The authors declare that they have no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This study was financially supported by the European Commission under the Marie Skłodowska-Curie Actions, Grant no. [101067240]. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
An F, Zhang X. Strategies for Preparing Albumin-based Nanoparticles for Multifunctional Bioimaging and Drug Delivery.Theranostics. 2017;7:3667–89. [DOI] [PubMed] [PMC]
Yasir M, Mishra R, Tripathi AS, Maurya RK, Shahi A, Zaki MEA, et al. Theranostics: a multifaceted approach utilizing nano-biomaterials.Discov Nano. 2024;19:35. [DOI] [PubMed] [PMC]
Chang D, Ma Y, Xu X, Xie J, Ju S. Stimuli-Responsive Polymeric Nanoplatforms for Cancer Therapy.Front Bioeng Biotechnol. 2021;9:707319. [DOI] [PubMed] [PMC]
Chenthamara D, Subramaniam S, Ramakrishnan SG, Krishnaswamy S, Essa MM, Lin F, et al. Therapeutic efficacy of nanoparticles and routes of administration.Biomater Res. 2019;23:20. [DOI] [PubMed] [PMC]
Eltaib L. Polymeric Nanoparticles in Targeted Drug Delivery: Unveiling the Impact of Polymer Characterization and Fabrication.Polymers (Basel). 2025;17:833. [DOI] [PubMed] [PMC]
Huang D, Sun L, Huang L, Chen Y. Nanodrug Delivery Systems Modulate Tumor Vessels to Increase the Enhanced Permeability and Retention Effect.J Pers Med. 2021;11:124. [DOI] [PubMed] [PMC]
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, et al. Polymeric nanoparticles-Promising carriers for cancer therapy.Front Bioeng Biotechnol. 2022;10:1024143. [DOI] [PubMed] [PMC]
Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect.Eur J Pharm Biopharm. 2009;71:409–19. [DOI] [PubMed]
Quintanar-Guerrero D, Allémann E, Fessi H, Doelker E. Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers.Drug Dev Ind Pharm. 1998;24:1113–28. [DOI] [PubMed]
Kumar Sharma D, Thakur N, Deb B. Review on Classification, Methods, and Characterization of Polymeric Nanoparticles with Their Applications: Pharmaceutical Science-Pharmaceutics.Int J Life Sci Pharm Res. 2022;12:P24–38. [DOI]
Bokov D, Turki Jalil A, Chupradit S, Suksatan W, Javed Ansari M, Shewael IH, et al. Nanomaterial by Sol‐Gel Method: Synthesis and Application.Adv Mater Sci Eng. 2021:5102014. [DOI]
Kickelbick G. Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale.Prog Poly Sci. 2003;28:83–114. [DOI]
De La Vega JC, Häfeli UO. Utilization of nanoparticles as X-ray contrast agents for diagnostic imaging applications.Contrast Media Mol Imaging. 2014;10:81–95. [DOI] [PubMed]
Aram E, Moeni M, Abedizadeh R, Sabour D, Sadeghi-Abandansari H, Gardy J, et al. Smart and Multi-Functional Magnetic Nanoparticles for Cancer Treatment Applications: Clinical Challenges and Future Prospects.Nanomaterials (Basel). 2022;12:3567. [DOI] [PubMed] [PMC]
Fessi H, Puisieux F, Devissaguet J, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement.Int J Pharm. 1989;55:R1–R4. [DOI]
Ye F, Barrefelt A, Asem H, Abedi-Valugerdi M, El-Serafi I, Saghafian M, et al. Biodegradable polymeric vesicles containing magnetic nanoparticles, quantum dots and anticancer drugs for drug delivery and imaging.Biomaterials. 2014;35:3885–94. [DOI] [PubMed]
Hong H, Zhang Y, Sun J, Cai W. Molecular imaging and therapy of cancer with radiolabeled nanoparticles.Nano Today. 2009;4;399–413. [DOI:10.1016/j.nanotod.2009.07.001].
Neda N, Ajorlou E, Asghari F, Pilehvar-Soltanahmadi Y. An update on nanoparticle-based contrast agents in medical imaging.Artif Cells Nanomed Biotechnol. 2017;46:1111–21. [DOI]
Nafo W. Polymer-based nanosystems and their applications in bone anticancer therapy.Front Chem. 2023;11:1218511. [DOI] [PubMed] [PMC]
Nafo W. Hydrogel Biomaterials for Drug Delivery: Mechanisms, Design, and Drugs. In: Popa L, Violeta Ghica M, Dinu-Pîrvu CE, editors. Hydrogels - From Tradition to Innovative Platforms with Multiple Applications. IntechOpen; 2023.
