The authors thank Daniela P. Gárnica-Robledo and Karla P. Martínez-Velázquez for their valuable collaboration during the conception of the idea of this article.
The authors declare that they have no competing interests.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
LOEM thanks Mexico’s Secretary of Sciences, Humanities, Technology and Innovation (SECIHTI) and the University of Guanajuato for the given scholarships. We thank SECIHTI for project CF-2023-I-2285. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Todros S, Todesco M, Bagno A. Bagno Biomaterials and Their Biomedical Applications: From Replacement to Regeneration.Processes. 2021;9:1949. [DOI]
Ratner BD. A History of Biomaterials. In: Hoffman AS, Schoen FJ, Lemons JE, editors. Biomaterials Science. 3rd ed. Academic Press; 2013. pp. 41–53. [DOI]
Farag MM. Recent trends on biomaterials for tissue regeneration applications: review.J Mater Sci. 2023;58:527–58. [DOI]
Wang Y, Wang Z, Dong Y. Collagen-Based Biomaterials for Tissue Engineering.ACS Biomater Sci Eng. 2023;9:1132–50. [DOI] [PubMed]
Jurak M, Wiącek AE, Ładniak A, Przykaza K, Szafran K. What affects the biocompatibility of polymers?Adv Colloid Interface Sci. 2021;294:102451. [DOI] [PubMed]
Huang Y, Li P, Zhao R, Zhao L, Liu J, Peng S, et al. Silica nanoparticles: Biomedical applications and toxicity.Biomed Pharmacother. 2022;151:113053. [DOI] [PubMed]
Kostarelos K, Vincent M, Hebert C, Garrido JA. Graphene in the Design and Engineering of Next-Generation Neural Interfaces.Adv Mater. 2017;29:1700909. [DOI] [PubMed]
Akhavan O. Graphene scaffolds in progressive nanotechnology/stem cell-based tissue engineering of the nervous system.J Mater Chem B. 2016;4:3169–90. [DOI] [PubMed]
Amani H, Mostafavi E, Arzaghi H, Davaran S, Akbarzadeh A, Akhavan O, et al. Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering.ACS Biomater Sci Eng. 2019;5:193–214. [DOI] [PubMed]
Nejatian T, Khurshid Z, Zafar MS, Najeeb S, Zohaib S, Mozafari M, et al. Biomaterials for Oral and Dental Tissue Engineering. In: Tayebi L, Moharamzadeh K, editors. Dental biocomposites. 1st ed. Cambridge (UK): Woodhead Publishing; 2017. pp. 65–84. [DOI]
Huzum B, Puha B, Necoara RM, Gheorghevici S, Puha G, Filip A, et al. Biocompatibility assessment of biomaterials used in orthopedic devices: An overview (Review).Exp Ther Med. 2021;22:1315. [DOI] [PubMed] [PMC]
Ullm S, Krüger A, Tondera C, Gebauer TP, Neffe AT, Lendlein A, et al. Biocompatibility and inflammatory response in vitro and in vivo to gelatin-based biomaterials with tailorable elastic properties.Biomaterials. 2014;35:9755–66. [DOI] [PubMed]
Orozco-Vega A, Montes-Rodríguez MI, Luévano-Colmenero GH, Barros-Gómez J, Muñoz-González PU, Flores-Moreno M, et al. Decellularization of porcine esophageal tissue at three diameters and the bioscaffold modification with EETs-ECM gel.J Biomed Mater Res A. 2022;110:1669–80. [DOI] [PubMed]
Muñoz-González PU, Lona-Ramos MC, Gutiérrez-Verdín LD, Luévano-Colmenero GH, Tenorio-Rocha F, García-Contreras R, et al. Gel dressing based on type I collagen modified with oligourethane and silica for skin wound healing.Biomed Mater. 2022;17:045005. [DOI] [PubMed]
Badri D, Copertino N. Breast Implant Capsule-Associated Squamous Cell Carcinoma: A Systematic Review and Case Presentation.Aesthetic Plast Surg. 2024;48:2287–93. [DOI] [PubMed] [PMC]
Tang S, Anderson NE, Faasse K, Adams WP, Newby JM. A Qualitative Study on the Experiences of Women With Breast Implant Illness.Aesthet Surg J. 2022;42:381–93. [DOI] [PubMed]
