappa M, Chilakamarri S. The Emergence of Artificial Intelligence in Cardiology: Current and Future Applications.Curr Cardiol Rev. 2022;18:e191121198124. [DOI] [PubMed] [PMC]
Adams SM, Feroze H, Nguyen T, Eum S, Cornelio C, Harralson AF. Genome Wide Epistasis Study of On-Statin Cardiovascular Events with Iterative Feature Reduction and Selection.J Pers Med. 2020;10:212. [DOI] [PubMed] [PMC]
Pezoulas V, Mishra PP, Raitakari OT, Kahonen M, Lehtimaki T, Fotiadis DI, et al. Metabolomics in the prediction of prodromal stages of carotid artery disease using a hybrid ML algorithm. In: Proceedings of 2022 IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI); 2022 Sep 27–30; Ioannina, Greece. IEEE; 2022. pp. 1–4. [DOI]
Yilmaz R. Investigation of potential biomarkers in prediction of acute myocardial infarction via explainable artificial intelligence.Med Sci. 2023;12:424–30. [DOI]
DeGroat W, Abdelhalim H, Peker E, Sheth N, Narayanan R, Zeeshan S, et al. Multimodal AI/ML for discovering novel biomarkers and predicting disease using multi-omics profiles of patients with cardiovascular diseases.Sci Rep. 2024;14:26503. [DOI] [PubMed] [PMC]
Wouters OJ, McKee M, Luyten J. Estimated Research and Development Investment Needed to Bring a New Medicine to Market, 2009-2018.JAMA. 2020;323:844–53. [DOI] [PubMed] [PMC]
Pillaiyar T, Meenakshisundaram S, Manickam M, Sankaranarayanan M. A medicinal chemistry perspective of drug repositioning: Recent advances and challenges in drug discovery.Eur J Med Chem. 2020;195:112275. [DOI] [PubMed] [PMC]
Peckham AM, Evoy KE, Ochs L, Covvey JR. Gabapentin for Off-Label Use: Evidence-Based or Cause for Concern?Subst Abuse. 2018;12:1178221818801311. [DOI] [PubMed] [PMC]
Verbeeck W, Bekkering GE, Van den Noortgate W, Kramers C. Bupropion for attention deficit hyperactivity disorder (ADHD) in adults.Cochrane Database Syst Rev. 2017:CD009504. [DOI] [PubMed] [PMC]
US Preventive Services Task Force; Davidson KW, Barry MJ, Mangione CM, Cabana M, Chelmow D, Coker TR, et al. Aspirin Use to Prevent Cardiovascular Disease: US Preventive Services Task Force Recommendation Statement.JAMA. 2022;327:1577–84. [DOI] [PubMed]
Ravikumar B, Timonen S, Alam Z, Parri E, Wennerberg K, Aittokallio T. Chemogenomic Analysis of the Druggable Kinome and Its Application to Repositioning and Lead Identification Studies.Cell Chem Biol. 2019;26:1608–22.e6. [DOI] [PubMed]
Yang M, Tao B, Chen C, Jia W, Sun S, Zhang T, et al. Machine Learning Models Based on Molecular Fingerprints and an Extreme Gradient Boosting Method Lead to the Discovery of JAK2 Inhibitors.J Chem Inf Model. 2019;59:5002–12. [DOI] [PubMed]
Lim H, He D, Qiu Y, Krawczuk P, Sun X, Xie L. Rational discovery of dual-indication multi-target PDE/Kinase inhibitor for precision anti-cancer therapy using structural systems pharmacology.PLoS Comput Biol. 2019;15:e1006619. [DOI] [PubMed] [PMC]
Li B, Dai C, Wang L, Deng H, Li Y, Guan Z, et al. A novel drug repurposing approach for non-small cell lung cancer using deep learning.PLoS One. 2020;15:e0233112. [DOI] [PubMed] [PMC]
Ramesh P, Karuppasamy R, Veerappapillai S. Machine learning driven drug repurposing strategy for identification of potential RET inhibitors against non-small cell lung cancer.Med Oncol. 2023;40:56. [DOI] [PubMed] [PMC]
Rodriguez S, Hug C, Todorov P, Moret N, Boswell SA, Evans K, et al. Machine learning identifies candidates for drug repurposing in Alzheimer’s disease.Nat Commun. 2021;12:1033. [DOI] [PubMed] [PMC]