Allémann E, Leroux JC, Gurny R, Doelker E. In vitro extended-release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure.Pharm Res. 1993;10:1732–7. [DOI] [PubMed]
Pulingam T, Foroozandeh P, Chuah J, Sudesh K. Exploring Various Techniques for the Chemical and Biological Synthesis of Polymeric Nanoparticles.Nanomaterials (Basel). 2022;12:576. [DOI] [PubMed] [PMC]
Hussain F, Hojjati M, Okamoto M, Gorga RE. Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview.J Compos Mater. 2006;40:1511–75. [DOI]
Betancourt T, Brannon-Peppas L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices.Int J Nanomedicine. 2006;1:483–95. [DOI] [PubMed] [PMC]
Baker C, Ismat Shah S, Hasanain S. Magnetic behavior of iron and iron-oxide nanoparticle/polymer composites.J Magn Magn Mater. 2004;280:412–8. [DOI]
Kim B, Lee C, Lee ES, Shin BS, Youn YS. Paclitaxel and curcumin co-bound albumin nanoparticles having antitumor potential to pancreatic cancer.Asian J Pharm Sci. 2016;11:708–14. [DOI]
Praveena J, Hakkimane SS, Guru BR. Synergistic effect of Paclitaxel and Curcumin in nano-formulations on U87 and A549 cancer cell lines.J App Pharm Sci. 2022;12:31–47. [DOI]
Gallego-Yerga L, Posadas I, De la Torre C, Ruiz-Almansa J, Sansone F, Ortiz Mellet C, et al. Docetaxel-Loaded Nanoparticles Assembled from β-Cyclodextrin/Calixarene Giant Surfactants: Physicochemical Properties and Cytotoxic Effect in Prostate Cancer and Glioblastoma Cells.Front Pharmacol. 2017;8:249. [DOI] [PubMed] [PMC]
Ning C, Dong Y, Yang K, Li X, Wang F, Zhang Y. Co-Encapsulation of Hydrophilic and Hydrophobic Drugs into Human H Chain Ferritin Nanocarrier Enhances Antitumor Efficacy.ACS Biomater Sci Eng. 2023;9:2572–83. [DOI] [PubMed]
Massella D, Celasco E, Salaün F, Ferri A, Barresi AA. Overcoming the Limits of Flash Nanoprecipitation: Effective Loading of Hydrophilic Drug into Polymeric Nanoparticles with Controlled Structure.Polymers (Basel). 2018;10:1092. [DOI] [PubMed] [PMC]
Liu H, Finn N, Yates MZ. Encapsulation and sustained release of a model drug, indomethacin, using CO2-based microencapsulation.Langmuir. 2005;21:379–85. [DOI] [PubMed]
Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology.Molecules. 2020;25:3731. [DOI] [PubMed] [PMC]
Hao Y, Chen Y, He X, Yang F, Han R, Yang C, et al. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy.Bioact Mater. 2020;5:542–52. [DOI] [PubMed] [PMC]
Patil KC, Aruna S, Mimani T. Combustion synthesis: an update.Curr Opin Solid State Mater Sci. 2002;6:507–12. [DOI]
Pankhurst QA, Thanh NTK, Jones SK, Dobson J. Progress in applications of magnetic nanoparticles in biomedicine.J Phys D Appl Phys. 2009;42:224001. [DOI]
Livage J, Henry M, Sanchez C. Sol-gel chemistry of transition metal oxides.Prog Solid State Chem. 1988;18:259–341. [DOI]
Byrappa K, Adschiri T. Hydrothermal technology for nanotechnology.Prog Cryst Growth Charact Mater. 2007;53:117–66. [DOI]
Hiremath A, Murthy AA, Thipperudrappa S, K N B. Nanoparticles Filled Polymer Nanocomposites: A Technological Review.Cogent Eng. 2021;8:1991229. [DOI]
Kalia S, Kango S, Kumar A, Haldorai Y, Kumari B, Kumar R. Magnetic polymer nanocomposites for environmental and biomedical applications.Colloid Polym Sci. 2014;292:2025–52. [DOI]
Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake.Biomaterials. 2002;23:1553–61. [DOI]
Lorson T, Lübtow MM, Wegener E, Haider MS, Borova S, Nahm D, et al. Poly(2-oxazoline)s based biomaterials: A comprehensive and critical update.Biomaterials. 2018;178:204–80. [DOI] [PubMed]
Emilsson G, Schoch RL, Feuz L, Höök F, Lim RYH, Dahlin AB. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to.ACS Appl Mater Interfaces. 2015;7:7505–15. [DOI] [PubMed]
Rubio N, Au H, Leese HS, Hu S, Clancy AJ, Shaffer MSP. Grafting from versus Grafting to Approaches for the Functionalization of Graphene Nanoplatelets with Poly(methyl methacrylate).Macromolecules. 2017;50:7070–9. [DOI]
Liu R, Xu Y, Zhang N, Qu S, Zeng W, Li R, et al. Nanotechnology for Enhancing Medical Imaging. In: Gu N, editor. Nanomedicine. Singapore: Springer Nature; 2022. pp. 99–156. [DOI]
