The authors express their gratitude to Dr. of Science Valerii Barbash and Ph.D Olga Yashchenko (National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine) for the nanocellulose suspension produced and samples based on it (which are discussed in the sections Self-labeling of luminescent cellulose materials, Luminescent markers for cellulosic materials); to Dr. of Science Kateryna Terebilenko and Ph.D. Tetiana Voitenko (Taras Shevchenko National University of Kyiv, Ukraine) for the luminescent micro/nanosized crystalline powders provided by them for luminescent labeling of cellulose materials addressed in this review.
Serhii Nedilko thanks the Polish Academy of Sciences for the possibility of the research stay and spectroscopy measurements at the Institute of Physics PAS (Warsaw, Poland), opportunities that facilitated the work discussed in this review, during this difficult time for Ukraine.
Author contributions
VB: Conceptualization, Writing—review & editing. VC: Conceptualization, Writing—review & editing. SN: Conceptualization, Writing—original draft. All authors read and approved the final version of the manuscript.
Conflicts of interest
The authors declare that they have no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments.Chem Rev. 2024;124:1738–861. [DOI] [PubMed]
Taylor JR, Fang MM, Nie S. Probing specific sequences on single DNA molecules with bioconjugated fluorescent nanoparticles.Anal Chem. 2000;72:1979–86. [DOI] [PubMed]
Padilla Mondejar S, Kovtun A, Epple M. Lanthanide-doped calcium phosphate nanoparticles with high internal crystallinity and with a shell of DNA as fluorescent probes in cell experiments.J Mater Chem. 2007;17:4153–9. [DOI]
França LTC, Carrilho E, Kist TBL. A review of DNA sequencing techniques.Q Rev Biophys. 2002;35:169–200. [DOI] [PubMed]
Yang L, Hou H, Li J. Frontiers in fluorescence imaging: tools for the in situ sensing of disease biomarkers.J Mater Chem B. 2025;13:1133–58. [DOI] [PubMed]
Xu C, Liu J, Li X, Dan W, Lu C, Dai J. Methoxyl-modulated high-performance ratiometric fluorescent probe with AIE properties for hypochlorite detection and live cell imaging.Spectrochim Acta Mol Biomol Spectrosc. 2025;329:125506. [DOI] [PubMed]
Šoltysová M, Güixens-Gallardo P, Sieglová I, Soldánová A, Krejčiříková V, Fábry M, et al. Using environment-sensitive tetramethylated thiophene-BODIPY fluorophores in DNA probes for studying effector-induced conformational changes of protein-DNA complexes.RSC Chem Biol. 2025;6:376–86. [DOI] [PubMed] [PMC]
Minoshima M, Reja SI, Hashimoto R, Iijima K, Kikuchi K. Hybrid Small-Molecule/Protein Fluorescent Probes.Chem Rev. 2024;124:6198–270. [DOI] [PubMed]
Ou J, Chen Q, Wang Y, Zhang J, Wang X, Wang Q, et al. Two-photon and dual-color visualization of Aβ1–40 induced mitophagy by the detection of mitochondrial DNA G-quadruplex and polarity.Sens Actuators B Chem. 2025;426:137025. [DOI]
Singh H, Tiwari K, Tiwari R, Pramanik SK, Das A. Small Molecule as Fluorescent Probes for Monitoring Intracellular Enzymatic Transformations.Chem Rev. 2019;119:11718–60. [DOI] [PubMed]
Rajapaksha HE, Gahlout N, Mohandessi S, Yu D, Turner JR, Miller LW. Time-resolved luminescence resonance energy transfer imaging of protein–protein interactions in living cells.Proc Natl Acad Sci USA. 2010;107:13582–7. [DOI]
Leung C, Chan DS, He H, Cheng Z, Yang H, Ma D. Luminescent detection of DNA-binding proteins.Nucleic Acids Res. 2011;40:941–55. [DOI] [PubMed] [PMC]
Weber A, Lednev IK. Brightness of blood: Review of fluorescence spectroscopy analysis of bloodstains.Front Anal Sci. 2022;2:906532. [DOI]
Biranje A, Azmi N, Tiwari A, Chaskar A. Quantum Dots Based Fluorescent Probe for the Selective Detection of Heavy Metal Ions.J Fluoresc. 2021;31:1241–50. [DOI] [PubMed]
Wang X, Ding Q, Groleau RR, Wu L, Mao Y, Che F, et al. Fluorescent Probes for Disease Diagnosis.Chem Rev. 2024;124:7106–64. [DOI] [PubMed] [PMC]
Fujita K, Urano Y. Activity-Based Fluorescence Diagnostics for Cancer.Chem Rev. 2024;124:4021–78. [DOI] [PubMed]
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, et al. Theranostic Fluorescent Probes.Chem Rev. 2024;124:2699–804. [DOI] [PubMed] [PMC]
Lv Y, Jin H, Liu Z, Li N, Liao Y, Shen J, et al. A polarity-sensitive fluorescent probe for visualizing lipid droplets in ferroptosis, cuproptosis, and autophagy.Spectrochim Acta Mol Biomol Spectrosc. 2025;332:125854. [DOI] [PubMed]
Aziz T, Li W, Zhu J, Chen B. Developing multifunctional cellulose derivatives for environmental and biomedical applications: Insights into modification processes and advanced material properties.Int J Biol Macromol. 2024;278:134695. [DOI] [PubMed]
Jayeoye TJ, Eze FN, Singh S. Nanocellulose materials and composites for emerging applications. In: Shabbir M, editor. Regenerated cellulose and composites. Singapore: Springer; 2023. pp. 105–44. [DOI]
Joseph B, Krishnan S, Sagarika VK, Tharayil A, Kalarikkal N, Thomas S. Bionanocomposites as industrial materials, current and future perspectives: a review.Emergent Mat. 2020;3:711–25. [DOI]
Trache D, Tarchoun AF, Derradji M, Hamidon TS, Masruchin N, Brosse N, et al. Nanocellulose: From Fundamentals to Advanced Applications.Front Chem. 2020;8:392. [DOI] [PubMed] [PMC]
Panchal P, Ogunsona E, Mekonnen T. Trends in Advanced Functional Material Applications of Nanocellulose.Processes. 2018;7:10–31. [DOI]
Gao L, Chao L, Hou M, Liang J, Chen Y, Yu H, et al. Flexible, transparent nanocellulose paper-based perovskite solar cells.NPJ Flex Electron. 2019;3:4. [DOI]
Nedilko SG. “Polymer–oxide” micro-/nanocomposites: background and promises. In: Fesenko O, Yatsenko L, editors. Nanochemistry, biotechnology, nanomaterials, and their applications. Cham: Springer; 2018. pp. 247–75. [DOI]
Tayeb A, Amini E, Ghasemi S, Tajvidi M. Cellulose Nanomaterials-Binding Properties and Applications: A Review.Molecules. 2018;23:2684. [DOI] [PubMed] [PMC]
Dufresne A. Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites.Philos Trans A Math Phys Eng Sci. 2017;376:20170040. [DOI] [PubMed] [PMC]
Nedielko M, Hamamda S, Alekseev O, Chornii V, Dashevskii M, Lazarenko M, et al. Mechanical, Dielectric, and Spectroscopic Characteristics of “Micro/Nanocellulose + Oxide” Composites.Nanoscale Res Lett. 2017;12:98. [DOI] [PubMed] [PMC]
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites.Chem Soc Rev. 2011;40:3941–94. [DOI] [PubMed]
Liu Y, Zu B, Dou X. Cellulose-based fluorescent materials for chemical sensing applications.Coord Chem Rev. 2025;532:216505. [DOI]
Krishnapriya T, Jayaraj M, Asha A. Luminescent nanoparticles for bio-imaging application.In: Nanomaterials for sensing and optoelectronic applications. Micro and nano technologies. Oxford: Elsevier; 2022. pp. 107–28. [DOI]
Datta D, Colaco V, Bandi SP, Sharma H, Dhas N, Giram PS. Classes/types of polymers used in oral delivery (natural, semisynthetic, synthetic), their chemical structure and general functionalities.In: Polymers for Oral Drug Delivery Technologies. Elsevier; 2025. pp. 263–333. [DOI]
Shen Y, Seidi F, Ahmad M, Liu Y, Saeb MR, Akbari A, et al. Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging.J Agric Food Chem. 2023;71:16469–87. [DOI] [PubMed]
Li W, Lin J, Huang W, Wang Q, Zhang H, Zhang X, et al. Delivery of luminescent particles to plants for information encoding and storage.Light Sci Appl. 2024;13:217. [DOI] [PubMed] [PMC]
Zhang Y, Tan J. Electrospun rhodamine@MOF/polymer luminescent fibers with a quantum yield of over 90.iScience. 2021;24:103035. [DOI] [PubMed] [PMC]
Wang F, Tan WB, Zhang Y, Fan X, Wang M. Luminescent nanomaterials for biological labelling.Nanotechnology. 2005;17:R1–R13. [DOI]
Wang A, Liu K, Shu W, Luo W, Qu Y, Chen R, et al. An ingenious near-infrared fluorescent probe for detection of viscosity in biosystems and beverages.Microchem J. 2025;209:112734. [DOI]
Geng J, Huang Z, Shen Q, Xu C, Zhang L, Wei C, et al. Simple design of fluorescein-based probe for rapid and in situ visual monitoring of histamine levels in food spoilage.Talanta. 2025;282:126941. [DOI] [PubMed]
Zhang J, Campbell RE, Ting AY, Tsien RY. Creating new fluorescent probes for cell biology.Nat Rev Mol Cell Biol. 2002;3:906–18. [DOI] [PubMed]
Waggoner A. Fluorescent labels for proteomics and genomics.Curr Opin Chem Biol. 2006;10:62–6. [DOI] [PubMed]
Fu H, Yao J. Size Effects on the Optical Properties of Organic Nanoparticles.J Am Chem Soc. 2001;123:1434–9. [DOI]
Ceballos-Ávila D, Vázquez-Sandoval I, Ferrusca-Martínez F, Jiménez-Sánchez A. Conceptually innovative fluorophores for functional bioimaging.Biosens Bioelectron. 2024;264:116638. [DOI] [PubMed]
Alivisatos AP. Semiconductor Clusters, Nanocrystals, and Quantum Dots.Science. 1996;271:933–7. [DOI]
Weller H. Quantum size colloids: From size-dependent properties of discrete particles to self-organized superstructures.Curr Opin Colloid amp Interface Sci. 1998;3:194–9. [DOI]
Sun Y, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-sized carbon dots for bright and colorful photoluminescence.J Am Chem Soc. 2006;128:7756–7. [DOI] [PubMed]
Burns A, Ow H, Wiesner U. Fluorescent core-shell silica nanoparticles: towards “Lab on a Particle” architectures for nanobiotechnology.Chem Soc Rev. 2006;35:1028–42. [DOI] [PubMed]