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, et al. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants.ACS Biomater Sci Eng. 2022;8:4697–737. [DOI] [PubMed]
Wu S, Xu J, Zou L, Luo S, Yao R, Zheng B, et al. Long-lasting renewable antibacterial porous polymeric coatings enable titanium biomaterials to prevent and treat peri-implant infection.Nat Commun. 2021;12:3303. [DOI] [PubMed] [PMC]
Claudio-Rizo JA, Rangel-Argote M, Muñoz-González PU, Castellano LE, Delgado J, Gonzalez-García G, et al. Improved properties of composite collagen hydrogels: protected oligourethanes and silica particles as modulators.J Mater Chem B. 2016;4:6497–509. [DOI] [PubMed]
Muñoz-González PU, Delgado J, González-García G, Mendoza-Novelo B. Stimulation of macrophage cell lines confined with silica and/or silicon particles and embedded in structured collagen gels.J Biomater Appl. 2025;39:1240–57. [DOI] [PubMed]
Schoen FJ, Sarkar D, Zhao W, Schafer S, Ankrum J, Teo GSL, et al. Biomaterials Science: An Introduction to Materials in Medicine. In: Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. Applications of Biomaterials in Functional Tissue Engineering. 3rd ed. Cambridge (UK): Academic Press; 2013. pp. 1119–22. [DOI]
Sridharan R, Cameron AR, Kelly DJ, Kearney CJ, O’Brien FJ, et al. Biomaterial based modulation of macrophage polarization: a review and suggested design principles.Mater Today. 2015;18:313–25. [DOI]
Muñoz-González PU, Rooney P, Mohd Isa IL, Pandit A, Delgado J, Flores-Moreno M, et al. Development and characterization of an immunomodulatory and injectable system composed of collagen modified with trifunctional oligourethanes and silica.Biomater Sci. 2019;7:4547–57. [DOI] [PubMed]
Muñoz-González PU, Rivera-Debernardi O, Mendoza-Novelo B, Claudio-Rizo JA, Mata-Mata JL, Delgadillo-Holtfort I, et al. Design of Silica-Oligourethane-Collagen Membranes for Inflammatory Response Modulation: Characterization and Polarization of a Macrophage Cell Line.Macromol Biosci. 2018;18:e1800099. [DOI] [PubMed]
Fioranelli M, Roccia MG, Flavin D, Cota L. Regulation of Inflammatory Reaction in Health and Disease.Int J Mol Sci. 2021;22:5277. [DOI] [PubMed] [PMC]
Zheng K, Niu W, Lei B, Boccaccini AR. Immunomodulatory bioactive glasses for tissue regeneration.Acta Biomater. 2021;133:168–86. [DOI] [PubMed]
Patshina MV, Voroshilin RA, Osintsev AM. Global Biomaterials Market: Potential Opportunities for Raw Materials of Animal Origin.Food Process Tech Technol. 2021;51:270–89.
Veselinyová D, Mašlanková J, Kalinová K, Mičková H, Mareková M, Rabajdová M. Selected In Situ Hybridization Methods: Principles and Application.Molecules. 2021;26:3874. [DOI] [PubMed] [PMC]
Brown T. Southern blotting.Curr Protoc Immunol. 2001;Chapter 10:Unit 10.6A. [DOI] [PubMed]
Marcadet A, O’Connell P, Cohen D. Immunobiology of HLA. In: Dupont B, editor. Standardized Southern Blot Workshop Technique. New York: Springer; 1989. pp. 553–60. [DOI]
He SL, Green R. Northern blotting.Methods Enzymol. 2013;530:75–87. [DOI] [PubMed] [PMC]
Gautam A. DNA and RNA Isolation Techniques for Non-Experts. In: Gautam A, editor. Southern and Northern Blotting. Cham: Springer International Publishing; 2022. pp. 165–9. [DOI]
Nam RK, Sugar L, Yang W, Srivastava S, Klotz LH, Yang LY, et al. Expression of the TMPRSS2: ERG fusion gene predicts cancer recurrence after surgery for localised prostate cancer.Br J Cancer. 2007;97:1690–5. [DOI] [PubMed] [PMC]
Hogan K. Foundations of Anesthesia. In: Hemmings HC, Hopkins PM, editors. Principles and techniques of molecular biology. 2nd ed. Edinburgh: Mosby; 2006. pp. 51–69.