Schädlich A, Caysa H, Mueller T, Tenambergen F, Rose C, Göpferich A, et al. Tumor accumulation of NIR fluorescent PEG-PLA nanoparticles: impact of particle size and human xenograft tumor model.ACS Nano. 2011;5:8710–20. [DOI] [PubMed]
Mohammadian F, Pilehvar-Soltanahmadi Y, Zarghami F, Akbarzadeh A, Zarghami N. Upregulation of miR-9 and Let-7a by nanoencapsulated chrysin in gastric cancer cells.Artif Cells Nanomed Biotechnol. 2016;45:1201–6. [DOI] [PubMed]
Mohammadian F, Abhari A, Dariushnejad H, Zarghami F, Nikanfar A, Pilehvar-Soltanahmadi Y, et al. Upregulation of Mir-34a in AGS Gastric Cancer Cells by a PLGA-PEG-PLGA Chrysin Nano Formulation.Asian Pac J Cancer Prev. 2015;16:8259–63. [DOI] [PubMed]
Dai Y, Xu C, Sun X, Chen X. Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment.Chem Soc Rev. 2017;46:3830–52. [DOI] [PubMed] [PMC]
Amirsaadat S, Pilehvar-Soltanahmadi Y, Zarghami F, Alipour S, Ebrahimnezhad Z, Zarghami N. Silibinin-loaded magnetic nanoparticles inhibit hTERT gene expression and proliferation of lung cancer cells.Artif Cells Nanomed Biotechnol. 2017;45:1649–56. [DOI] [PubMed]
Thomas R, Park I, Jeong YY. Magnetic iron oxide nanoparticles for multimodal imaging and therapy of cancer.Int J Mol Sci. 2013;14:15910–30. [DOI] [PubMed] [PMC]
Liu J, Legros S, Ma G, Veinot JGC, Von der Kammer F, Hofmann T. Influence of surface functionalization and particle size on the aggregation kinetics of engineered nanoparticles.Chemosphere. 2012;87:918–24. [DOI] [PubMed]
Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding biophysicochemical interactions at the nano-bio interface.Nat Mater. 2009;8:543–57. [DOI] [PubMed]
Tenzer S, Docter D, Rosfa S, Wlodarski A, Kuharev J, Rekik A, et al. Nanoparticle size is a critical physicochemical determinant of the human blood plasma corona: a comprehensive quantitative proteomic analysis.ACS Nano. 2011;5:7155–67. [DOI] [PubMed]
Monopoli MP, Aberg C, Salvati A, Dawson KA. Biomolecular coronas provide the biological identity of nanosized materials.Nat Nanotechnol. 2012;7:779–86. [DOI] [PubMed]
Cedervall T, Lynch I, Lindman S, Berggård T, Thulin E, Nilsson H, et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles.Proc Natl Acad Sci U S A. 2007;104:2050–5. [DOI] [PubMed] [PMC]
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts.Proc Natl Acad Sci U S A. 2008;105:14265–70. [DOI] [PubMed] [PMC]
Salvati A, Pitek AS, Monopoli MP, Prapainop K, Bombelli FB, Hristov DR, et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface.Nat Nanotechnol. 2013;8:137–43. [DOI] [PubMed]
Arvizo RR, Miranda OR, Moyano DF, Walden CA, Giri K, Bhattacharya R, et al. Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles.PLoS ONE. 2011;6:e24374. [DOI] [PubMed] [PMC]
Luo D, Carter KA, Lovell JF. Nanomedical engineering: shaping future nanomedicines.Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:169–88. [DOI] [PubMed] [PMC]
Bae YH, Park K. Targeted drug delivery to tumors: myths, reality and possibility.J Control Release. 2011;153:198–205. [DOI] [PubMed] [PMC]
Kiessling F, Mertens ME, Grimm J, Lammers T. Nanoparticles for imaging: top or flop?Radiology. 2014;273:10–28. [DOI] [PubMed] [PMC]
Albanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems.Annu Rev Biomed Eng. 2012;14:1–16. [DOI] [PubMed]
Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells.Nano Lett. 2006;6:662–8. [DOI] [PubMed]
Farajzadeh R, Pilehvar-Soltanahmadi Y, Dadashpour M, Javidfar S, Lotfi-Attari J, Sadeghzadeh H, et al. Nano-encapsulated metformin-curcumin in PLGA/PEG inhibits synergistically growth and hTERT gene expression in human breast cancer cells.Artif Cells Nanomed Biotechnol. 2018;46:917–25. [DOI] [PubMed]
Sun C, Lee JSH, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery.Adv Drug Deliv Rev. 2008;60:1252–65. [DOI] [PubMed] [PMC]
Prabhu P, Patravale V. The upcoming field of theranostic nanomedicine: an overview.J Biomed Nanotechnol. 2012;8:859–82. [DOI] [PubMed]
Lee P, Hsu S, Wang J, Tsai J, Lin K, Wey S, et al. The characteristics, biodistribution, magnetic resonance imaging and biodegradability of superparamagnetic core-shell nanoparticles.Biomaterials. 2010;31:1316–24. [DOI] [PubMed]
Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines.J Nanobiotechnology. 2011;9:55. [DOI] [PubMed] [PMC]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems.Colloids Surf B Biointerfaces. 2010;75:1–18. [DOI] [PubMed]
Park JH, Ye M, Park K. Biodegradable polymers for microencapsulation of drugs.Molecules. 2005;10:146–61. [DOI] [PubMed] [PMC]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice.Pharmacol Rev. 2001;53:283–318. [PubMed]
Na HB, Song IC, Hyeon T. Inorganic Nanoparticles for MRI Contrast Agents.Adv Mater. 2009;21:2133–48. [DOI]
Dulińska-Litewka J, Łazarczyk A, Hałubiec P, Szafrański O, Karnas K, Karewicz A. Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications.Materials (Basel). 2019;12:617. [DOI] [PubMed] [PMC]
Fang C, Zhang M. Multifunctional Magnetic Nanoparticles for Medical Imaging Applications.J Mater Chem. 2009;19:6258–66. [DOI] [PubMed] [PMC]
Rapoport N, Gao Z, Kennedy A. Multifunctional nanoparticles for combining ultrasonic tumor imaging and targeted chemotherapy.J Natl Cancer Inst. 2007;99:1095–106. [DOI] [PubMed]
Qiu Y, Park K. Environment-sensitive hydrogels for drug delivery.Adv Drug Deliv Rev. 2001;53:321–39. [DOI] [PubMed]
Sadeghzadeh H, Pilehvar-Soltanahmadi Y, Akbarzadeh A, Dariushnejad H, Sanjarian F, Zarghami N. The Effects of Nanoencapsulated Curcumin-Fe3O4 on Proliferation and hTERT Gene Expression in Lung Cancer Cells.Anticancer Agents Med Chem. 2017;17:1363–73. [DOI] [PubMed]
Mohammadian F, Pilehvar-Soltanahmadi Y, Mofarrah M, Dastani-Habashi M, Zarghami N. Down regulation of miR-18a, miR-21 and miR-221 genes in gastric cancer cell line by chrysin-loaded PLGA-PEG nanoparticles.Artif Cells Nanomed Biotechnol. 2016;44:1972–8. [DOI] [PubMed]
Moghimi SM, Simberg D, Papini E, Farhangrazi ZS. Complement activation by drug carriers and particulate pharmaceuticals: Principles, challenges and opportunities.Adv Drug Deliv Rev. 2020;157:83–95. [DOI] [PubMed] [PMC]
Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways.Proc Natl Acad Sci U S A. 2008;105:11613–8. [DOI] [PubMed] [PMC]
He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles.Biomaterials. 2010;31:3657–66. [DOI] [PubMed]
Hung C, Huang W, Lin Y, Yu T, Chen H, Lin S, et al. Active Tumor Permeation and Uptake of Surface Charge-Switchable Theranostic Nanoparticles for Imaging-Guided Photothermal/Chemo Combinatorial Therapy.Theranostics. 2016;6:302–17. [DOI] [PubMed] [PMC]
Zhang Y, Zhang Q, Zhang A, Pan S, Cheng J, Zhi X, et al. Multifunctional co-loaded magnetic nanocapsules for enhancing targeted MR imaging and in vivo photodynamic therapy.Nanomedicine. 2019;21:102047. [DOI] [PubMed]
Langer R, Tirrell DA. Designing materials for biology and medicine.Nature. 2004;428:487–92. [DOI] [PubMed]
Mazumdar S, Chitkara D, Mittal A. Exploration and insights into the cellular internalization and intracellular fate of amphiphilic polymeric nanocarriers.Acta Pharm Sin B. 2021;11:903–24. [DOI] [PubMed] [PMC]
Parton RG, Simons K. The multiple faces of caveolae.Nat Rev Mol Cell Biol. 2007;8:185–94. [DOI] [PubMed]
Swanson JA. Shaping cups into phagosomes and macropinosomes.Nat Rev Mol Cell Biol. 2008;9:639–49. [DOI] [PubMed] [PMC]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer.Clin Cancer Res. 2008;14:1310–6. [DOI] [PubMed]
Owensiii D, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int J Pharm. 2006;307:93–102. [DOI] [PubMed]
Lai J, Luo Z, Chen L, Wu Z. Advances in nanotechnology-based targeted-contrast agents for computed tomography and magnetic resonance.Sci Prog. 2024;107:368504241228076. [DOI] [PubMed] [PMC]
Wang Y, Pasternak M, Sathiyamoorthy K, Kolios MC. Anti-HER2 PLGA-PEG polymer nanoparticle containing gold nanorods and paclitaxel for laser-activated breast cancer detection and therapy.Biomed Opt Express. 2021;12:2171–85. [DOI] [PubMed] [PMC]
Davoodi P, Srinivasan MP, Wang C. Synthesis of intracellular reduction-sensitive amphiphilic polyethyleneimine and poly(ε-caprolactone) graft copolymer for on-demand release of doxorubicin and p53 plasmid DNA.Acta Biomater. 2016;39:79–93. [DOI] [PubMed]
Xing H, Lu M, Yang T, Liu H, Sun Y, Zhao X, et al. Structure-function relationships of nonviral gene vectors: Lessons from antimicrobial polymers.Acta Biomater. 2019;86:15–40. [DOI] [PubMed]
