Recent developments in 4D printing of BMMs for biomedical applications

4D printing techniqueStimuliMaterials and printed BMMsReference(s)
Tissue engineering
DLPHydrationGelMA/PEGDM–tissue scaffold[46]
ExtrusionSolventHyaluronan/Alg–bilayered scaffold[47]
DIWShear strainOxidized and methacrylated Alg (OMA)/GelMA–cell condensate-laden bilayer system[48]
DIWSolventADA-Gel-based T-shaped vascular bifurcation[49]
DIWSolventMethacrylated Alg (AA-MA) and methacrylated hyaluronic acid–vascular tissue[160]
Solvent, near-infrared (NIR) light, and temperatureAlg/polydopamine–tissue scaffolds[161]
InkjetSolventGelMA/Gel-carboxylated-methacrylate bilayer[162]
SLATemperatureSoybean oil epoxidized acrylate (SOEA)–cardiac tissue[163]
Poly(methyl methacrylate)–neural tissue[164]
FDMMagnetismPCL/iron doped HA–bone tissue[165, 166]
TemperaturePLA/PCL/SOEA–muscle tissue[167]
SolventAA-MA/PCL–muscle tissue[168]
TemperatureSOEA–muscle tissue[169]
DIW and inkjet printingMagnetismAgarose/collagen type I-based cartilage tissue[170]
Extrusion-based printingTemperature

Polyurethane (PU)

Commercial polymers–tissue scaffolds

[171]
DLPSolventPEG(700)DA–tissue scaffolds[172]
DIWpHPEG-based microgel scaffolds[173]
DLPTemperaturePCL diacrylate (PCLDA)-based bilayer membrane[174]
Drug delivery
ExtrusionHumidity and temperaturePU and polyethylene–dual stimuli self-morphing structures[175]
Alg-Ca2+ coordinationPluronic F127 diacrylate macromer (F127DA)/Alg–shape memory hydrogels[176]
DLPMagnetoelectricity4-hydroxybutyl acrylate (4-HBA)/urethane-polyethylene glycol-polypropylene glycol (PU-EO-PO) monomer/electromagnetized carbon porous nanocookies–conduit material[63]
FDMTemperature/fluidPVA-based expandable drug delivery structures[177]
WaterPVA and glycerol-based intravesical drug delivery device[178]
DIWTemperature/pH/enzyme

Pickering emulsion gels

BSA methacryloyl (MA)/poly(N-isopropylacrylamide)-P(NIPAAm) (thermo-sensitive ink)

BSA-MA/poly[2-dimethylaminoethyl methacrylate]-P(DMAEMA) (pH-sensitive ink)

BSA-MA + F127 (enzyme sensitive ink)–hydrogels

[179]
DLP-PμSLSolvent/lightPEGDA–microneedle array[73]
DIWpHAlg fibres-based porous scaffolds[180]
FDMpHPVP/methacrylic acid co-polymer-based tablets[181]
HPMC-AS-based tablets[182]
Surgical and diagnostic tools
PμSLTemperatureSMPs-based surgical gripper system[71]
JettingTemperatureSMPs-based actuator system/self-expanded stent[72]
FDMLoadPU/fabric–wearable smart sensor[87]
FDMMotionTPU–deformable lung[89]
Implants and prosthetics
FDMTemperaturePoly(ethylene glycol)/shape memory PLA (SMPLA)–biomimetic intestinal stents[129]
DIWTemperatureβCD-g-PCL–vascular stent[130]
DIWTemperaturePCL/acrylates-based vascular conduit[135]
FDMTemperatureThermoplastic copolyester elastomer–vascular stent[183]
PLA-based vascular stent[184, 185]
Thermo-magnetismPLA-based magnetic nanocomposites–vascular occluder[186]
DIWThermo-magnetismFe3O4/PLA/dichloromethane/benzophenone–vascular stent[134]
SLAInternal stressGelMA/PEGDA–cardiac patch[187]
SOEA/graphene–neural conduit[188]
SLATemperaturePCL/isocyanato ethyl methacrylate–tracheal stent[189]
DLP and DIWNIR light and temperatureBisphenol A diglycidyl ether, poly(propylene glycol) bis(2-aminopropyl) ether, and decylamine–cardiac patch[190]
DIWFe3+ ions, sodium lactate/UVAcrylamide-acrylic acid/cellulose nanocrystal–bilayer hydrogel stent[191]
FDMMagnetismFe2O3/shape memory PLA–occluders[192]