Warner JH, Hoshino A, Yamamoto K, Tilley RD. Water-soluble photoluminescent silicon quantum dots.Angew Chem Int Ed Engl. 2005;44:4550–4. [DOI] [PubMed]
Chen C, Yao J, Durst RA. Liposome encapsulation of fluorescent nanoparticles: Quantum dots and silica nanoparticles.J Nanopart Res. 2006;8:1033–8. [DOI]
Corstjens P, Li S, Zuiderwijk M, Kardos K, Abrams W, Niedbala R, et al. Infrared up-converting phosphors for bioassays.IEEE Proc Nanobiotechnol. 2005;152:64–72. [DOI] [PubMed]
He Y, Li L, Wang M, Tian J, Chen G, Wang J. A novel fluorescent probe for viscosity and polarity detection in real tobacco root cells and biological imaging.Photochem Photobiol Sci. 2024;23:1883–91. [DOI] [PubMed]
Seydack M. Nanoparticle labels in immunosensing using optical detection methods.Biosens Bioelectron. 2005;20:2454–69. [DOI] [PubMed]
Hemmilä I, Laitala V. Progress in lanthanides as luminescent probes.J Fluoresc. 2005;15:529–42. [DOI] [PubMed]
Amela-Cortes M, Dumait N, Artzner F, Cordier S, Molard Y. Flexible and Transparent Luminescent Cellulose-Transition Metal Cluster Composites.Nanomaterials (Basel). 2023;13:580. [DOI] [PubMed] [PMC]
Litsis OO, Оvchynnikov VA, Znovjyak KO, Sliva TY, Nedilko SG, Amirkhanov VM. Preparation, crystal structure, and luminescent properties of CAPh containing lanthanide(III) complexes with various amounts of coordinated solvent molecules.J Coord Chem. 2022;75:2692–709. [DOI]
Hou J, Jia P, Yang K, Bu T, Zhao S, Li L, et al. Fluorescence and Colorimetric Dual-Mode Ratiometric Sensor Based on Zr-Tetraphenylporphyrin Tetrasulfonic Acid Hydrate Metal-Organic Frameworks for Visual Detection of Copper Ions.ACS Appl Mater Interfaces. 2022;14:13848–57. [DOI] [PubMed]
Yen C, Rana S, Awasthi K, Ohta N, Oh-e M. Characterizing the photoluminescence of fluorescein-labeled cellulose in aqueous and alcohol solutions: influence of the cellulose backbone.Sci Rep. 2024;14:26223. [DOI] [PubMed] [PMC]
Vandewoestyne M, Lepez T, Van Hoofstat D, Deforce D. Evaluation of a visualization assay for blood on forensic evidence.J Forensic Sci. 2015;60:707–11. [DOI] [PubMed]
Hirabayashi K, Hanaoka K, Takayanagi T, Toki Y, Egawa T, Kamiya M, et al. Analysis of chemical equilibrium of silicon-substituted fluorescein and its application to develop a scaffold for red fluorescent probes.Anal Chem. 2015;87:9061–9. [DOI] [PubMed]
Yan F, Fan K, Bai Z, Zhang R, Zu F, Xu J, et al. Fluorescein applications as fluorescent probes for the detection of analytes.TrAC Trends Analytic Chem. 2017;97:15–35. [DOI]
Caprifico AE, Polycarpou E, Foot PJS, Calabrese G. Biomedical and Pharmacological Uses of Fluorescein Isothiocyanate Chitosan-Based Nanocarriers.Macromol Biosci. 2020;21:e2000312. [DOI] [PubMed]
Zaporozhets O, Kulichenko S, Lelyushok S, Klovak V. Fluorescence Characteristics of Rhodamine 6g and Rhodamine C in Water-Micellar Surfactant Environments.Ukr Chem J. 2019;85:84–95. [DOI]
Tan L, Mo S, Fang B, Cheng W, Yin M. Dual fluorescence switching of a Rhodamine 6G-naphthalimide conjugate with high contrast in the solid state.J Mat Chem C. 2018;6:10270–5. [DOI]
Liu Y, Lee D, Wu D, Swamy K, Yoon J. A new kind of rhodamine-based fluorescence turn-on probe for monitoring ATP in mitochondria.Sens Actuators B Chem. 2018;265:429–34. [DOI]
Hung S, Ju J, Mathies RA, Glazer AN. Energy transfer primers with 5- or 6-carboxyrhodamine-6G as acceptor chromophores.Anal Biochem. 1996;238:165–70. [DOI] [PubMed]
Mishra A, Behera RK, Behera PK, Mishra BK, Behera GB. Cyanines during the 1990s: A Review.Chem Rev. 2000;100:1973–2012. [DOI] [PubMed]
Panchuk-Voloshina N, Haugland RP, Bishop-Stewart J, Bhalgat MK, Millard PJ, Mao F, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates.J Histochem Cytochem. 1999;47:1179–88. [DOI] [PubMed]
Berlier JE, Rothe A, Buller G, Bradford J, Gray DR, Filanoski BJ, et al. Quantitative comparison of long-wavelength Alexa Fluor dyes to Cy dyes: fluorescence of the dyes and their bioconjugates.J Histochem Cytochem. 2003;51:1699–712. [DOI] [PubMed]
Anderson GP, Nerurkar NL. Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor.J Immunol Methods. 2002;271:17–24. [DOI] [PubMed]
Mahmudi-Azer S, Lacy P, Bablitz B, Moqbel R. Inhibition of nonspecific binding of fluorescent-labelled antibodies to human eosinophils.J Immunol Methods. 1998;217:113–9. [DOI] [PubMed]
Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ. Primary structure of the Aequorea victoria green-fluorescent protein.Gene. 1992;111:229–33. [DOI] [PubMed]
Cody CW, Prasher DC, Westler WM, Prendergast FG, Ward WW. Chemical structure of the hexapeptide chromophore of the Aequorea green-fluorescent protein.Biochemistry. 1993;32:1212–8. [DOI] [PubMed]
Tsien RY. The green fluorescent protein.Annu Rev Biochem. 1998;67:509–44. [DOI] [PubMed]
Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. Green fluorescent protein as a marker for gene expression.Science. 1994;263:802–5. [DOI] [PubMed]
Niedenthal RK, Riles L, Johnston M, Hegemann JH. Green fluorescent protein as a marker for gene expression and subcellular localization in budding yeast.Yeast. 1996;12:773–86. [DOI] [PubMed]
Lippincott-Schwartz J, Patterson GH. Development and use of fluorescent protein markers in living cells.Science. 2003;300:87–91. [DOI] [PubMed]
Yanushevich YG, Staroverov DB, Savitsky AP, Fradkov AF, Gurskaya NG, Bulina ME, et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins.FEBS Lett. 2001;511:11–4. [DOI] [PubMed]
Dickson RM, Cubitt AB, Tsien RY, Moerner WE. On/off blinking and switching behaviour of single molecules of green fluorescent protein.Nature. 1997;388:355–8. [DOI] [PubMed]
Costuas K, Garreau A, Bulou A, Fontaine B, Cuny J, Gautier R, et al. Combined theoretical and time-resolved photoluminescence investigations of [Mo6Bri8Bra6]2- metal cluster units: evidence of dual emission.Phys Chem Chem Phys. 2015;17:28574–85. [DOI]
Dierre B, Costuas K, Dumait N, Paofai S, Amela-Cortes M, Molard Y, et al. Mo6 cluster-based compounds for energy conversion applications: comparative study of photoluminescence and cathodoluminescence.Sci Technol Adv Mater. 2017;18:458–66. [DOI]
Akagi S, Fujii S, Kitamura N. A study on the redox, spectroscopic, and photophysical characteristics of a series of octahedral hexamolybdenum(II) clusters: [{Mo6X8}Y6]2- (X,Y = Cl, Br, I).Dalton Trans. 2018;47:1131–9. [DOI]
Kirakci K, Kubát P, Langmaier J, Polívka T, Fuciman M, Fejfarová K, et al. A comparative study of the redox and excited state properties of (nBu4N)2[Mo6X14] and (nBu4N)2[Mo6X8(CF3COO)6] (X = Cl, Br, I).Dalton Trans. 2013;42:7224–32. [DOI] [PubMed]
Khlifi S, Fournier Le Ray N, Paofai S, Amela-Cortes M, Akdas-Kiliç H, Taupier G, et al. Self-erasable inkless imprinting using a dual emitting hybrid organic-inorganic material.Mater Today. 2020;35:34–41. [DOI]
Zhao Y, Lunt RR. Transparent Luminescent Solar Concentrators for Large‐Area Solar Windows Enabled by Massive Stokes‐Shift Nanocluster Phosphors.Adv Energy Mater. 2013;3:1143–8. [DOI]
Huby N, Bigeon J, Lagneaux Q, Amela-Cortes M, Garreau A, Molard Y, et al. Facile design of red-emitting waveguides using hybrid nanocomposites made of inorganic clusters dispersed in SU8 photoresist host.Opt Mater. 2016;52:196–202. [DOI]
Khlifi S, Bigeon J, Amela-Cortes M, Dumait N, Akdas-Kiliç H, Taupier G, et al. Poly(dimethylsiloxane) functionalized with complementary organic and inorganic emitters for the design of white emissive waveguides.J Mat Chem C. 2021;9:7094–102. [DOI]
Robin M, Kuai W, Amela-Cortes M, Cordier S, Molard Y, Mohammed-Brahim T, et al. Epoxy Based Ink as Versatile Material for Inkjet-Printed Devices.ACS Appl Mater Interfaces. 2015;7:21975–84. [DOI] [PubMed]
Amela-Cortes M, Molard Y, Paofai S, Desert A, Duvail JL, Naumov NG, et al. Versatility of the ionic assembling method to design highly luminescent PMMA nanocomposites containing [M6Qi8La6]n− octahedral nano-building blocks.Dalton Trans. 2016;45:237–45. [DOI]
Kirakci K, Pozmogova TN, Protasevich AY, Vavilov GD, Stass DV, Shestopalov MA, et al. A water-soluble octahedral molybdenum cluster complex for X-ray-induced photodynamic therapy.Biomater Sci. 2021;9:2893–902. [DOI]
Verger A, Dollo G, Martinais S, Molard Y, Cordier S, Amela‑Cortes M, et al. Molybdenum-Iodine cluster loaded polymeric nanoparticles allowing a coupled therapeutic action with low side toxicity for treatment of ovarian cancer.J Pharm Sci. 2022;111:3377–83. [DOI]
Jackson JA, Newsham MD, Worsham C, Nocera DG. Efficient Singlet Oxygen Generation from Polymers Derivatized with Hexanuclear Molybdenum Clusters.Chem Mater. 1996;8:558–64. [DOI]
Ghosh RN, Baker GL, Ruud C, Nocera DG. Fiber-optic oxygen sensor using molybdenum chloride cluster luminescence.Appli Phys Lett. 1999;75:2885–7. [DOI]
Frey ST, Horrocks WD Jr. On correlating the frequency of the 7F0 → 5D0 transition in Eu3+ complexes with the sum of ‘nephelauxetic parameters’ for all of the coordinating atoms.Inorg Chim Acta. 1995;229:383–90. [DOI]
Bünzli JCG. Lanthanide probes in life, chemical and earth sciences. In: Bünzli JCG, Choppin GR, editors. Theory and practice. Amsterdam: Elsevier; 1989. pp. 219–93.