Shakoori AR. Chromosome Structure and Aberrations. In: Bhat TA, Wani AA, editors. Fluorescence In Situ Hybridization (FISH) and Its Applications. New Delhi: Springer India; 2017. pp. 343–67. [DOI]
Lehmann R, Tautz D. In situ hybridization to RNA.Methods Cell Biol. 1994;44:575–98. [DOI] [PubMed]
Neo M, Voigt CF, Herbst H, Gross UM. Analysis of osteoblast activity at biomaterial-bone interfaces by in situ hybridization.J Biomed Mater Res. 1996;30:485–92. [DOI] [PubMed]
Park S, Park J, Jo I, Cho S, Sung D, Ryu S, et al. In situ hybridization of carbon nanotubes with bacterial cellulose for three-dimensional hybrid bioscaffolds.Biomaterials. 2015;58:93–102. [DOI] [PubMed]
Zhao Z, Jiang M, He C, Yin W, Feng Y, Wang P, et al. Enhancing Specific Fluorescence In Situ Hybridization with Quantum Dots for Single-Molecule RNA Imaging in Formalin-Fixed Paraffin-Embedded Tumor Tissues.ACS Nano. 2024;18:9958–68. [DOI] [PubMed]
Weimer J, Hüttmann M, Nusilati A, Andreas S, Röseler J, Tribian N, et al. Fluorescence in situ hybridization test for detection of endometrial carcinoma cells by non-invasive vaginal swab.J Cell Mol Med. 2023;27:379–91. [DOI] [PubMed] [PMC]
Jensen E. Technical review: In situ hybridization.Anat Rec (Hoboken). 2014;297:1349–53. [DOI] [PubMed]
Morissette Martin P, Creber K, Hamilton D. Monitoring and Evaluation of Biomaterials and their Performance In Vivo. In: Narayan RJ, editor. Measuring gene expression changes on biomaterial surfaces. Cambridge (UK): Woodhead Publishing; 2017. pp. 111–31. [DOI]
Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro.Proc Natl Acad Sci U S A. 1973;70:3240–4. [DOI] [PubMed] [PMC]
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE, editors. An Evolving, Multidisciplinary Endeavor. Biomaterials Science: An Introduction to Materials in Medicine. 3rd ed. Cambridge (UK): Academic Press; 2013. pp. 25–39. [DOI]
Fujimura K, Bessho K, Kusumoto K, Konishi Y, Ogawa Y, Iizuka T. Experimental osteoinduction by recombinant human bone morphogeneticprotein 2 in tissue with low blood flow: a study in rats.Br J Oral Maxillofac Surg. 2001;39:294–300. [DOI] [PubMed]
Khademhosseini A, Langer R, Borenstein J, Vacanti JP. Microscale technologies for tissue engineering and biology.Proc Natl Acad Sci U S A. 2006;103:2480–7. [DOI] [PubMed] [PMC]
Pal A, editor. Protocols in Advanced Genomics and Allied Techniques. Recombinant DNA Technology. New York: Springer; 2022. pp. 31–47. [DOI]
Gupta V, Sengupta M, Prakash J, Tripathy BC, editors. Basic and Applied Aspects of Biotechnology. Fundamentals of Recombinant DNA Technology. Singapore: Springer Singapore; 2017. pp. 23–58. [DOI]
Yang Y, Campbell Ritchie A, Everitt NM. Recombinant human collagen/chitosan-based soft hydrogels as biomaterials for soft tissue engineering.Mater Sci Eng C Mater Biol Appl. 2021;121:111846. [DOI] [PubMed]
Goeddel DV, Kleid DG, Bolivar F, Heyneker HL, Yansura DG, Crea R, et al. Expression in Escherichia coli of chemically synthesized genes for human insulin.Proc Natl Acad Sci U S A. 1979;76:106–10. [DOI] [PubMed] [PMC]
Powell JS. Recombinant factor VIII in the management of hemophilia A: current use and future promise.Ther Clin Risk Manag. 2009;5:391–402. [DOI] [PubMed] [PMC]
Cao L, Zhang Z, Yuan D, Yu M, Min J. Tissue engineering applications of recombinant human collagen: a review of recent progress.Front Bioeng Biotechnol. 2024;12:1358246. [DOI] [PubMed] [PMC]
Kirker-Head CA. Recombinant bone morphogenetic proteins: novel substances for enhancing bone healing.Vet Surg. 1995;24:408–19. [DOI] [PubMed]