Ma P, Wang G, Men K, Li C, Gao N, Li L. Advances in clinical application of nanoparticle-based therapy for cancer treatment: A systematic review.Nano TransMed. 2024;3:100036. [DOI]
Danhier F, Ansorena E, Silva JM, Coco R, Breton AL, Préat V. PLGA-based nanoparticles: an overview of biomedical applications.J Control Release. 2012;161:505–22. [DOI] [PubMed]
Suk JS, Xu Q, Kim N, Hanes J, Ensign LM. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery.Adv Drug Deliv Rev. 2016;99:28–51. [DOI] [PubMed] [PMC]
Lee H, Lee E, Kim DK, Jang NK, Jeong YY, Jon S. Antibiofouling polymer-coated superparamagnetic iron oxide nanoparticles as potential magnetic resonance contrast agents for in vivo cancer imaging.J Am Chem Soc. 2006;128:7383–9. [DOI] [PubMed]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles.Mol Pharm. 2008;5:505–15. [DOI] [PubMed] [PMC]
Luo D, Haverstick K, Belcheva N, Han E, Saltzman WM. Poly(ethylene glycol)-Conjugated PAMAM Dendrimer for Biocompatible, High-Efficiency DNA Delivery.Macromolecules. 2002;35:3456–62. [DOI]
Malhotra N, Lee J, Liman RAD, Ruallo JMS, Villaflores OB, Ger T, et al. Potential Toxicity of Iron Oxide Magnetic Nanoparticles: A Review.Molecules. 2020;25:3159. [DOI] [PubMed] [PMC]
Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: An overview.Acta Biomater. 2016;41:1–16. [DOI] [PubMed]
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size.Nat Nanotechnol. 2011;6:815–23. [DOI] [PubMed]
Lee N, Choi SH, Hyeon T. Nano-sized CT contrast agents.Adv Mater. 2013;25:2641–60. [DOI] [PubMed]
Liu Y, Ai K, Lu L. Nanoparticulate X-ray computed tomography contrast agents: from design validation to in vivo applications.Acc Chem Res. 2012;45:1817–27. [DOI] [PubMed]
Goos JACM, Cho A, Carter LM, Dilling TR, Davydova M, Mandleywala K, et al. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.Theranostics. 2020;10:567–84. [DOI] [PubMed] [PMC]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting.Adv Enzyme Regul. 2001;41:189–207. [DOI] [PubMed]
Greish K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines.J Drug Target. 2007;15:457–64. [DOI] [PubMed]
Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, De Matas M. PEGylation: a promising strategy to overcome challenges to cancer-targeted nanomedicines: a review of challenges to clinical transition and promising resolution.Drug Deliv Transl Res. 2019;9:721–34. [DOI] [PubMed]
Gupta V, Bhavanasi S, Quadir M, Singh K, Ghosh G, Vasamreddy K, et al. Protein PEGylation for cancer therapy: bench to bedside.J Cell Commun Signal. 2019;13:319–30. [DOI] [PubMed] [PMC]
Mukherjee B, Paul B, Al Hoque A, Sen R, Chakraborty S, Chakraborty A. Polymeric nanoparticles as tumor-targeting theranostic platform.In: Design and Applications of Theranostic Nanomedicines. Elsevier; 2023. pp. 217–59.
Martínez-Carmona M, Colilla M, Vallet-Regí M. Smart Mesoporous Nanomaterials for Antitumor Therapy.Nanomaterials (Basel). 2015;5:1906–37. [DOI] [PubMed] [PMC]
Yao L, Daniels J, Moshnikova A, Kuznetsov S, Ahmed A, Engelman DM, et al. pHLIP peptide targets nanogold particles to tumors.Proc Natl Acad Sci U S A. 2013;110:465–70. [DOI] [PubMed] [PMC]
Zhang S, Gong M, Zhang D, Yang H, Gao F, Zou L. Thiol-PEG-carboxyl-stabilized Fe₂O₃/Au nanoparticles targeted to CD105: synthesis, characterization and application in MR imaging of tumor angiogenesis.Eur J Radiol. 2014;83:1190–8. [DOI] [PubMed]
Sun I, Na JH, Jeong SY, Kim D, Kwon IC, Choi K, et al. Biocompatible glycol chitosan-coated gold nanoparticles for tumor-targeting CT imaging.Pharm Res. 2014;31:1418–25. [DOI] [PubMed]
Allijn IE, Leong W, Tang J, Gianella A, Mieszawska AJ, Fay F, et al. Gold nanocrystal labeling allows low-density lipoprotein imaging from the subcellular to macroscopic level.ACS Nano. 2013;7:9761–70. [DOI] [PubMed] [PMC]
Chen Q, Li K, Wen S, Liu H, Peng C, Cai H, et al. Targeted CT/MR dual mode imaging of tumors using multifunctional dendrimer-entrapped gold nanoparticles.Biomaterials. 2013;34:5200–9. [DOI] [PubMed]
Liu H, Xu Y, Wen S, Chen Q, Zheng L, Shen M, et al. Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles.Chemistry. 2013;19:6409–16. [DOI] [PubMed]