Alpha B, Ballardini R, Balzani V, Lehn J, Perathoner S, Sabbatini N. Antenna Effect in Luminescent Lanthanide Cryptates: A Photophysical Study.Photochem Photobiol. 1990;52:299–306. [DOI]
Heffern MC, Matosziuk LM, Meade TJ. Lanthanide probes for bioresponsive imaging.Chem Rev. 2013;114:4496–539. [DOI] [PubMed] [PMC]
Bünzli JG. On the design of highly luminescent lanthanide complexes.Coord Chem Rev. 2015;293–294:19–47. [DOI]
Mohamadi A, Miller LW. Brightly Luminescent and Kinetically Inert Lanthanide Bioprobes Based on Linear and Preorganized Chelators.Bioconjug Chem. 2016;27:2540–8. [DOI] [PubMed] [PMC]
Sy M, Nonat A, Hildebrandt N, Charbonnière LJ. Lanthanide-based luminescence biolabelling.Chem Commun (Camb). 2016;52:5080–95. [DOI] [PubMed]
Horniichuk OY, Kariaka NS, Smola SS, Rusakova NV, Trush VO, Sliva TY, et al. Efficient Sensitized Luminescence of Binuclear Ln(III) Complexes Based on a Chelating Bis-Carbacylamidophosphate.J Fluoresc. 2021;31:1029–39. [DOI] [PubMed]
Santangelo MC, Lucchesi L, Papa L, Rossi A, Egizzo G, Fratello GL, et al. Smart Applications of Lanthanide Chelates-based Luminescent Probes in Bio-imaging.Mini Rev Med Chem. 2025;25:505–20. [DOI] [PubMed]
Chaudhari AK, Tan J. Mechanochromic MOF nanoplates: spatial molecular isolation of light-emitting guests in a sodalite framework structure.Nanoscale. 2018;10:3953–60. [DOI] [PubMed]
Gutiérrez M, Moslein AF, Tan JC. Facile and fast transformation of nonluminescent to highly luminescent metal–organic frameworks: acetone sensing for diabetes diagnosis and lead capture from polluted water.ACS Appl Mater Interfaces. 2021;13:7801–11. [DOI]
Yao C, Zhao N, Liu J, Chen L, Liu J, Fang G, et al. Recent Progress on Luminescent Metal-Organic Framework-Involved Hybrid Materials for Rapid Determination of Contaminants in Environment and Food.Polymers (Basel). 2020;12:691. [DOI] [PubMed] [PMC]
Allendorf MD, Foster ME, Léonard F, Stavila V, Feng PL, Doty FP, et al. Guest-Induced Emergent Properties in Metal-Organic Frameworks.J Phys Chem Lett. 2015;6:1182–95. [DOI] [PubMed]
Lin R, Xiang S, Li B, Cui Y, Qian G, Zhou W, et al. Our journey of developing multifunctional metal-organic frameworks.Coord Chem Rev. 2019;384:009. [DOI] [PubMed] [PMC]
Asadi F, Azizi SN, Chaichi MJ. Green synthesis of fluorescent PEG-ZnS QDs encapsulated into Co-MOFs as an effective sensor for ultrasensitive detection of copper ions in tap water.Mater Sci Eng C Mater Biol Appl. 2019;105:110058. [DOI] [PubMed]
Wang J, Zhang Y, Yu Y, Ye F, Feng Z, Huang Z, et al. Spectrally flat white light emission based on red-yellow-green-blue dye-loaded metal-organic frameworks.Opt Mater. 2019;89:209–13. [DOI]
Yoo J, Ryu U, Kwon W, Choi KM. A multi-dye containing MOF for the ratiometric detection and simultaneous removal of Cr2O72− in the presence of interfering ions.Sens Actuators B Chem. 2019;283:426–33. [DOI]
Zhang Y, Gutiérrez M, Chaudhari AK, Tan J. Dye-Encapsulated Zeolitic Imidazolate Framework (ZIF-71) for Fluorochromic Sensing of Pressure, Temperature, and Volatile Solvents.ACS Appl Mater Interfaces. 2020;12:37477–88. [DOI] [PubMed]
Vajner DA, Rickert L, Gao T, Kaymazlar K, Heindel T. Quantum Communication Using Semiconductor Quantum Dots.Adv Quantum Tech. 2022;5:2100116. [DOI]
Hepp S, Jetter M, Portalupi SL, Michler P. Semiconductor Quantum Dots for Integrated Quantum Photonics.Adv Quantum Tech. 2019;2:1900020. [DOI]
Wang B, Lu S. The light of carbon dots: from mechanism to applications.Matter. 2022;5:110–49. [DOI]
Ding H, Cheng L, Ma Y, Kong J, Xiong H. Luminescent carbon quantum dots and their application in cell imaging.New J Chem. 2013;37:2515–20. [DOI]
Bai Y, Hao M, Ding S, Chen P, Wang L. Surface Chemistry Engineering of Perovskite Quantum Dots: Strategies, Applications, and Perspectives.Adv Mater. 2021;34:e2105958. [DOI] [PubMed]
Shan Q, Dong Y, Xiang H, Yan D, Hu T, Yuan B, et al. Perovskite Quantum Dots for the Next‐Generation Displays: Progress and Prospect.Adv Funct Mater. 2024;34:2401284. [DOI]
Wu X, Jing Y, Zhong H. In Situ Fabricated Perovskite Quantum Dots: From Materials to Applications.Adv Mater. 2024;37:e2412276. [DOI] [PubMed]
Yoffe AD. Semiconductor quantum dots and related systems: Electronic, optical, luminescence and related properties of low dimensional systems.Adv Phys. 2001;50:1–208. [DOI]
Kairdolf BA, Smith AM, Stokes TH, Wang MD, Young AN, Nie S. Semiconductor quantum dots for bioimaging and biodiagnostic applications.Annu Rev Anal Chem (Palo Alto Calif). 2013;6:143–62. [DOI] [PubMed] [PMC]
Burks PT, Ostrowski AD, Mikhailovsky AA, Chan EM, Wagenknecht PS, Ford PC. Quantum dot photoluminescence quenching by Cr(III) complexes. Photosensitized reactions and evidence for a FRET mechanism.J Am Chem Soc. 2012;134:13266–75. [DOI] [PubMed]
García de Arquer FP, Talapin DV, Klimov VI, Arakawa Y, Bayer M, Sargent EH. Semiconductor quantum dots: Technological progress and future challenges.Science. 2021;373:eaaz8541. [DOI] [PubMed]
Leng M, Yang Y, Zeng K, Chen Z, Tan Z, Li S, et al. All‐Inorganic Bismuth‐Based Perovskite Quantum Dots with Bright Blue Photoluminescence and Excellent Stability.Adv Funct Mater. 2017;28:1704446. [DOI]
Huang H, Zhao F, Liu L, Zhang F, Wu X, Shi L, et al. Emulsion synthesis of size-tunable CH3NH3PbBr3 quantum dots: An alternative route toward efficient light-emitting diodes.ACS Appl Mater Interfaces. 2015;7:28128–33. [DOI]
Ha S, Su R, Xing J, Zhang Q, Xiong Q. Metal halide perovskite nanomaterials: synthesis and applications.Chem Sci. 2017;8:2522–36. [DOI] [PubMed] [PMC]
Duan Y, Li S, Gu K, Kuang Z, Du J, Zhang J. Interfacial mechanisms of enhanced photoluminescence in AgI-doped red light emitting perovskite quantum dot glass.J Colloid Interface Sci. 2025;684:625–34. [DOI] [PubMed]
Huo X, Xie Y, Sheng Y, Shao H, Hu Y, Yang L, et al. CsPbBr3 perovskite quantum dots-based Janus membrane with multifunction of luminescence, magnetism and aeolotropic electroconductivity.J Colloid Interface Sci. 2024;666:615–28. [DOI] [PubMed]
Li X, Zhang J, Liu J, Zhang F, Luo S, Ba H, et al. Controllable decomposition/recrystallization of water-sensitive CsPbBr3 glass ceramics for dynamic anti-counterfeiting with high security.J Colloid Interface Sci. 2024;676:72–9. [DOI] [PubMed]
Smith A, Duan H, Mohs A, Nie S. Bioconjugated quantum dots for in vivo molecular and cellular imaging.Adv Drug Deliv Rev. 2008;60:1226–40. [DOI] [PubMed] [PMC]
Yao G, Wang L, Wu Y, Smith J, Xu J, Zhao W, et al. FloDots: luminescent nanoparticles.Anal Bioanal Chem. 2006;385:518–24. [DOI] [PubMed]
Wang L, Wang K, Santra S, Zhao X, Hilliard LR, Smith JE, et al. Watching Silica Nanoparticles Glow in the Biological World.Anal Chem. 2006;78:646–54. [DOI]
Santra S, Zhang P, Wang K, Tapec R, Tan W. Conjugation of biomolecules with luminophore-doped silica nanoparticles for photostable biomarkers.Anal Chem. 2001;73:4988–93. [DOI] [PubMed]
Santra S, Wang K, Tapec R, Tan W. Development of novel dye-doped silica nanoparticles for biomarker application.J Biomed Opt. 2001;6:160–6. [DOI] [PubMed]
Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S, et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles.Proc Natl Acad Sci U S A. 2004;101:15027–32. [DOI] [PubMed] [PMC]
Qhobosheane M, Santra S, Zhang P, Tan W. Biochemically functionalized silica nanoparticles.Analyst. 2001;126:1274–8. [DOI] [PubMed]
Chen X, Liu Y, Tu D. Lanthanide-doped Luminescent Nanomaterials: From Fundamentals to Bio-applications. Berlin: Springer; 2014. [DOI]
Patel DK, Kesharwani R, Kumar V. Nanoparticles: an emerging platform for medical imaging.Nanoparticles Anal Med Devices. 2021:113–26. [DOI]
Kalra J, Krishna V, Reddy BS, Dhar A, Venuganti VV, Bhat A. Nanoparticles in medical imaging. In: Gopinath SCB, Gang F, editors. Nanoparticles in Analytical and Medical Devices. Amsterdam: Elsevier; 2021. pp. 175–210. [DOI]
Joseph T, Kar Mahapatra D, Esmaeili A, Piszczyk Ł, Hasanin M, Kattali M, et al. Nanoparticles: Taking a Unique Position in Medicine.Nanomaterials (Basel). 2023;13:574. [DOI] [PubMed] [PMC]
Ikumapayi OM, Ogedengbe TS, Afolalu SA, Ogundipe AT, Nnochiri ES. Bio-composites, fluorescence and colour – A brief overview.AIP Conf Proc. 2024;3007:100008. [DOI]
Aslam H, Nusrat N, Mansour M, Umar A, Ullah A, Honey S, et al. Photonic silver iodide nanostructures for optical biosensors.Explor BioMat-X. 2024;1:366–79. [DOI]
Stanić V, Radosavljević-Mihajlović AS, Živković-Radovanović V, Nastasijević B, Marinović-Cincović M, Marković JP, et al. Synthesis, structural characterisation and antibacterial activity of Ag+-doped fluorapatite nanomaterials prepared by neutralization method.Appl Surf Sci. 2015;337:72–80. [DOI]
Lee SH, Jun B. Silver Nanoparticles: Synthesis and Application for Nanomedicine.Int J Mol Sci. 2019;20:865. [DOI] [PubMed] [PMC]
Tanwar N, Upadhyay S, Priya R, Pundir S, Sharma P, Pandey O. Eu-doped BaTiO3 perovskite as an efficient electrocatalyst for oxygen evolution reaction.J Solid State Chem. 2023;317:123674. [DOI]
Zhang Y, Zhu X, Zhao Y, Zhang Q, Dai Q, Lu L, et al. CdWO₄:Eu³⁺ nanostructures for luminescent applications.ACS Appl Nano Mater. 2019;2:7095–102. [DOI]
Yang L, Peng S, Zhao M, Yu L. A facile strategy to prepare YVO4:Eu3+ colloid with novel nanostructure for enhanced optical performance.Appl Surf Sci. 2019;473:885–92. [DOI]
Stouwdam JW, Hebbink GA, Huskens J, van Veggel FCJM. Lanthanide-Doped Nanoparticles with Excellent Luminescent Properties in Organic Media.Chem Mater. 2003;15:4604–16. [DOI]