Xu J, Liu J, Gan Y, Dai K, Zhao J, Huang M, et al. High-Dose TGF-β1 Impairs Mesenchymal Stem Cell-Mediated Bone Regeneration via Bmp2 Inhibition.J Bone Miner Res. 2020;35:167–80. [DOI] [PubMed]
Basu K, Green EM, Cheng Y, Craik CS. Why recombinant antibodies - benefits and applications.Curr Opin Biotechnol. 2019;60:153–8. [DOI] [PubMed] [PMC]
Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.N Engl J Med. 2001;344:783–92. [DOI] [PubMed]
Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery.Nat Biotechnol. 2001;19:1029–34. [DOI] [PubMed]
Zhao S, Ye X, Wu M, Ruan J, Wang X, Tang X, et al. Recombinant Silk Proteins with Additional Polyalanine Have Excellent Mechanical Properties.Int J Mol Sci. 2021;22:1513. [DOI] [PubMed] [PMC]
Huang S, Yu F, Cheng Y, Li Y, Chen Y, Tang J, et al. Transforming Growth Factor-β3/Recombinant Human-like Collagen/Chitosan Freeze-Dried Sponge Primed With Human Periodontal Ligament Stem Cells Promotes Bone Regeneration in Calvarial Defect Rats.Front Pharmacol. 2021;12:678322. [DOI] [PubMed] [PMC]
Akhavan O, Ghaderi E, Shahsavar M. Graphene nanogrids for selective and fast osteogenic differentiation of human mesenchymal stem cells.Carbon. 2013;59:200–11. [DOI]
Wang Y, Jin S, Luo D, He D, Shi C, Zhu L, et al. Functional regeneration and repair of tendons using biomimetic scaffolds loaded with recombinant periostin.Nat Commun. 2021;12:1293. [DOI] [PubMed] [PMC]
Templeton NS. The polymerase chain reaction. History, methods, and applications.Diagn Mol Pathol. 1992;1:58–72. [DOI] [PubMed]
Fang W, Liu X, Maiga M, Cao W, Mu Y, Yan Q, et al. Digital PCR for Single-Cell Analysis.Biosensors (Basel). 2024;14:64. [DOI] [PubMed] [PMC]
McDonald C, Taylor D, Linacre A. PCR in Forensic Science: A Critical Review.Genes (Basel). 2024;15:438. [DOI] [PubMed] [PMC]
Chen R, Wang J, Yuan Y, Deng Y, Lai X, Du F, et al. Weigh Biomaterials by Quantifying Species-specific DNA with Real-time PCR.Sci Rep. 2017;7:4774. [DOI] [PubMed] [PMC]
Ma TS. Applications and limitations of polymerase chain reaction amplification.Chest. 1995;108:1393–404. [DOI] [PubMed]
Leong DT, Gupta A, Bai HF, Wan G, Yoong LF, Too H, et al. Absolute quantification of gene expression in biomaterials research using real-time PCR.Biomaterials. 2007;28:203–10. [DOI] [PubMed]
Lorenz TC. Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies.J Vis Exp. 2012;63:e3998. [DOI] [PubMed] [PMC]
Zhao F, Maren NA, Kosentka PZ, Liao Y, Lu H, Duduit JR, et al. An optimized protocol for stepwise optimization of real-time RT-PCR analysis.Hortic Res. 2021;8:179. [DOI] [PubMed] [PMC]
Blumenfeld NR, Bolene MAE, Jaspan M, Ayers AG, Zarrandikoetxea S, Freudman J, et al. Multiplexed reverse-transcriptase quantitative polymerase chain reaction using plasmonic nanoparticles for point-of-care COVID-19 diagnosis.Nat Nanotechnol. 2022;17:984–92. [DOI] [PubMed]
Peña B, Bosi S, Knight WE, Cavasin M, Ferrari I, Musani SA, et al. Biocompatibility Assessment of an Injectable Carbon Nanotube-Functionalized Reverse Thermal Gel for Cardiac Tissue Engineering Applications.ACS Appl Bio Mater. 2025;8:4743–55. [DOI] [PubMed]
Kim DH, Kim MJ, Kwak SY, Jeong J, Choi D, Choi SW, et al. Bioengineered liver crosslinked with nano-graphene oxide enables efficient liver regeneration via MMP suppression and immunomodulation.Nat Commun. 2023;14:801. [DOI] [PubMed] [PMC]
Löbler M, Sass M, Kunze C, Schmitz K, Hopt UT. Biomaterial implants induce the inflammation marker CRP at the site of implantation.J Biomed Mater Res. 2002;61:165–7. [DOI] [PubMed]
Suleimenova D, Hashimi SM, Li M, Ivanovski S, Mattheos N. Gene expression profiles in guided bone regeneration using combinations of different biomaterials: a pilot animal study.Clin Oral Implants Res. 2017;28:713–20. [DOI] [PubMed]