Wang H, Zheng L, Peng C, Shen M, Shi X, Zhang G. Folic acid-modified dendrimer-entrapped gold nanoparticles as nanoprobes for targeted CT imaging of human lung adencarcinoma.Biomaterials. 2013;34:470–80. [DOI] [PubMed]
Yoo J, Park C, Yi G, Lee D, Koo H. Active Targeting Strategies Using Biological Ligands for Nanoparticle Drug Delivery Systems.Cancers (Basel). 2019;11:640. [DOI] [PubMed] [PMC]
Wei M, Gao Y, Li X, Serpe MJ. Stimuli-responsive polymers and their applications.Polym Chem. 2017;8:127–43. [DOI]
Aoki T, Muramatsu M, Nishina A, Sanui K, Ogata N. Thermosensitivity of optically active hydrogels constructed with N-(L)-(1-hydroxymethyl)propylmethacrylamide.Macromol Biosci. 2004;4:943–9. [DOI] [PubMed]
Gil E, Hudson S. Stimuli-reponsive polymers and their bioconjugates.Prog Polym Sci. 2004;29:1173–222. [DOI]
Chaterji S, Kwon IK, Park K. Smart Polymeric Gels: Redefining the Limits of Biomedical Devices.Prog Polym Sci. 2007;32:1083–122. [DOI] [PubMed] [PMC]
Li X, Yue R, Guan G, Zhang C, Zhou Y, Song G. Recent development of pH-responsive theranostic nanoplatforms for magnetic resonance imaging-guided cancer therapy.Exploration (Beijing). 2023;3:20220002. [DOI] [PubMed] [PMC]
Namdeo M, Saxena S, Tankhiwale R, Bajpai M, Mohan YM, Bajpai SK. Magnetic nanoparticles for drug delivery applications.J Nanosci Nanotechnol. 2008;8:3247–71. [DOI] [PubMed]
Grief AD, Richardson G. Mathematical modelling of magnetically targeted drug delivery.J Magn Magn Mater. 2005;293:455–63. [DOI]
Thomsen LB, Thomsen MS, Moos T. Targeted drug delivery to the brain using magnetic nanoparticles.Ther Deliv. 2015;6:1145–55. [DOI] [PubMed]
Thomsen LB, Linemann T, Pondman KM, Lichota J, Kim KS, Pieters RJ, et al. Uptake and transport of superparamagnetic iron oxide nanoparticles through human brain capillary endothelial cells.ACS Chem Neurosci. 2013;4:1352–60. [DOI] [PubMed] [PMC]
Duncan R. The dawning era of polymer therapeutics.Nat Rev Drug Discov. 2003;2:347–60. [DOI] [PubMed]
Hovgaard L, Brøndsted H. Dextran hydrogels for colon-specific drug delivery.J Controlled Release. 1995;36:159–66. [DOI]
Abdulraqeb Ali A, Abuwatfa WH, Al-Sayah MH, Husseini GA. Gold-Nanoparticle Hybrid Nanostructures for Multimodal Cancer Therapy.Nanomaterials (Basel). 2022;12:3706. [DOI] [PubMed] [PMC]
Indoria S, Singh V, Hsieh M. Recent advances in theranostic polymeric nanoparticles for cancer treatment: A review.Int J Pharm. 2020;582:119314. [DOI] [PubMed]
Piret G, Prinz CN. Could the use of nanowire structures overcome some of the current limitations of brain electrode implants?Nanomedicine (Lond). 2016;11:745–7. [DOI] [PubMed]
Grewal AK, Salar RK. Chitosan nanoparticle delivery systems: An effective approach to enhancing efficacy and safety of anticancer drugs.Nano TransMed. 2024;3:100040. [DOI]
Venkatraman S, Wong T. How can nanoparticles be used to overcome the challenges of glaucoma treatment?Nanomedicine (Lond). 2014;9:1281–3. [DOI] [PubMed]
Murthy SK. Nanoparticles in modern medicine: state of the art and future challenges.Int J Nanomedicine. 2007;2:129–41. [PubMed] [PMC]
Talelli M, Hennink WE. Thermosensitive polymeric micelles for targeted drug delivery.Nanomedicine (Lond). 2011;6:1245–55. [DOI] [PubMed]
Heidel JD, Yu Z, Liu JY, Rele SM, Liang Y, Zeidan RK, et al. Administration in non-human primates of escalating intravenous doses of targeted nanoparticles containing ribonucleotide reductase subunit M2 siRNA.Proc Natl Acad Sci U S A. 2007;104:5715–21. [DOI] [PubMed] [PMC]
Djeungoue Petga MA, Taylor C, Macpherson A, Dhadi SR, Rollin T, Roy JW, et al. A simple scalable extracellular vesicle isolation method using polyethylenimine polymers for use in cellular delivery.Extracell Vesicle. 2024;3:100033. [DOI]
Guo B, Chen J, Chen N, Middha E, Xu S, Pan Y, et al. High-Resolution 3D NIR-II Photoacoustic Imaging of Cerebral and Tumor Vasculatures Using Conjugated Polymer Nanoparticles as Contrast Agent.Adv Mater. 2019;31:e1808355. [DOI] [PubMed]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery.J Control Release. 2013;166:182–94. [DOI] [PubMed]
Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy.Nat Nanotechnol. 2007;2:751–60. [DOI] [PubMed]