Rahali MA, Heinritz CL, Hagège A, Ronot P, Boos A, Charbonnière LJ, et al. Structure-Activity Optimization of Luminescent Tb-doped LaF3 Nanoparticles.Inorg Chem. 2024;63:12548–55. [DOI] [PubMed]
Buissette V, Moreau M, Gacoin T, Boilot JP, Chane-Ching JY, Le Mercier T. Colloidal synthesis of luminescent rhabdophane LaPO4:Ln3+xH2O (Ln= Ce, Tb, Eu; x ≈ 0.7) nanocrystals.Chem Mater. 2004;16:3767–73. [DOI]
Priya R, Mariappan R, Karthikeyan A, Palani E, Krishnamoorthy E, Gowrisankar G. Review on rare earth metals doped LaPO4 for optoelectronic applications.Solid State Commun. 2021;339:114457. [DOI]
Ni Z, Liu M, Li B, Shi X, Cao Q, Pan D. Room-temperature, ultrafast, and aqueous-phase synthesis of ultrasmall LaPO4: Ce3+, Tb3+ nanoparticles with a photoluminescence quantum yield of 74%.Inorg Chem. 2023;62:4727–34. [DOI]
Krishnapriya TK, Deepti A, Chakrapani PSB, Asha AS, Jayaraj MK. Biocompatible, Europium-Doped Fluorapatite Nanoparticles as a Wide-Range pH Sensor.J Fluoresc. 2023;34:2543–55. [DOI] [PubMed]
Zeng H, Li X, Sun M, Wu S, Chen H. Synthesis of Europium-Doped Fluorapatite Nanorods and Their Biomedical Applications in Drug Delivery.Molecules. 2017;22:753. [DOI] [PubMed] [PMC]
Li L, Wang W, Tang J, Wang Y, Liu J, Huang L, et al. Classification, Synthesis, and Application of Luminescent Silica Nanoparticles: a Review.Nanoscale Res Lett. 2019;14:190. [DOI] [PubMed] [PMC]
Kömpe K, Borchert H, Storz J, Lobo A, Adam S, Möller T, et al. Green-emitting CePO4:Tb/LaPO4 core–shell nanoparticles with 70 % photoluminescence quantum yield.Angew Chem Int Ed. 2003;42:5513–6. [DOI]
Tegafaw T, Zhao D, Liu Y, Yue H, Saidi AKAA, Baek A, et al. High Quantum Yields and Biomedical Fluorescent Imaging Applications of Photosensitized Trivalent Lanthanide Ion-Based Nanoparticles.Int J Mol Sci. 2024:11419. [DOI] [PubMed] [PMC]
Liu Z, Zhao J, Shen D, Lei L, Xu S. Unveiling the mechanism behind shell thickness-dependent X-ray excited optical and persistent luminescence in lanthanide-doped core/shell nanoparticles.J Mater Chem C. 2025;13:649–54. [DOI]
Wang K, He X, Yang X, Shi H. Functionalized silica nanoparticles: a platform for fluorescence imaging at the cell and small animal levels.Acc Chem Res. 2013;46:1367–76. [DOI] [PubMed]
Zheng B, Fan J, Chen B, Qin X, Wang J, Wang F, et al. Rare-Earth Doping in Nanostructured Inorganic Materials.Chem Rev. 2022;122:5519–603. [DOI] [PubMed]
Ferro-Flores G, Ancira-Cortez A, Ocampo-García B, Meléndez-Alafort L. Molecularly Targeted Lanthanide Nanoparticles for Cancer Theranostic Applications.Nanomaterials (Basel). 2024;14:296. [DOI] [PubMed] [PMC]
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications.Biosensors (Basel). 2022;12:1036. [DOI] [PubMed] [PMC]
Zhang ZH, Zhang XB, Wang P, Xu SH, Liang ZQ, Ye CQ, et al. Dye-sensitized lanthanide-doped upconversion nanoprobe for enhanced sensitive detection of Fe3+ in human serum and tap water.Spectrochim Acta A: Mol Biomol Spectrosc. 2024;322:124834. [DOI]
Anjana R, Krishnapriya T, Jayaraj M. Clean synthesis of Er, Yb doped fluorapatite upconversion luminescent nanoparticles through liquid phase pulsed laser ablation.Opt Laser Technol. 2020;131:106452. [DOI]
Sun C, Gradzielski M. Advances in fluorescence sensing enabled by lanthanide-doped upconversion nanophosphors.Adv Colloid Interface Sci. 2022;300:102579. [DOI] [PubMed]
French AD. Glucose, not cellobiose, is the repeating unit of cellulose and why that is important.Cellulose. 2017;24:4605–9. [DOI]
Gregory DA, Tripathi L, Fricker AT, Asare E, Orlando I, Raghavendran V, et al. Bacterial cellulose: A smart biomaterial with diverse applications.Mater Sci Eng R Rep. 2021;145:100623. [DOI]
Zhai S, Chen H, Zhang Y, Li P, Wu W. Nanocellulose: a promising nanomaterial for fabricating fluorescent composites.Cellulose. 2022;29:7011–35. [DOI]
Qi Y, Guo Y, Liza AA, Yang G, Sipponen MH, Guo J, et al. Nanocellulose: a review on preparation routes and applications in functional materials.Cellulose. 2023;30:4115–47. [DOI]
Fernandes M, Alves C, Melro L, Fernandes RDV, Padrão J, Salgado AJ, et al. Modification of nanocellulose. In: Thomas S, Hosur M, Pasquini D, Jose Chirayil C, editors. Handbook of biomass. Singapore: Springer; 2024. pp. 919–57. [DOI]
Miyashiro D, Hamano R, Umemura K. A Review of Applications Using Mixed Materials of Cellulose, Nanocellulose and Carbon Nanotubes.Nanomaterials (Basel). 2020;10:186. [DOI] [PubMed] [PMC]
Lin N, Dufresne A. Nanocellulose in biomedicine: Current status and future prospect.Eur Polym J. 2014;59:302–25. [DOI]
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials.Angew Chem Int Ed Engl. 2011;50:5438–66. [DOI] [PubMed]
Habibi Y. Key advances in the chemical modification of nanocelluloses.Chem Soc Rev. 2014;43:1519–42. [DOI] [PubMed]
Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, et al. Review: current international research into cellulose nanofibres and nanocomposites.J Mater Sci. 2010;45:1–33. [DOI]
Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, et al. Current characterization methods for cellulose nanomaterials.Chem Soc Rev. 2018;47:2609–79. [DOI] [PubMed]
Lazarenko MM, Alekseev OM, Kondratenko SV, Kovalchuk VI, Nedilko SG, Sherbatskii VP, et al. Physical-chemical properties of nanocellulose synthesized from Miscanthus x Giganteus.Mol Cryst Liq Cryst. 2023;768:42–56. [DOI]
Jonas R, Farah LF. Production and application of microbial cellulose.Polym Degrad Stab. 1998;59:101–6. [DOI]
Iguchi M, Yamanaka S, Budhiono A. Bacterial cellulose—a masterpiece of nature’s arts.J Mater Sci. 2000;35:261–70. [DOI]
Lahiri D, Nag M, Dutta B, Dey A, Sarkar T, Pati S, et al. Bacterial Cellulose: Production, Characterization, and Application as Antimicrobial Agent.Int J Mol Sci. 2021;22:12984. [DOI] [PubMed] [PMC]
Wang Z, Li S, Zhao X, Liu Z, Shi R, Hao M. Applications of bacterial cellulose in the food industry and its health-promoting potential.Food Chem. 2025;464:141763. [DOI] [PubMed]
Reddy MI, Sethuramalingam P, Sahu RK. Isolation of microcrystalline cellulose from Musa paradisiaca (banana) plant leaves: physicochemical, thermal, morphological, and mechanical characterization for lightweight polymer composite applications.J Polym Res. 2024;31:114. [DOI]
Hao X, Tian Z, Wang Y, Xie Z, Ji X. Characterization of microcrystalline cellulose prepared from long and short fibers and its application in ibuprofen tablets.Int J Biol Macromol. 2024;265:130532. [DOI] [PubMed]
Ventura-Cruz S, Tecante A. Nanocellulose and microcrystalline cellulose from agricultural waste: Review on isolation and application as reinforcement in polymeric matrices.Food Hydrocoll. 2021;118:106771. [DOI]
Tian C, Yi J, Wu Y, Wu Q, Qing Y, Wang L. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.Carbohydr Polym. 2016;136:485–92. [DOI] [PubMed]
Liu W, Liu K, Wang Y, Lin Q, Liu J, Du H, et al. Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions.Ind Crops Prod. 2022;185:115123. [DOI]
Tarchoun AF, Trache D, Klapötke TM, Derradji M, Bessa W. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media.Cellulose. 2019;26:7635–51. [DOI]
Leppänen K, Andersson S, Torkkeli M, Knaapila M, Kotelnikova N, Serimaa R. Structure of cellulose and microcrystalline cellulose from various wood species, cotton and flax studied by X-ray scattering.Cellulose. 2009;16:999–1015. [DOI]
Bao C, Chen X, Liu C, Liao Y, Huang Y, Hao L, et al. Extraction of cellulose nanocrystals from microcrystalline cellulose for the stabilization of cetyltrimethylammonium-bromide-enhanced Pickering emulsions.Colloids Surf A. 2021;608:125442. [DOI]
Wang S, Wang Q, Kai Y. Cellulose nanocrystals obtained from microcrystalline cellulose by p-toluene sulfonic acid hydrolysis, NaOH and ethylenediamine treatment.Cellulose. 2022;29:1637–46. [DOI]
Nedilko S, Chornii V, Terebilenko K, Teselko P, Scherbatskyi V, Gerasymchuk D, et al. Luminescent composites based on nanocellulose and K3Tb(PO4)2 phosphor – preparation and properties. In: 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP). IEEE; 2023. [DOI]
Ren T, Peng J, Yuan H, Liu Z, Li Q, Ma Q, et al. Nanocellulose-based hydrogel incorporating silver nanoclusters for sensitive detection and efficient removal of hexavalent chromium.Eur Polym J. 2022;175:111343. [DOI]
Saiki E, Iwase H, Horikawa Y, Shikata T. Structure and Conformation of Hydroxypropylmethyl Cellulose with a Wide Range of Molar Masses in Aqueous Solution—Effects of Hydroxypropyl Group Addition.Biomacromolecules. 2023;24:4199–207. [DOI] [PubMed]
Wang H, Guo L, Wu M, Chu G, Zhu W, Song J, et al. The Improved Redispersibility of Cellulose Nanocrystals Using Hydroxypropyl Cellulose and Structure Color from Redispersed Cellulose Nanocrystals.Biomacromolecules. 2024;25:8006–15. [DOI] [PubMed]
Huang C, Ye Q, Dong J, Li L, Wang M, Zhang Y, et al. Biofabrication of natural Au/bacterial cellulose hydrogel for bone tissue regeneration via in-situ fermentation.Smart Mater Med. 2023;4:1–14. [DOI]
Izzati Zulkifli N, Samat N, Anuar H, Zainuddin N. Mechanical properties and failure modes of recycled polypropylene/microcrystalline cellulose composites.Mater Des. 2015;69:114–23. [DOI]
Mugwagwa LR, Chimphango AF. Physicochemical properties and potential application of hemicellulose/pectin/nanocellulose biocomposites as active packaging for fatty foods.Food Packag Shelf Life. 2022;31:100795. [DOI]
Vidal CP, Velásquez E, Galotto MJ, de Dicastillo CL. Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging.Food Packag Shelf Life. 2022;31:100802. [DOI]