Cabiati M, Vozzi F, Gemma F, Montemurro F, Maria CD, Vozzi G, et al. Cardiac tissue regeneration: A preliminary study on carbon-based nanotubes gelatin scaffold.J Biomed Mater Res B Appl Biomater. 2018;106:2750–62. [DOI] [PubMed]
Huyer LD, Montgomery M, Zhao Y, Xiao Y, Conant G, Korolj A, et al. Biomaterial based cardiac tissue engineering and its applications.Biomed Mater. 2015;10:034004. [DOI] [PubMed] [PMC]
Pitchai M, Ipe D, Tadakamadla S, Hamlet S. Titanium Implant Surface Effects on Adherent Macrophage Phenotype: A Systematic Review.Materials (Basel). 2022;15:7314. [DOI] [PubMed] [PMC]
Donohoe E, Kahatab R, Barrak F. A systematic review comparing the macrophage inflammatory response to hydrophobic and hydrophilic sandblasted large grit, acid-etched titanium or titanium-zirconium surfaces during in vitro studies.Clin Exp Dent Res. 2023;9:437–48. [DOI] [PubMed] [PMC]
Ellermann E, Meyer N, Cameron RE, Best SM. In vitro angiogenesis in response to biomaterial properties for bone tissue engineering: a review of the state of the art.Regen Biomater. 2023;10:rbad027. [DOI] [PubMed] [PMC]
Kaplan B, Levenberg S. The Role of Biomaterials in Peripheral Nerve and Spinal Cord Injury: A Review.Int J Mol Sci. 2022;23:1244. [DOI] [PubMed] [PMC]
Darjanki CM, Prahasanti C, Fitria A E, Kusumawardani B, Wijaksana IKE, Aljunaid M. RUNX2 and ALP expression in osteoblast cells exposed by PMMA-HAp combination: An in vitro study.J Oral Biol Craniofac Res. 2023;13:277–82. [DOI] [PubMed] [PMC]
Marthaler D, Homwong N, Rossow K, Culhane M, Goyal S, Collins J, et al. Rapid detection and high occurrence of porcine rotavirus A, B, and C by RT-qPCR in diagnostic samples.J Virol Methods. 2014;209:30–4. [DOI] [PubMed]
Masuda T, Tsuchiaka S, Ashiba T, Yamasato H, Fukunari K, Omatsu T, et al. Development of one-step real-time reverse transcriptase-PCR-based assays for the rapid and simultaneous detection of four viruses causing porcine diarrhea.Jpn J Vet Res. 2016;64:5–14. [PubMed]
Choe B, Cho Y. Antibody techniques. Malik VS, Lillehoj EP, editors. Immunostaining cells and tissues. San Diego: Academic Press; 1994. pp. 259–72. [DOI]
De Haes W, Van Sinay E, Detienne G, Temmerman L, Schoofs L, Boonen K. Functional neuropeptidomics in invertebrates.Biochim Biophys Acta. 2015;1854:812–26. [DOI] [PubMed]
Chivukula M, Dabbs DJ. Comprehensive Cytopathology. In: Bibbo M, Wilbur DC, editors. Immunocytochemistry. 3rd ed. Philadelphia (PA): Saunders/Elsevier; 2008. pp. 1043–69. [DOI]
De Matos LL, Trufelli DC, De Matos MG, Da Silva Pinhal MA. Immunohistochemistry as an important tool in biomarkers detection and clinical practice.Biomark Insights. 2010;5:9–20. [DOI] [PubMed] [PMC]
Srebotnik Kirbiš I, Rodrigues Roque R, Bongiovanni M, Strojan Fležar M, Cochand-Priollet B. Immunocytochemistry practices in European cytopathology laboratories-Review of European Federation of Cytology Societies (EFCS) online survey results with best practice recommendations.Cancer Cytopathol. 2020;128:757–66. [DOI] [PubMed]
Daëron M. The function of antibodies.Immunol Rev. 2024;328:113–25. [DOI] [PubMed]
Singh A, Mishra A, Verma A. Animal Biotechnology. In: Verma AS, Singh A, editors. Antibodies: monoclonal and polyclonal. 2nd ed. Boston: Academic Press; 2020. pp. 327–52. [DOI]
Strickley RG, Lambert WJ. A review of Formulations of Commercially Available Antibodies.J Pharm Sci. 2021;110:2590–608.e56. [DOI] [PubMed]
Kim RH, Brinster NK. Practical Direct Immunofluorescence.Am J Dermatopathol. 2020;42:75–85. [DOI] [PubMed]