Zhou W, He X, Wang J, He S, Xie C, Fan Q, et al. Semiconducting Polymer Nanoparticles for Photoactivatable Cancer Immunotherapy and Imaging of Immunoactivation.Biomacromolecules. 2022;23:1490–504. [DOI] [PubMed]
Liu Y, Zhao L, Xing R, Jiao T, Song W, Yan X. Covalent Assembly of Amphiphilic Bola-Amino Acids into Robust and Biodegradable Nanoparticles for In Vitro Photothermal Therapy.Chem Asian J. 2018;13:3526–32. [DOI] [PubMed]
Cao P, Bae Y. Polymer nanoparticulate drug delivery and combination cancer therapy.Future Oncol. 2012;8:1471–80. [DOI] [PubMed]
Shi W, Fuad ARM, Li Y, Wang Y, Huang J, Du R, et al. Biodegradable polymeric nanoparticles increase risk of cardiovascular diseases by inducing endothelium dysfunction and inflammation.J Nanobiotechnology. 2023;21:65. [DOI] [PubMed] [PMC]
Chen D, Liu Y, Zhang Z, Liu Z, Fang X, He S, et al. NIR-II Fluorescence Imaging Reveals Bone Marrow Retention of Small Polymer Nanoparticles.Nano Lett. 2021;21:798–805. [DOI] [PubMed]
Qin J, Liang G, Feng Y, Feng B, Wang G, Wu N, et al. Synthesis of gadolinium/iron-bimetal-phenolic coordination polymer nanoparticles for theranostic applications.Nanoscale. 2020;12:6096–103. [DOI] [PubMed]
Bardhan R, Lal S, Joshi A, Halas NJ. Theranostic nanoshells: from probe design to imaging and treatment of cancer.Acc Chem Res. 2011;44:936–46. [DOI] [PubMed] [PMC]
Jia L, Zhang P, Sun H, Dai Y, Liang S, Bai X, et al. Optimization of Nanoparticles for Smart Drug Delivery: A Review.Nanomaterials (Basel). 2021;11:2790. [DOI] [PubMed] [PMC]
Zhang P, Li Y, Tang W, Zhao J, Jing L, McHugh KJ. Theranostic nanoparticles with disease-specific administration strategies.Nano Today. 2022;42:101335. [DOI]
Aghebati-Maleki A, Dolati S, Ahmadi M, Baghbanzhadeh A, Asadi M, Fotouhi A, et al. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers.J Cell Physiol. 2020;235:1962–72. [DOI] [PubMed]
Pourmadadi M, Mahdi Eshaghi M, Ostovar S, Mohammadi Z, Sharma RK, Paiva-Santos AC, et al. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications.J Drug Delivery Sci Technol. 2023;82:104357. [DOI]
Damasco JA, Ravi S, Perez JD, Hagaman DE, Melancon MP. Understanding Nanoparticle Toxicity to Direct a Safe-by-Design Approach in Cancer Nanomedicine.Nanomaterials (Basel). 2020;10:2186. [DOI] [PubMed] [PMC]
Zhang C, Liu X, Jin S, Chen Y, Guo R. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance.Mol Cancer. 2022;21:47. [DOI] [PubMed] [PMC]
Gurunathan S, Kang M, Qasim M, Kim J. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer.Int J Mol Sci. 2018;19:3264. [DOI] [PubMed] [PMC]
Kamaly N, Xiao Z, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation.Chem Soc Rev. 2012;41:2971–3010. [DOI] [PubMed] [PMC]
Krishnamoorthy LP, Moorthy RK, Umapathy D, Kannan MK, Ganesan N, Arockiam AJV. Encapsulation of Doxorubicin in PLGA Nanoparticles Enhances Cancer Therapy.Clin Oncol. 2017;2:1325.
Hosseini S, Mohammadnejad J, Salamat S, Beiram Zadeh Z, Tanhaei M, Ramakrishna S. Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review.Mater Today Chem. 2023;29:101400. [DOI]
Wang F, Fan Y, Liu Y, Lou X, Sutrisno L, Peng S, et al. Oxygen-carrying semiconducting polymer nanoprodrugs induce sono-pyroptosis for deep-tissue tumor treatment.Exploration (Beijing). 2024;4:20230100. [DOI] [PubMed] [PMC]
Bartlett G, Antoun J, Zgheib NK. Theranostics in primary care: pharmacogenomics tests and beyond.Expert Rev Mol Diagn. 2012;12:841–55. [DOI] [PubMed]
Ferber S, Baabur-Cohen H, Blau R, Epshtein Y, Kisin-Finfer E, Redy O, et al. Polymeric nanotheranostics for real-time non-invasive optical imaging of breast cancer progression and drug release.Cancer Lett. 2014;352:81–9. [DOI] [PubMed]
Zou Y, Wei Y, Wang G, Meng F, Gao M, Storm G, et al. Nanopolymersomes with an Ultrahigh Iodine Content for High-Performance X-Ray Computed Tomography Imaging In Vivo.Adv Mater. 2017;29:1603997. [DOI] [PubMed]
Li J, Wang Q, Xia G, Adilijiang N, Li Y, Hou Z, et al. Recent Advances in Targeted Drug Delivery Strategy for Enhancing Oncotherapy.Pharmaceutics. 2023;15:2233. [DOI] [PubMed] [PMC]