Hu H, Zhang X, Liu W, Hou Q, Wang Y. Advances in bioinspired and multifunctional biomaterials made from chiral cellulose nanocrystals.Chem Eng J. 2023;474:145980. [DOI]
Acuña AU, Amat-Guerri F, Morcillo P, Liras M, Rodríguez B. Structure and formation of the fluorescent compound of Lignum nephriticum.Org Lett. 2009;11:3020–3. [DOI] [PubMed]
Fritz M, Körsten S, Chen X, Yang G, Lv Y, Liu M, et al. High-resolution particle size and shape analysis of the first Samarium nanoparticles biosynthesized from aqueous solutions via cyanobacteria Anabaena cylindrica.NanoImpact. 2022;26:100398. [DOI] [PubMed]
Ilyas R, Asyraf MRM, Rajeshkumar L, Awais H, Siddique A, Shaker K, et al. A review of bio-based nanocellulose epoxy composites.J Env Chem Eng. 2024;12:113835. [DOI]
Patel DK, Dutta SD, Hexiu J, Ganguly K, Lim K. Bioactive electrospun nanocomposite scaffolds of poly(lactic acid)/cellulose nanocrystals for bone tissue engineering.Int J Biol Macromol. 2020;162:1429–41. [DOI] [PubMed]
Jackson JC, Camargos CHM, Noronha VT, Paula AJ, Rezende CA, Faria AF. Sustainable Cellulose Nanocrystals for Improved Antimicrobial Properties of Thin Film Composite Membranes.ACS Sustain Chem Eng. 2021;9:6534–40. [DOI]
Shi Y, Jiao H, Sun J, Lu X, Yu S, Cheng L, et al. Functionalization of nanocellulose applied with biological molecules for biomedical application: A review.Carbohydr Polym. 2022;285:119208. [DOI] [PubMed]
Best MG, Cunha-Reis C, Ganin AY, Sousa A, Johnston J, Oliveira AL, et al. Antimicrobial properties of gallium(III)- and iron(III)-loaded polysaccharides affecting the growth of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, in vitro.ACS Appl Bio Mater. 2020;3:7589–97. [DOI]
Sarwar Z, Abbas MK, Shad NA, Akhtar K, Mobeen A, Abbas W, et al. Anticancer and acute toxicity studies of cellulose-coated Vanadium oxide nanomaterials.J Mol Structure. 2025;1322:140633. [DOI]
Maryam S, Krukiewicz K. Sweeten the pill: Multi-faceted polysaccharide-based carriers for colorectal cancer treatment.Int J Biol Macromol. 2024;282:136696. [DOI] [PubMed]
Dang X, Li N, Yu Z, Ji X, Yang M, Wang X. Advances in the preparation and application of cellulose-based antimicrobial materials: A review.Carbohydr Polym. 2024;342:122385. [DOI] [PubMed]
Zubair M, Hussain A, Shahzad S, Arshad M, Ullah A. Emerging trends and challenges in polysaccharide-derived materials for wound-care applications: a review.Int J Biol Macromol. 2024;270:132048. [DOI]
Uyanga KA, Li W, Daoud WA. Exploiting cellulose-based hydrogels for sustainable, intelligent wearables in pandemic preparedness and control.Eur Polym J. 2024;212:113041. [DOI]
Selvaraj S, Chauhan A, Dutta V, Verma R, Rao SK, Radhakrishnan A, et al. A state-of-the-art review on plant-derived cellulose-based green hydrogels and their multifunctional role in advanced biomedical applications.Int J Biol Macromol. 2024;265:130991. [DOI] [PubMed]
Panraksa P, Chaiwarit T, Chanabodeechalermrung B, Worajittiphon P, Jantrawut P. Fabrication of Cellulose Derivatives-Based Highly Porous Floating Tablets for Gastroretentive Drug Delivery via Sugar Templating Method.Polymers (Basel). 2025;17:485. [DOI] [PubMed] [PMC]
Zupančič O, Fraga RM, Paudel A. Role of polymers in tableting.In: Polymers for Oral Drug Delivery Technologies. Amsterdam: Elsevier; 2025. pp. 335–88. [DOI]
Arca HC, Mosquera-Giraldo LI, Bi V, Xu D, Taylor LS, Edgar KJ. Pharmaceutical Applications of Cellulose Ethers and Cellulose Ether Esters.Biomacromolecules. 2018;19:2351–76. [DOI] [PubMed]
Kim J, Rackstraw NB, Weinstein TJ, Reiner B, Leal L, Ogawa K, et al. Cellulose Etherification with Glycidol for Aqueous Rheology Modification.ACS Appl Polym Mater. 2024;6:6714–25. [DOI]
Hou D, Li P, Zhang K, Li M, Feng Z, Yan C, et al. Insight into the Feasibility of Fatty Acyl Chlorides with 10-18 Carbons for the Ball-Milling Synthesis of Thermoplastic Cellulose Esters.Biomacromolecules. 2024;25:1923–32. [DOI] [PubMed]
Liu Y, Della Rocca J, Schenck L, Koynov A, Sifri RJ, Winston MS, et al. Poly(vinylpyridine-co-vinylpyridine N-oxide) Excipients Mediate Rapid Dissolution and Sustained Supersaturation of Posaconazole Amorphous Solid Dispersions.Mol Pharm. 2024;21:1182–91. [DOI] [PubMed]
Yoshida M, Hozumi H, Horikawa Y, Shikata T. Viscoelastic Behavior of Aqueous Hydroxypropyl Cellulose Solutions Due to Entanglements.Biomacromolecules. 2025;26:1294–304. [DOI] [PubMed]
Kim D, Elf P, Nilsson F, Hedenqvist MS, Larsson A. In-Depth Understanding of the Effect of the Distribution of Substituents on the Morphology and Physical Properties of Ethylcellulose: Molecular Dynamics Simulations Insights.Biomacromolecules. 2024;25:4046–62. [DOI] [PubMed] [PMC]
Stankovits G, Szayly K, Galata DL, Móczó J, Szilágyi A, Gyarmati B. The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.Mater Today Bio. 2025;30:101416. [DOI] [PubMed] [PMC]
Yuan Z, Wang J, Niu X, Ma J, Qin X, Li L, et al. A Study of the Surface Adhesion and Rheology Properties of Cationic Conditioning Polymers.Ind Eng Chem Res. 2019;58:9390–6. [DOI]
Chen J, Nichols BLB, Norris AM, Frazier CE, Edgar KJ. All-Polysaccharide, Self-Healing Injectable Hydrogels Based on Chitosan and Oxidized Hydroxypropyl Polysaccharides.Biomacromolecules. 2020;21:4261–72. [DOI] [PubMed]
Wu Z, Deng W, Luo J, Deng D. Multifunctional nano-cellulose composite films with grape seed extracts and immobilized silver nanoparticles.Carbohydr Polym. 2019;205:447–55. [DOI] [PubMed]
Niroula A, Gamot TD, Ooi CW, Dhital S. Biomolecule-based pickering food emulsions: Intrinsic components of food matrix, recent trends and prospects.Food Hydrocoll. 2021;112:106303. [DOI]
Nelson R. International Plant Pathology: Past and Future Contributions to Global Food Security.Phytopathology. 2020;110:245–53. [DOI] [PubMed]
Syaikhu A, Soeryaprawira RML, Daswara YA, Sarungu CM. Analysis and Design of QR Code Based Information System on Plant Identification.Int J New Media Technology. 2023;9:35–47. [DOI]
Paul J, Ahankari SS. Nanocellulose-based aerogels for water purification: A review.Carbohydr Polym. 2023;309:120677. [DOI] [PubMed]
Norfarhana A, Ilyas R, Ngadi N. A review of nanocellulose adsorptive membrane as multifunctional wastewater treatment.Carbohydr Polym. 2022;291:119563. [DOI] [PubMed]
Lin J, Ye W, Xie M, Seo DH, Luo J, Wan Y, et al. Environmental impacts and remediation of dye-containing wastewater.Nat Rev Earth Environ. 2023;4:785–803. [DOI]
Bates IIC, Carrillo IBS, Germain H, Loranger É, Chabot B. Antibacterial electrospun chitosan-PEO/TEMPO-oxidized cellulose composite for water filtration.J Env Chem Eng. 2021;9:106204. [DOI]
Mo L, Tan Y, Shen Y, Zhang S. Highly compressible nanocellulose aerogels with a cellular structure for high-performance adsorption of Cu(II).Chemosphere. 2022;291:132887. [DOI] [PubMed]
Sun H, Guo Y, Zelekew OA, Abdeta AB, Kuo DH, Wu Q, et al. Biological renewable nanocellulose-templated CeO2/TiO2 synthesis and its photocatalytic removal efficiency of pollutants.J Mol Liq. 2021;336:116873. [DOI]
Langari MM, Antxustegi MM, Labidi J. Nanocellulose-based sensing platforms for heavy metal ions detection: A comprehensive review.Chemosphere. 2022;302:134823. [DOI] [PubMed]
Li Z, Zhang M, An C, Yang H, Feng L, Cui Z, et al. A colorimetric and fluorescent probe of lignocellulose nanofiber composite modified with Rhodamine 6G derivative for reversible, selective and sensitive detection of metal ions in wastewater.Int J Biol Macromol. 2024;267:131416. [DOI] [PubMed]
Emenike EC, Iwuozor KO, Saliu OD, Ramontja J, Adeniyi AG. Advances in the extraction, classification, modification, emerging and advanced applications of crystalline cellulose: A review.Carbohydr Polym Technol Appl. 2023;6:100337. [DOI]
Bateh RP, Winefordner JD. An evaluation of cellulose as a substrate for room-temperature phosphorescence.Talanta. 1982;29:713–7. [DOI] [PubMed]
Pikulev V, Loginova S, Gurtov V. Luminescence properties of silicon-cellulose nanocomposite.Nanoscale Res Lett. 2012;7:426. [DOI] [PubMed] [PMC]
Tylli H, Forsskåhl I, Olkkonen C. The effect of heat and IR radiation on the fluorescence of cellulose.Cellulose. 2000;7:133–46. [DOI]
Castellan A, Choudhury H, Davidson RS, Grelier S. Comparative study of stone-ground wood pulp and native wood. 2. Comparison of the fluorescence of stone-ground wood pulp and native wood.J Photochem Photobiol A Chem. 1994;81:117–22. [DOI]
Korntner P, Hosoya T, Dietz T, Eibinger K, Reiter H, Spitzbart M, et al. Chromophores in lignin-free cellulosic materials belong to three compound classes. Chromophores in cellulosics, XII.Cellulose. 2015;22:1053–62. [DOI]
Grönroos P, Bessonoff M, Salminen K, Paltakari J, Kulmala S. Phosphorescence and fluorescence of fibrillar cellulose films.Nord Pulp amp Pap Res J. 2018;33:246–55. [DOI]
Nedilko SG, Revo SL, Chornii VP, Scherbatskyi VP, Nedielko MS. Luminescent determination of nitrite traces in water solutions using cellulose as sorbent.J Sens Sens Syst. 2015;4:31–6. [DOI]
Zou C, Qu D, Jiang H, Lu D, Ma X, Zhao Z, et al. Bacterial Cellulose: A Versatile Chiral Host for Circularly Polarized Luminescence.Molecules. 2019;24:1008. [DOI] [PubMed] [PMC]
Gavrilov MZ, Ermolenko IN. A study of cellulose luminescence.J Appl Spectrosc. 1966;5:542–4. [DOI]
McAleese DL, Dunlap RB. Reduction of background emission in room-temperature phosphorescence.Anal Chem. 1984;56:600–601. [DOI]
Schmidt J. Electronic spectroscopy of lignins. In: Heitner C, Dimmel D, Schmidt J, editors. Lignin and lignans: advances in chemistry. Boca Raton: CRC Press; 2010. pp. 49–102.