Jamal S, Grover A, Grover S. Machine Learning From Molecular Dynamics Trajectories to Predict Caspase-8 Inhibitors Against Alzheimer’s Disease.Front Pharmacol. 2019;10:780. [DOI] [PubMed] [PMC]
Miyazaki Y, Ono N, Huang M, Altaf-Ul-Amin M, Kanaya S. Comprehensive Exploration of Target-specific Ligands Using a Graph Convolution Neural Network.Mol Inform. 2020;39:1900095. [DOI] [PubMed] [PMC]
Vignaux PA, Minerali E, Foil DH, Puhl AC, Ekins S. Machine Learning for Discovery of GSK3β Inhibitors.ACS Omega. 2020;5:26551–61. [DOI] [PubMed] [PMC]
Stokes JM, Yang K, Swanson K, Jin W, Cubillos-Ruiz A, Donghia NM, et al. A Deep Learning Approach to Antibiotic Discovery.Cell. 2020;180:688–702.e13. [DOI] [PubMed] [PMC]
Liu G, Catacutan DB, Rathod K, Swanson K, Jin W, Mohammed JC, et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii.Nat Chem Biol. 2023;19:1342–50. [DOI] [PubMed]
Chandrasekaran S, Cokol-Cakmak M, Sahin N, Yilancioglu K, Kazan H, Collins JJ, et al. Chemogenomics and orthology-based design of antibiotic combination therapies.Mol Syst Biol. 2016;12:872. [DOI] [PubMed] [PMC]
Ma S, Jaipalli S, Larkins-Ford J, Lohmiller J, Aldridge BB, Sherman DR, et al. Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis.mBio. 2019;10:10.1128/mbio.02627-19. [DOI] [PubMed] [PMC]
Gao S, Xie J, Zhao Y. A Multi-Source drug combination and Omnidirectional feature fusion approach for predicting Drug-Drug interaction events.J Biomed Inform. 2025;162:104772. [DOI] [PubMed]
Reuter MM, Lev KL, Albo J, Arora HS, Liu N, Tan S, et al. Ultra-high-throughput screening of antimicrobial combination therapies using a two-stage transparent machine learning model.bioRxiv 2024.11.25.625231 [Preprint]. 2024 [cited 2024 Nov 25]. Available from: https://doi.org/10.1101/2024.11.25.625231
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease.Lancet. 2020;395:e30–1. [DOI] [PubMed] [PMC]
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing.Nature. 2020;583:459–68. [DOI] [PubMed] [PMC]
Aghdam R, Habibi M, Taheri G. Using informative features in machine learning based method for COVID-19 drug repurposing.J Cheminform. 2021;13:70. [DOI] [PubMed] [PMC]
Bocci G, Bradfute SB, Ye C, Garcia MJ, Parvathareddy J, Reichard W, et al. Virtual and In Vitro Antiviral Screening Revive Therapeutic Drugs for COVID-19.ACS Pharmacol Transl Sci. 2020;3:1278–92. [DOI] [PubMed] [PMC]
Zhu S, Bai Q, Li L, Xu T. Drug repositioning in drug discovery of T2DM and repositioning potential of antidiabetic agents.Comput Struct Biotechnol J. 2022;20:2839–47. [DOI] [PubMed] [PMC]
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al.; CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease.N Engl J Med. 2017;377:1119–31. [DOI] [PubMed]
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al.; LoDoCo2 Trial Investigators. Colchicine in Patients with Chronic Coronary Disease.N Engl J Med. 2020;383:1838–47. [DOI] [PubMed]
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction.N Engl J Med. 2019;381:2497–505. [DOI] [PubMed]
Sun D, Macedonia C, Chen Z, Chandrasekaran S, Najarian K, Zhou S, et al. Can Machine Learning Overcome the 95% Failure Rate and Reality that Only 30% of Approved Cancer Drugs Meaningfully Extend Patient Survival?J Med Chem. 2024;67:16035–55. [DOI] [PubMed]
Kustatscher G, Collins T, Gingras AC, Guo T, Hermjakob H, Ideker T, et al. Understudied proteins: opportunities and challenges for functional proteomics.Nat Methods. 2022;19:774–9. [DOI] [PubMed]
Parikh RB, Teeple S, Navathe AS. Addressing Bias in Artificial Intelligence in Health Care.JAMA. 2019;322:2377–8. [DOI] [PubMed]