Wheatley SP, Wang YL. Indirect immunofluorescence microscopy in cultured cells.Methods Cell Biol. 1998;57:313–32. [DOI] [PubMed]
Manning CF, Bundros AM, Trimmer JS. Benefits and pitfalls of secondary antibodies: why choosing the right secondary is of primary importance.PLoS One. 2012;7:e38313. [DOI] [PubMed] [PMC]
Johnston WW, Szpak CA, Thor A, Simpson JF, Schlom J. Applications of immunocytochemistry to clinical cytology.Cancer Invest. 1987;5:593–611. [DOI] [PubMed]
Kanber Y, Pusztaszeri M, Auger M. Immunocytochemistry for diagnostic cytopathology-A practical guide.Cytopathology. 2021;32:562–87. [DOI] [PubMed]
Lozano MD, Robledano R, Argueta A. Quality Assurance in Immunocytochemistry: A Review and Practical Considerations.Acta Cytol. 2025;69:60–8. [DOI] [PubMed]
Hidalgo CO. Immunohistochemistry in Historical Perspective: Knowing the Past to Understand the Present.Methods Mol Biol. 2022;2422:17–31. [DOI] [PubMed]
Brooks SA. Metastasis Research Protocols. In: Dwek M, Brooks SA, Schumacher U, editors. Basic immunocytochemistry for light microscopy. Totowa (NJ): Humana Press; 2012. pp. 1–30. [DOI]
Marchenko S, Flanagan L. Immunocytochemistry: human neural stem cells.J Vis Exp. 2007;7:267. [DOI] [PubMed] [PMC]
Muñoz-González PU, Flores-Moreno JM, Quintero-Ortega IA, Mantovani D, Mendoza-Novelo B, González-García G. Water-Dispersible Fluorescent Silicon Nanoparticles That Modulate Inflammatory Response in Macrophages.ACS Appl Nano Mater. 2023;6:11187–97. [DOI]
Palumbo C, Baldini A, Cavani F, Sena P, Benincasa M, Ferretti M, et al. Immunocytochemical and structural comparative study of committed versus multipotent stem cells cultured with different biomaterials.Micron. 2013;47:1–9. [DOI] [PubMed]
Paula AB, Laranjo M, Coelho AS, Abrantes AM, Gonçalves AC, Sarmento-Ribeiro AB, et al. Accessing the Cytotoxicity and Cell Response to Biomaterials.J Vis Exp. 2021;173:e61512. [DOI] [PubMed]
Jell G, Selvakumaram J. Biomaterials, Artificial Organs and Tissue Engineering. In: Hench LL, Jones JR, editors. Immunochemical techniques in tissue engineering and biomaterial science. Cambridge: Woodhead Publishing; 2005. pp. 227–40. [DOI]
Nanci A, Wazen R, Nishio C, Zalzal SF. Immunocytochemistry of matrix proteins in calcified tissues: functional biochemistry on section.Eur J Histochem. 2008;52:201–14. [DOI] [PubMed]
James BD, Guerin P, Iverson Z, Allen JB. Mineralized DNA-collagen complex-based biomaterials for bone tissue engineering.Int J Biol Macromol. 2020;161:1127–39. [DOI] [PubMed] [PMC]
Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible “off the shelf” biomaterial for urethral repair.Urology. 1999;54:407–10. [DOI] [PubMed]
Bal Z, Kaito T, Korkusuz F, Yoshikawa H. Bone regeneration with hydroxyapatite-based biomaterials.Emergent Mater. 2020;3:521–44. [DOI]
Grasl C, Stoiber M, Röhrich M, Moscato F, Bergmeister H, Schima H. Electrospinning of small diameter vascular grafts with preferential fiber directions and comparison of their mechanical behavior with native rat aortas.Mater Sci Eng C Mater Biol Appl. 2021;124:112085. [DOI] [PubMed]
Rahimnejad M, Nasrollahi Boroujeni N, Jahangiri S, Rabiee N, Rabiee M, Makvandi P, et al. Prevascularized Micro-/Nano-Sized Spheroid/Bead Aggregates for Vascular Tissue Engineering.Nanomicro Lett. 2021;13:182. [DOI] [PubMed] [PMC]
Munoz-Gonzalez P, Castellano L, Flores-Moreno J, Delgado J, Mendoza-Novelo B. Characteristics Of Biomaterials Derived From Collagen And Tri-functionalized Oligourethanes-silica And Its Effect On Macrophage Response. 2016 TERMIS—Americas Conference and Exhibition; 2016 Dec 11–14; San Diego, CA, USA. New Rochelle (NY): Mary Ann Liebert, Inc.; 2016.