Da Silva Perez D, Ruggiero R, Morais LC, Machado AEH, Mazeau K. Theoretical and experimental studies on the adsorption of aromatic compounds onto cellulose.Langmuir. 2004;20:3151–8. [DOI] [PubMed]
Bikova T, Treimanis A. UV-absorbance of oxidized xylan and monocarboxyl cellulose in alkaline solutions.Carbohydr Polym. 2004;55:315–22. [DOI]
Mustalish RA. Optical brighteners: history and technology.Stud Conserv. 2000;45:133–6. [DOI]
Castellan A, Ruggiero R, Frollini E, Ramos LA, Chirat C. Studies on fluorescence of cellulosics.Holzforschung. 2007;61:504–8. [DOI]
Liukko S, Tasapuro V, Liitiä T. Fluorescence spectroscopy for chromophore studies on bleached kraft pulps.Holzforschung. 2007;61:509–15. [DOI]
Vikkula A, Valkama J, Vuorinen T. Formation of Aromatic and Other Unsaturated End Groups in Carboxymethyl Cellulose During Hot Alkaline Treatment.Cellulose. 2006;13:593–600. [DOI]
Davidson RS, Dunn LA, Castellan A, Nourmamode A. A study of the photobleaching and photoyellowing of paper containing lignin using fluorescence spectroscopy.J Photochem Photobiol Chem. 1991;58:349–59. [DOI]
Rosenau T, Potthast A, Krainz K, Yoneda Y, Dietz T, Shields ZP, et al. Chromophores in cellulosics, VI. First isolation and identification of residual chromophores from aged cotton linters.Cellulose. 2011;18:1623–33. [DOI]
Rosenau T, Potthast A, Krainz K, Hettegger H, Henniges U, Yoneda Y, et al. Chromophores in cellulosics, XI: isolation and identification of residual chromophores from bacterial cellulose.Cellulose. 2014;21:2271–83. [DOI]
Kovalov KM, Alekseev OM, Lazarenko MM, Zabashta YF, Grabovskii YE, Tkachov SY. Influence of Water on the Structure and Dielectric Properties of the Microcrystalline and Nano-Cellulose.Nanoscale Res Lett. 2017;12:468. [DOI] [PubMed] [PMC]
Zhu W, Guan J, Li W, Fang H, He M, Sun J, et al. Aligned regenerated cellulose films with enhanced mechanical and optical properties for light management.Colloids Surf A: Physicochem Eng Asp. 2023;674:131985. [DOI]
Lazarenko MM, Nedilko SG, Shevtsov DO, Scherbatskyi VP, Barbash VA, Yablochkova KS, et al. Dielectric and photoluminescent properties of the water–cellulose–NaCl systems in a wide range of temperatures: what is the role of ions? In: Fesenko O, Yatsenko L, editors. Proceedings of Nanooptics and photonics, nanochemistry and nanobiotechnology, and their applications: selected proceedings of the IX International Conference Nanotechnology and Nanomaterials (NANO 2021); 2021 Aug 25–28; Lviv, Ukraine. Cham: Springer; 2023. pp. 419–41. [DOI]
Lazarenko MM, Nedilko SG, Alekseev SA, Tkachov SY, Shevtsov DO, Scherbatskyi VP, et al. Electric and spectral properties of solid water-nanocellulose systems in a wide range of temperatures. In: Fesenko O, Yatsenko L, editors. Proceedings of Nanooptics and photonics, nanochemistry and nanobiotechnology, and their applications: selected proceedings of the 8th International Conference Nanotechnology and Nanomaterials (NANO 2020); 2020 Aug 26–29; Lviv, Ukraine. Cham: Springer; 2021. pp. 51–73. [DOI]
Zhao H, Chen Z, Du X, Chen L. Contribution of different state of adsorbed water to the sub-Tg dynamics of cellulose.Carbohydr Polym. 2019;210:322–31. [DOI] [PubMed]
Barbash VA, Yashchenko OV, Opolsky VO. Effect of Hydrolysis Conditions of Organosolv Pulp from Kenaf Fibers on the Physicochemical Properties of the Obtained Nanocellulose.Theor Exp Chem. 2018;54:193–8. [DOI]
Lakowicz JR. Principles of Fluorescence Spectroscopy. 3rd ed. Boston: Springer US; 2006. [DOI]
Lazarenko M, Scherbatskyi V, Sobchuk A, Nedilko S, Kovalchuk, et al. Influence of Na+ and Cl- ions on the properties of hydroxypropylcellulose solutions. Proceedings of 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO); 2022 Oct 10–14; Kyiv, Ukraine. IEEE; 2022. pp. 418–21. [DOI]
Lazarenko MM, Alekseev OM, Nedilko SG, Sobchuk AO, Kovalchuk VI, Gryn SV, et al. Impact of the alkali metals ions on the dielectric relaxation and phase transitions in water solutions of the hydroxypropylcellulose. In: Fesenko O, Yatsenko L, editors. Proceedings of Nanoelectronics, Nanooptics, Nanochemistry and Nanobiotechnology, and Their Applications (NANO 2022); 2022 Aug 25–27; Ukraine. Cham: Springer; 2023. pp. 37–68. [DOI]
Lu X, Hu Z, Gao J. Synthesis and Light Scattering Study of Hydroxypropyl Cellulose Microgels.Macromolecules. 2000;33:8698–702. [DOI]
Lodge TP, Maxwell AL, Lott JR, Schmidt PW, McAllister JW, Morozova S, et al. Gelation, Phase Separation, and Fibril Formation in Aqueous Hydroxypropylmethylcellulose Solutions.Biomacromolecules. 2018;19:816–24. [DOI] [PubMed]
Alekseev OM, Zabashta YF, Kovalchuk VI, Lazarenko MM, Rudnikov EG, Bulavin LA. Structural Transition in Dilute Solutions of Rod-Like Macromolecules.Ukr J Phys. 2020;65:50–4. [DOI]
Lamas CP, Vega C, Noya EG. Freezing point depression of salt aqueous solutions using the Madrid-2019 model.J Chem Phys. 2022;156:134503. [DOI] [PubMed]
Dong S, Roman M. Fluorescently labeled cellulose nanocrystals for bioimaging applications.J Am Chem Soc. 2007;129:13810–1. [DOI] [PubMed]
Leng T, Jakubek ZJ, Mazloumi M, Leung ACW, Johnston LJ. Ensemble and Single Particle Fluorescence Characterization of Dye-Labeled Cellulose Nanocrystals.Langmuir. 2017;33:8002–11. [DOI] [PubMed]
Tian W, Zhang J, Yu J, Wu J, Zhang J, He J, et al. Phototunable Full‐Color Emission of Cellulose‐Based Dynamic Fluorescent Materials.Adv Funct Mater. 2017;28:1703548. [DOI]
Peng F, Liu H, Xiao D, Guo L, Yue F, Würfe H, et al. Green fabrication of high-strength transparent cellulose-based films with durable fluorescence and UV-blocking performance.J Mater Chem A. 2022;10:7811–7. [DOI]
Campora LD, Metzger C, Dähnhardt-Pfeiffer S, Drexel R, Meier F, Fürtauer S. Fluorescence Labeling of Cellulose Nanocrystals-A Facile and Green Synthesis Route.Polymers (Basel). 2022;14:1820. [DOI] [PubMed] [PMC]
Yao Y, Xue J, Wang M, Fu D, Shen Y, Xue Y, et al. Tunable Photoluminescent, Water-Resistant and flexible films prepared using hollow Cellulose-Based microspheres encapsulating hydrophobic fluorescent dyes.Chem Eng J. 2024;482:149116. [DOI]
Droguet BE, Liang H, Frka-Petesic B, Parker RM, De Volder MFL, Baumberg JJ, et al. Large-scale fabrication of structurally coloured cellulose nanocrystal films and effect pigments.Nat Mater. 2021;21:352–8. [DOI] [PubMed]
Grate JW, Mo K, Shin Y, Vasdekis A, Warner MG, Kelly RT, et al. Alexa fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments.Bioconjug Chem. 2015;26:593–601. [DOI] [PubMed]
Du L, Jiang B, Chen X, Wang Y, Zou L, Liu Y, et al. Clustering-triggered Emission of Cellulose and Its Derivatives.Chin J Polym Sci. 2019;37:409–15. [DOI]
Iimori T, Ishikawa T, Torii Y, Tamaya H, Nakano H, Kanno M. Effect of rigidity of microenvironment on fluorescence of 7,7,8,8-tetracyanoquinodimethane (TCNQ).Chem Phys Lett. 2020;738:136912. [DOI]
Zeng M, Li T, Liu Y, Lin X, Zu X, Mu Y, et al. Cellulose-based photo-enhanced persistent room-temperature phosphorescent materials by space stacking effects.Chem Eng J. 2022;446:136935. [DOI]
Lopez SG, Crovetto L, Alvarez-Pez JM, Talavera EM, Román ES. Fluorescence enhancement of a fluorescein derivative upon adsorption on cellulose.Photochem Photobiol Sci. 2014;13:1311–20. [DOI] [PubMed]
Wang J, Tavakoli J, Tang Y. Bacterial cellulose production, properties and applications with different culture methods - A review.Carbohydr Polym. 2019;219:63–76. [DOI] [PubMed]
Podolich O, Zaets I, Kukharenko O, Orlovska I, Reva O, Khirunenko L, et al. Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions.Astrobiology. 2017;17:459–69. [DOI] [PubMed]
Boyko V, Chornii V, Nedilko S, Scherbatskyi V, Krolenko K, Shegeda M. Preparation and study of the bacterial nanocellulose properties.Energy Autom. 2021:120–30. [DOI]
Malešič J, Kolar J, Strlič M, Kočar D, Fromageot D, Lemaire J, et al. Photo-induced degradation of cellulose.Polym Degrad Stab. 2005;89:64–9. [DOI]
Cheng H, Wei X, Qiu H, Wang W, Su W, Zheng Y. Chemically stable fluorescent anti-counterfeiting labels achieved by UV-induced photolysis of nanocellulose.RSC Adv. 2021;11:18381–6. [DOI] [PubMed] [PMC]
Hon DN. Photooxidative degradation of cellulose: Reactions of the cellulosic free radicals with oxygen.J Polym Sci Polym Chem Ed. 1979;17:441–54. [DOI]
Reisky L, Stanetty C, Mihovilovic MD, Schweder T, Hehemann J, Bornscheuer UT. Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T.Appl Microbiol Biotechnol. 2018;102:6987–96. [DOI] [PubMed]
Ding Q, Han W, Li X, Jiang Y, Zhao C. New insights into the autofluorescence properties of cellulose/nanocellulose.Sci Rep. 2020;10:21387. [DOI] [PubMed] [PMC]
Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, et al. Bioengineering and Application of Novel Glucose Polymers.Biocatal Biotransformation. 2003;21:167–72. [DOI]