Martinez EC, Kofidis T. Adult stem cells for cardiac tissue engineering.J Mol Cell Cardiol. 2011;50:312–9. [DOI] [PubMed]
Abbasgholizadeh R, Islas JF, Navran S, Potaman VN, Schwartz RJ, Birla RK. A Highly Conductive 3D Cardiac Patch Fabricated Using Cardiac Myocytes Reprogrammed from Human Adipogenic Mesenchymal Stem Cells.Cardiovasc Eng Technol. 2020;11:205–18. [DOI] [PubMed]
Zeb A, Gul M, Nguyen TTL, Maeng HJ. Controlled release and targeted drug delivery with poly(lactic-co-glycolic acid) nanoparticles: reviewing two decades of research.J Pharm Invest. 2022;52:683–724. [DOI]
Boltnarova B, Kubackova J, Skoda J, Stefela A, Smekalova M, Svacinova P, et al. PLGA Based Nanospheres as a Potent Macrophage-Specific Drug Delivery System.Nanomaterials (Basel). 2021;11:749. [DOI] [PubMed] [PMC]
Lozano MD, Argueta A, Robledano R, García J, Ocon V, Gómez N, et al. Practical issues related to immunocytochemistry on cytological smears: Tips and recommendations.Cytopathology. 2024;35:761–9. [DOI] [PubMed]
Shidham VB, Janikowski B. Immunocytochemistry of effusions: Processing and commonly used immunomarkers.Cytojournal. 2022;19:6. [DOI] [PubMed] [PMC]
Kalyuzhny AE. Immunohistochemistry. Essential Elements and Beyond.Anticancer Res. 2016;36:3226. [PubMed]
Anderson JM. Future challenges in the in vitro and in vivo evaluation of biomaterial biocompatibility.Regen Biomater. 2016;3:73–7. [DOI] [PubMed] [PMC]
Basson R, Baguneid M, Foden P, Al Kredly R, Bayat A. Functional Testing of a Skin Topical Formulation In Vivo: Objective and Quantitative Evaluation in Human Skin Scarring Using a Double-Blind Volunteer Study with Sequential Punch Biopsies.Adv Wound Care (New Rochelle). 2019;8:208–19. [DOI] [PubMed] [PMC]
Berger-Gorbet M, Broxup B, Rivard C, Yahia LH. Biocompatibility testing of NiTi screws using immunohistochemistry on sections containing metallic implants.J Biomed Mater Res. 1996;32:243–8. [DOI] [PubMed]
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.Clin Pharmacol Ther. 2001;69:89–95. [DOI] [PubMed]
Korfei M, Ruppert C, Mahavadi P, Henneke I, Markart P, Koch M, et al. Epithelial endoplasmic reticulum stress and apoptosis in sporadic idiopathic pulmonary fibrosis.Am J Respir Crit Care Med. 2008;178:838–46. [DOI] [PubMed] [PMC]
Li Y, Sun T, Chen Z, Shao Y, Huang Y, Zhou Y. Characterization of a new human astrocytoma cell line SHG140: cell proliferation, cell phenotype, karyotype, STR markers and tumorigenicity analysis.J Cancer. 2021;12:371–8. [DOI] [PubMed] [PMC]
Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering.Nat Biotechnol. 2005;23:47–55. [DOI] [PubMed]
Zhao F, Lei B, Li X, Mo Y, Wang R, Chen D, et al. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes.Biomaterials. 2018;178:36–47. [DOI] [PubMed]
Coons AH, Creech HJ, Jones RN. Immunological Properties of an Antibody Containing a Fluorescent Group.Proc Soc Exp Biol Med. 1941;47:200–2. [DOI]
Cooper M, Lummas S. Immunohistochemistry and Immunocytochemistry: Essential Methods. In: Renshaw S, editor. 2nd ed. Chichester: John Wiley & Sons; 2017. [DOI]
Fuller BJ. Cryoprotectants: the essential antifreezes to protect life in the frozen state.Cryo Letters. 2004;25:375–88. [PubMed]
Kim SW, Roh J, Park CS. Immunohistochemistry for Pathologists: Protocols, Pitfalls, and Tips.J Pathol Transl Med. 2016;50:411–8. [DOI] [PubMed] [PMC]