Zhou L, Yang X, Xu J, Shi M, Wang F, Chen C, et al. Depolymerization of cellulose to glucose by oxidation–hydrolysis.Green Chem. 2015;17:1519–24. [DOI]
El Miri N, Heggset EB, Wallsten S, Svedberg A, Syverud K, Norgren M. A comprehensive investigation on modified cellulose nanocrystals and their films properties.Int J Biol Macromol. 2022;219:998–1008. [DOI] [PubMed]
Zhou Y, Park H, Kim P, Jiang Y, Costello CE. Surface oxidation under ambient air--not only a fast and economical method to identify double bond positions in unsaturated lipids but also a reminder of proper lipid processing.Anal Chem. 2014;86:5697–705. [DOI] [PubMed] [PMC]
Tan C, Wang Q. Luminescent Cu2+ probes based on rare-earth (Eu3+ and Tb3+) emissive transparent cellulose hydrogels.J Fluoresc. 2012;22:1581–6. [DOI] [PubMed]
Skwierczyńska M, Runowski M, Goderski S, Szczytko J, Rybusiński J, Kulpiński P, et al. Luminescent-Magnetic Cellulose Fibers, Modified with Lanthanide-Doped Core/Shell Nanostructures.ACS Omega. 2018;3:10383–90. [DOI] [PubMed] [PMC]
Nogi M, Yano H. Transparent Nanocomposites Based on Cellulose Produced by Bacteria Offer Potential Innovation in the Electronics Device Industry.Adv Mater. 2008;20:1849–52. [DOI]
Yang Q, Zhang C, Shi Z, Wang J, Xiong C, Saito T, et al. Luminescent and Transparent Nanocellulose Films Containing Europium Carboxylate Groups as Flexible Dielectric Materials.ACS Appl Nano Mat. 2018;1:4972–9. [DOI]
Kachwal V, Tan J. Stimuli-Responsive Electrospun Fluorescent Fibers Augmented with Aggregation-Induced Emission (AIE) for Smart Applications.Adv Sci (Weinh). 2022;10:e2204848. [DOI] [PubMed] [PMC]
Wang Y, Ren J, Ye C, Pei Y, Ling S. Thermochromic Silks for Temperature Management and Dynamic Textile Displays.Nanomicro Lett. 2021;13:72. [DOI] [PubMed] [PMC]
Wibowo AC, Misra M, Park HM, Drzal LT, Schalek R, Mohanty AK. Biodegradable nanocomposites from cellulose acetate: Mechanical, morphological, and thermal properties.Compos Part A: Appl Sci Manuf. 2006;37:1428–33. [DOI]
Gaurav A, Ashamol A, Deepthi MV, Sailaja RRN. Biodegradable nanocomposites of cellulose acetate phthalate and chitosan reinforced with functionalized nanoclay: Mechanical, thermal, and biodegradability studies.J Appli Polym Sci. 2011;125:E16–26. [DOI]
Olaru N, Olaru L, Tudorachi N, Dunca S, Pintilie M. Nanostructures of Cellulose Acetate Phthalate Obtained by Electrospinning from 2-Methoxyethanol-Containing Solvent Systems: Morphological Aspects, Thermal Behavior, and Antimicrobial Activity.Ind Eng Chem Res. 2012;52:696–705. [DOI]
da Silva NM, Duarte CJA, Lopes MS, Lima SO, Gabriel AM, de Assis Valadares LP, et al. Exploring cellulose-derived esters/curcumin materials: Synthesis, characterization, and biological assay in zebrafish model.Int J Biol Macromol. 2025;307:142007. [DOI] [PubMed]
Nayak SK, Amela-Cortes M, Roiland C, Cordier S, Molard Y. From metallic cluster-based ceramics to nematic hybrid liquid crystals: a double supramolecular approach.Chem Commun (Camb). 2015;51:3774–7. [DOI] [PubMed]
Guy K, Ehni P, Paofai S, Forschner R, Roiland C, Amela‐Cortes M, et al. Lord of The Crowns: A New Precious in the Kingdom of Clustomesogens.Angew Chem Int Ed Engl. 2018;57:11692–6. [DOI] [PubMed]
Yao Y, Cheng H, Han J, Wang H, Liang Z. Fabricating enduring fluorescence cotton fabric with the energy transfer effect of Eu-containing polyoxometalate.Cellulose. 2025;32:3433–44. [DOI]
Bao X, Wang C, Zhang Z, Cao Q, Liu F, Chen J, et al. Wet spinning to prepare filaments from three cellulose carbonated derivatives: Synthesis, characterization and filament properties.Carbohydr Polym Technol Appl. 2021;2:100099. [DOI]
Eri̇şi̇r E, Gümüşkaya E. Potassium Carbonate as Catalyst for Transesterification of Cellulose in TBAF/DMSO Solvent System Instead of KH2PO4 and Na2HPO4 Salt Mixture.Kastamonu Üniv Orman Fak Derg. 2023;23:86–98. [DOI]
Esen E, Hädinger P, Meier MA. Sustainable Fatty Acid Modification of Cellulose in a CO2-Based Switchable Solvent and Subsequent Thiol-Ene Modification.Biomacromolecules. 2020;22:586–93. [DOI] [PubMed]
Ge W, Shuai J, Wang Y, Zhou Y, Wang X. Progress on chemical modification of cellulose in “green” solvents.Polym Chem. 2022;13:359–72. [DOI]
Sandrini DMF, Morgado DL, de Oliveira AJ, de Moraes DA, Varanda LC, Frollini E. Cellulose esters: Synthesis for further formation of films with magnetite nanoparticles incorporated.Int J Biol Macromol. 2024;264:130594. [DOI]
Duan X, Li Z, Wu B, Shen J, Pei C. Preparation of Nitrocellulose by Homogeneous Esterification of Cellulose Based on Ionic Liquids.Propellants Explo Pyrotec. 2022;48:e202200186. [DOI]
Abarkan A, Achalhi N, El Yousfi R, El Idrissi A, El Barkany S, Aqil M. “Greener” homogeneous esterification of cellulose isolated from Stipa tenacissima plant located in the Eastern region of Morocco using ionic liquids as reaction medium.Polym Bull. 2023;81:5375–402. [DOI]
Todorov AR, King AWT, Kilpeläinen I. Transesterification of cellulose with unactivated esters in superbase-acid conjugate ionic liquids.RSC Adv. 2023;13:5983–92. [DOI] [PubMed] [PMC]
Lu J, Lu S, Cao Q, Huang J, Liu F, Na H, et al. Dual modification of cellulose with esterification and carbonation in DMSO/DBU/CO2 system as fluorescent additive for pH detection.Carbohydr Res. 2022;520:108630. [DOI] [PubMed]
Cao Q, Dai J, Bao X, Zhang Z, Liu F, Feng Y, et al. Preparation of cellulose-based fluorescent materials as coating pigment by use of DMSO/DBU/CO2 system.Cellulose. 2021;28:10373–84. [DOI]
Huang H, Zhou G, Meng Z, Wang X, Wang Z, Yang Y. A novel dialdehyde cellulose-based colorimetric and turn-on fluorescent probe for H2S detection and its application in red wine.Int J Biol Macromol. 2024;280:136018. [DOI] [PubMed]
Kasaei P, Karami N, Keyvan Rad J, Sanjabi S, Mahdavian AR. Modified cellulose paper with photoluminescent acrylic copolymer nanoparticles containing fluorescein as pH-sensitive indicator.Carbohydr Polym. 2022;296:119965. [DOI] [PubMed]
Qiu C, Peng F, Wu P, Wang X, Hu S, Huang C, et al. A green large-scale fabrication of cellulose-based multifunctional fluorescent fibers for versatile applications.Chem Eng J. 2024;485:149869. [DOI]
Jia R, Tian W, Bai H, Zhang J, Wang S, Zhang J. Amine-responsive cellulose-based ratiometric fluorescent materials for real-time and visual detection of shrimp and crab freshness.Nat Commun. 2019;10:795. [DOI] [PubMed] [PMC]
Li C, He Y, Zhang J, Mu J, Wang J, Cao M, et al. Cellulose-based colorimetric/ratiometric fluorescence sensor for visual detecting amines and anti-counterfeiting.Carbohydr Polym. 2024;345:122548. [DOI] [PubMed]
Yuan WZ, Lu P, Chen S, Lam JWY, Wang Z, Liu Y, et al. Changing the behavior of chromophores from aggregation-caused quenching to aggregation-induced emission: development of highly efficient light emitters in the solid state.Adv Mater. 2010;22:2159–63. [DOI] [PubMed]
Kulpinski P, Erdman A, Grzyb T, Lis S. Luminescent cellulose fibers modified with cerium fluoride doped with terbium particles.Polym Compos. 2014;37:153–60. [DOI]
Smiechowicz E, Kulpinski P, Niekraszewicz B, Bacciarelli A. Cellulose fibers modified with silver nanoparticles.Cellulose. 2011;18:975–85. [DOI]
Kulpinski P, Erdman A, Namyslak M, Fidelus JD. Cellulose fibers modified by Eu3+-doped yttria-stabilized zirconia nanoparticles.Cellulose. 2012;19:1259–69. [DOI]
Kulpinski P, Namyslak M, Grzyb T, Lis S. Luminescent cellulose fibers activated by Eu3+-doped nanoparticles.Cellulose. 2012;19:1271–8. [DOI]
Erdman A, Kulpinski P, Olejnik K. Application of nanocomposite cellulose fibers with luminescent properties to paper functionalization.Cellulose. 2016;23:2087–97. [DOI]
Erdman A, Grzyb T, Kulpinski P, Lazarek J, Lis S, Olejnik K, et al. Estimation of Fibre Orientation in Paper Products by an Image Analysis On-line System.Fibres Text East Eur. 2016;24:107–12. [DOI]
Fanning J. The chemical reduction of nitrate in aqueous solution.Coord Chem Rev. 2000;199:159–79. [DOI]
Konstantinou IK, Hela DG, Albanis TA. The status of pesticide pollution in surface waters (rivers and lakes) of Greece. Part I. Review on occurrence and levels.Environ Pollut. 2006;141:555–70. [DOI] [PubMed]
Kononenko YT, Kushnirenko IY, Nedel’ko SG, Sakun VP. Spectra and radiationless transitions in alkali-halide solutions and crystals containing traces of molecular anions.J Appl Spectrosc. 1985;42:69–72. [DOI]
Nedilko S, Revo S, Nedielko M, Avramenko T, Ivanenko K, Scherbatskii V. Luminescence of the Alkali-Metals Nitrites Incorporated into Cellulose Matrix.Solid State Phenom. 2015;230:147–52. [DOI]
Nedilko SG, Reznichenko E, Sherbatskii V, Nedielko M. Luminescent behaviour of monovalent metals nitrite/nitrates incorporated to microcrystalline cellulose matrix by sorption from water solutions.Thai J Nanosci Nanotechnol. 2017;2:31–42.
Sidman JW. Electronic and Vibrational States of the Nitrite Ion. I. Electronic States.J Am Chem Soc. 1957;79:2669–75. [DOI]
Brooker MH, Irish DE. Infrared and Raman Spectroscopic Studies of Solid Alkali Metal Nitrites.Can J Chem. 1971;49:1289–95. [DOI]
McGlynn SP, Azumi T, Kinoshita M. Molecular spectroscopy of the triplet state. Englewood Cliffs Publishing; 1969.
Alahi MEE, Mukhopadhyay SC. Detection methods of nitrate in water: A review.Sens Actuators Physic. 2018;280:210–21. [DOI]
Khattab TA, El‐Naggar ME, Abdelrahman MS, Aldalbahi A, Hatshan MR. Facile development of photochromic cellulose acetate transparent nanocomposite film immobilized with lanthanide-doped pigment: ultraviolet blocking, superhydrophobic, and antimicrobial activity.Luminescence. 2020;36:543–55. [DOI] [PubMed]
Abitbol T, Gray D. CdSe/ZnS QDs Embedded in Cellulose Triacetate Films with Hydrophilic Surfaces.Chem Mater. 2007;19:4270–6. [DOI]
Zhou D, Zou H, Liu M, Zhang K, Sheng Y, Cui J, et al. Surface Ligand Dynamics-Guided Preparation of Quantum Dots-Cellulose Composites for Light-Emitting Diodes.ACS Appl Mater Interfaces. 2015;7:15830–9. [DOI] [PubMed]
Fu Q, Tu K, Goldhahn C, Keplinger T, Adobes-Vidal M, Sorieul M, et al. Luminescent and Hydrophobic Wood Films as Optical Lighting Materials.ACS Nano. 2020;14:13775–83. [DOI] [PubMed]
Wang H, Shao Z, Chen B, Zhang T, Wang F, Zhong H. Transparent, flexible and luminescent composite films by incorporating CuInS2 based quantum dots into a cyanoethyl cellulose matrix.RSC Adv. 2012;2:2675–7. [DOI]
Matulac AL, Krasoudaki T, Battaglia F, Spadoni C, Piletti M, Iacopino D, et al. Security inks with silanized zinc oxide quantum dots and cellulose ethers for the safeguarding of cultural heritage objects.Appl Mater Today. 2025;44:102718. [DOI]
Chornii V, Nedilko S, Miroshnichenko M, Terebilenko K, Slobodyanik M. Influence of fluorination on structure and luminescence of ZrO2:Eu nanocrystals.Mater Res Bull. 2017;90:237–43. [DOI]
Chornii V, Nedilko SG, Alekseev A, Terebilenko K, Boyko V, Lazarenko M, et al. Properties of the micro/nanocrystalline cellulose filled with ZrO2:Eu,F particles. In: 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO). IEEE; 2020. pp. 297–301. [DOI]
Chornii V, Chukova O, Nedilko SG, Nedilko SA, Voitenko T. Enhancement of emission intensity of LaVO4:RE3+ luminescent solar light absorbers.Phys Status Solidi C. 2015;13:40–6. [DOI]
Hizhnyi Y, Chornii V, Nedilko S, Slobodyanik M, Terebilenko K, Boyko V, et al. Luminescence spectroscopy of Ln-doped Bi-containing phosphates and molybdates.Radiat Meas. 2016;90:314–8. [DOI]
Driemeier C, Calligaris GA. Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials.J Appl Crystallogr. 2010;44:184–92. [DOI]
Chornii V, Boyko V, Nedilko SG, Scherbatskyi V, Terebilenko K, Teselko P, et al. Morphology and luminescence properties of cellulose + KBi0.99Pr0.01(MoO4)2 composites. In: 2022 IEEE 41st International Conference on Electronics and Nanotechnology (ELNANO). IEEE; 2022. pp. 261–5. [DOI]
Liu X, Zhang Y, Wang Z, Lu S. Luminescence and charge transfer bands of the Sm(3+) and Eu(3+) in Mg3BO3F3.J Luminescence. 1988;40:885–6. [DOI]
Liu J, Yang C, Qu S, Xiao R, Lv X, Chen S, et al. Genesis of temperature-driven red-shift of charge transfer band edge for Sm3+-doped vanadate self-activated phosphor.Spectrochim Acta A: Mol Biomol Spectrosc. 2024;305:123560. [DOI]
Chaunwal RC, Fanai AL, Upreti DK, Mishra H. Physical, optical and spectral properties of Sm3+ and Eu3+ ions doped zinc boro-phosphate glass.Opt Mater. 2024;157:116115. [DOI]
Dalal S, Singh D, Dalal A, Hooda A, Malik S, Kumar S, et al. Samarium (III) complexes with tunable luminescence: efficient sensitization and semiconducting properties for optoelectronic devices.J Mat Sci Mat Electron. 2024;3:632. [DOI]
Yanhong L, Guangyan H. Synthesis and luminescence properties of nanocrystalline YVO4:Eu3+.J Solid State Chem. 2005;178:645–9. [DOI]
Chornii V, Terebilenko K, Gural’skiy I, Slobodyanik M, Zozulia V, Shova S, et al. Structural and spectroscopic insights into performance of the K3Tb(PO4)2 green phosphor.Dalton Trans. 2024;53:15583–94. [DOI]
Vanishree P, Swati G. Enhanced photoluminescence in (Ca,Zn)TiO3:Pr3+ afterglow phosphor for anti-counterfeiting application.J Mat Sci Mat Electron. 2024;35:597. [DOI]
Chornii VP, Boyko VV, Nedilko SG, Slobodyanyk MS, Scherbatskyi VP, Terebilenko KV, et al. Morphology and luminescence properties of cellulose CNT BiPO4:Pr3+ composites.In: Nanomaterials in Biomedical Application and Biosensors (NAP 2019). Springer; 2020. pp. 221–7. [DOI]
Terebilenko K, Miroshnichenko M, Tokmenko I, Chornii V, Hizhnyi Y, Nedilko S, et al. Synthesis and luminescence properties of KBi(MoO4)2:Eu3+.Solid State Phenom. 2015;230:160–5. [DOI]
Mikhailik VB, Kraus H, Dorenbos P. Efficient VUV sensitization of Eu3+ emission by Tb3+ in potassium rareearth double phosphate.Physica Rapid Res Ltrs. 2009;3:13–5. [DOI]
Jiang T, Yu X, Xu X, Yu H, Zhou D, Qiu J. A strong green emitting phosphor: K3Gd(PO4)2:Tb3+ for UV excited white LEDs.Chin Opt Lett. 2014;12:011601. [DOI]
Nedielko M, Alekseev O, Chornii V, Kovalov K, Lazarenko M, Nedilko SG, et al. Structure and properties of microcrystalline cellulose ceramics-like composites incorporated with LaVO4:Sm oxide compound.Acta Phys Pol A. 2018;133:838–42. [DOI]
Zhou Z, Wang Q. Two emissive cellulose hydrogels for detection of nitrite using terbium luminescence.Sens Actuators B Chem. 2012;173:833–8. [DOI]
Chandra BP. Mechanoluminescence of Nanoparticles.Open Nanosci J. 2011;5:45–58. [DOI]
Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. A New Long Phosphorescent Phosphor with High Brightness, SrAl2O4:Eu2+,Dy3+.J Electrochem Soc. 1996;143:2670–3. [DOI]
Dorenbos P. Absolute location of lanthanide energy levels and the performance of phosphors.J Lumin. 2007;122:315–7. [DOI]
Zhang J, Wang X, Marriott G, Xu C. Trap-controlled mechanoluminescent materials.Prog Mater Sci. 2019;103:678–742. [DOI]
Zhang L, Lyu S, Chen Z, Wang S. Preparation and characterization of dual-functional coatings of nanofibrillated cellulose and modified SrAl2O4: Eu, Dy phosphors.Surf Coat Technol. 2018;349:318–27. [DOI]
Murayama Y, Watanabe S, Akase M, Matsui K. Effects of composition and reduction conditions on persistent luminescence of SrAl2O4:Eu,Dy prepared via a solid-state reaction.J Lumin. 2022;251:119248. [DOI]
Rojas-Hernandez RE, Rubio-Marcos F, Rodriguez MÁ, Fernandez JF. Long lasting phosphors: SrAl2O4:Eu, Dy as the most studied material.Renew Sustain Energy Rev. 2018;81:2759–70. [DOI]
Jain A, Kumar A, Dhoble S, Peshwe D. Persistent luminescence: An insight.Renew Sustain Energy Rev. 2016;65:135–53. [DOI]
Qu B, Zhang B, Wang L, Zhou R, Zeng XC. Mechanistic Study of the Persistent Luminescence of CaAl2O4:Eu,Nd.Chem Mater. 2015;27:2195–202. [DOI]
Hameed A, Aljuhani E, Bawazeer TM, Almehmadi SJ, Alfi AA, Abumelha HM, et al. Preparation of multifunctional long-persistent photoluminescence cellulose fibres.Luminescence. 2021;36:1781–92. [DOI] [PubMed]
El‐Newehy M, El‐Hamshary H, Abdul Hameed MM. Dual-mode security authentication of SrAl2O4:Eu,Dy phosphor encapsulated in electrospun cellulose acetate nanofibrous films.Luminescence. 2023;38:1758–67. [DOI] [PubMed]
Shi C, Hou X, Li X, Ge M. Preparation and characterization of persistent luminescence of regenerated cellulose fiber.J Mater Sci Mater Electron. 2016;28:1015–21. [DOI]
Zhang L, Lyu S, Chen Z, Wang S. Fabrication Flexible and Luminescent Nanofibrillated Cellulose Films with Modified SrAl2O4: Eu, Dy Phosphors via Nanoscale Silica and Aminosilane.Nanomaterials (Basel). 2018;8:352. [DOI] [PubMed] [PMC]
Nedilko SG, Chornii V, Kuryliuk A, Lazarenko M, Scherbatskyi V, Barbash V, et al. Fabrication, mechanical, optical and dielectric properties of paper filled with SrAl₂O₄:Eu,Dy oxide and carbon nanotubes. In: 2024 IEEE 14th International Conference Nanomaterials: Applications & Properties (NAP). IEEE; 2024. pp. 1–4. [DOI]
Chornii V, Nedilko SG, Lazarenko M, Alekseev O, Sosnovs’ka M, Barbash V, et al. Fabrication and mechanical, dielectric and optical properties of cellulose paper embedded with SrAl2O4:Eu,Dy phosphor.J Renew Mater. 2025;13:653–68. [DOI]