MacNeil T, Vathiotis IA, Martinez-Morilla S, Yaghoobi V, Zugazagoitia J, Liu Y, et al. Antibody validation for protein expression on tissue slides: a protocol for immunohistochemistry.Biotechniques. 2020;69:460–8. [DOI] [PubMed] [PMC]
Lu K, Wang D, Zou G, Wu Y, Li F, Song Q, et al. A multifunctional composite hydrogel that sequentially modulates the process of bone healing and guides the repair of bone defects.Biomed Mater. 2024;1:035010. [DOI] [PubMed]
Mebratie DY, Dagnaw GG. Review of immunohistochemistry techniques: Applications, current status, and future perspectives.Semin Diagn Pathol. 2024;41:154–60. [DOI] [PubMed]
Shamskhou EA, Kratochvil MJ, Orcholski ME, Nagy N, Kaber G, Steen E, et al. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice.Biomaterials. 2019;203:52–62. [DOI] [PubMed] [PMC]
Chen Z, Wang L, Guo C, Qiu M, Cheng L, Chen K, et al. Vascularized polypeptide hydrogel modulates macrophage polarization for wound healing.Acta Biomater. 2023;155:218–34. [DOI] [PubMed]
Bloise N, Rountree I, Polucha C, Montagna G, Visai L, Coulombe KLK, et al. Engineering Immunomodulatory Biomaterials for Regenerating the Infarcted Myocardium.Front Bioeng Biotechnol. 2020;8:292. [DOI] [PubMed] [PMC]
Gudde AN, van Velthoven MJJ, Kouwer PHJ, Roovers JWR, Guler Z. Injectable polyisocyanide hydrogel as healing supplement for connective tissue regeneration in an abdominal wound model.Biomaterials. 2023;302:122337. [DOI] [PubMed]
Taniguchi D, Kamata S, Rostami S, Tuin S, Marin-Araujo A, Guthrie K, et al. Evaluation of a decellularized bronchial patch transplant in a porcine model.Sci Rep. 2023;13:21773. [DOI] [PubMed] [PMC]
Ullah S, Chen X. Fabrication, applications and challenges of natural biomaterials in tissue engineering.Appl Mater Today. 2020;20:100656. [DOI]
Leung KS, Shirazi S, Cooper LF, Ravindran S. Biomaterials and Extracellular Vesicle Delivery: Current Status, Applications and Challenges.Cells. 2022;11:2851. [DOI] [PubMed] [PMC]
Hillman H. Limitations of clinical and biological histology.Med Hypotheses. 2000;54:553–64. [DOI] [PubMed]
Hernandez JL, Woodrow KA. Medical Applications of Porous Biomaterials: Features of Porosity and Tissue-Specific Implications for Biocompatibility.Adv Healthc Mater. 2022;11:e2102087. [DOI] [PubMed] [PMC]
Jalilinejad N, Rabiee M, Baheiraei N, Ghahremanzadeh R, Salarian R, Rabiee N, et al. Electrically conductive carbon-based (bio)-nanomaterials for cardiac tissue engineering.Bioeng Transl Med. 2022;8:e10347. [DOI] [PubMed] [PMC]
Marin E, Boschetto F, Pezzotti G. Biomaterials and biocompatibility: An historical overview.J Biomed Mater Res A. 2020;108:1617–33. [DOI] [PubMed]
Kersey AL, Nguyen TU, Nayak B, Singh I, Gaharwar AK. Omics-based approaches to guide the design of biomaterials.Mater Today. 2023;64:98–120. [DOI]
James DS, Campagnola PJ. Recent Advancements in Optical Harmonic Generation Microscopy: Applications and Perspectives.BME Front. 2021;2021:3973857. [DOI] [PubMed] [PMC]
Yoon S, Cheon SY, Park S, Lee D, Lee Y, Han S, et al. Recent advances in optical imaging through deep tissue: imaging probes and techniques.Biomater Res. 2022;26:57. [DOI] [PubMed] [PMC]
Gokcekuyu Y, Ekinci F, Guzel MS, Acici K, Aydin S, Asuroglu T. Artificial Intelligence in Biomaterials: A Comprehensive Review.Appl Sci. 2024;14:6590. [DOI]