Lagarrigue P, Moncalvo F, Cellesi F. Non-spherical Polymeric Nanocarriers for Therapeutics: The Effect of Shape on Biological Systems and Drug Delivery Properties.Pharmaceutics. 2022;15:32. [DOI] [PubMed] [PMC]
Tao L, Hu W, Liu Y, Huang G, Sumer BD, Gao J. Shape-specific polymeric nanomedicine: emerging opportunities and challenges.Exp Biol Med (Maywood). 2011;236:20–9. [DOI] [PubMed]
Truong NP, Whittaker MR, Mak CW, Davis TP. The importance of nanoparticle shape in cancer drug delivery.Expert Opin Drug Deliv. 2015;12:129–42. [DOI] [PubMed]
Liu Y, Tan J, Thomas A, Ou-Yang D, Muzykantov VR. The shape of things to come: importance of design in nanotechnology for drug delivery.Ther Deliv. 2012;3:181–94. [DOI] [PubMed] [PMC]
Xia Y, Gilroy KD, Peng H, Xia X. Seed-Mediated Growth of Colloidal Metal Nanocrystals.Angew Chem Int Ed Engl. 2017;56:60–95. [DOI] [PubMed]
Smith AM, Johnston KA, Crawford SE, Marbella LE, Millstone JE. Ligand density quantification on colloidal inorganic nanoparticles.Analyst. 2016;142:11–29. [DOI] [PubMed]
Huang Y, Wang J, Jiang K, Chung EJ. Improving kidney targeting: The influence of nanoparticle physicochemical properties on kidney interactions.J Control Release. 2021;334:127–37. [DOI] [PubMed] [PMC]
Yu W, Liu R, Zhou Y, Gao H. Size-Tunable Strategies for a Tumor Targeted Drug Delivery System.ACS Cent Sci. 2020;6:100–16. [DOI] [PubMed] [PMC]
Sheel R, Kumari P, Panda PK, Jawed Ansari MD, Patel P, Singh S, et al. Molecular intrinsic proximal interaction infer oxidative stress and apoptosis modulated in vivo biocompatibility of P.niruri contrived antibacterial iron oxide nanoparticles with zebrafish.Environ Pollut. 2020;267:115482. [DOI] [PubMed]
Kwon HJ, Shin K, Soh M, Chang H, Kim J, Lee J, et al. Large-Scale Synthesis and Medical Applications of Uniform-Sized Metal Oxide Nanoparticles.Adv Mater. 2018;30:e1704290. [DOI] [PubMed]
Bao Y, Sherwood JA, Sun Z. Magnetic iron oxide nanoparticles as T1 contrast agents for magnetic resonance imaging.J Mater Chem C. 2018;6:1280–90. [DOI]
Corot C, Robert P, Idée J, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging.Adv Drug Deliv Rev. 2006;58:1471–504. [DOI] [PubMed]
Shu G, Chen M, Song J, Xu X, Lu C, Du Y, et al. Sialic acid-engineered mesoporous polydopamine nanoparticles loaded with SPIO and Fe3+ as a novel theranostic agent for T1/T2 dual-mode MRI-guided combined chemo-photothermal treatment of hepatic cancer.Bioact Mater. 2020;6:1423–35. [DOI] [PubMed] [PMC]
Fernández-Barahona I, Muñoz-Hernando M, Ruiz-Cabello J, Herranz F, Pellico J. Iron Oxide Nanoparticles: An Alternative for Positive Contrast in Magnetic Resonance Imaging.Inorganics. 2020;8:28. [DOI]
Cai H, Li K, Li J, Wen S, Chen Q, Shen M, et al. Dendrimer-Assisted Formation of Fe3O4/Au Nanocomposite Particles for Targeted Dual Mode CT/MR Imaging of Tumors.Small. 2015;11:4584–93. [DOI] [PubMed]
Liu H, Su Y, Jiang X, Gao J. Cell membrane-coated nanoparticles: a novel multifunctional biomimetic drug delivery system.Drug Deliv Transl Res. 2023;13:716–37. [DOI] [PubMed] [PMC]
Kim K, Choi H, Choi ES, Park M, Ryu J. Hyaluronic Acid-Coated Nanomedicine for Targeted Cancer Therapy.Pharmaceutics. 2019;11:301. [DOI] [PubMed] [PMC]
Parashar P, Kumar P, Gautam AK, Singh N, Bera H, Sarkar S, et al. Gelatin-based nanomaterials in drug delivery and biomedical applications.In: Biopolymer-Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsevier; 2021. pp. 407–26.
Solnes LB, Werner RA, Jones KM, Sadaghiani MS, Bailey CR, Lapa C, et al. Theranostics: Leveraging Molecular Imaging and Therapy to Impact Patient Management and Secure the Future of Nuclear Medicine.J Nucl Med. 2020;61:311–8. [DOI] [PubMed]
Langbein T, Weber WA, Eiber M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine.J Nucl Med. 2019;60:13S–19S. [DOI] [PubMed]
Ramage J, Naraev BG, Halfdanarson TR. Peptide receptor radionuclide therapy for patients with advanced pancreatic neuroendocrine tumors.Semin Oncol. 2018;45:236–48. [DOI] [PubMed]
Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer.Biomaterials. 2011;32:5167–76. [DOI] [PubMed]
Choi HS, Ashitate Y, Lee JH, Kim SH, Matsui A, Insin N, et al. Rapid translocation of nanoparticles from the lung airspaces to the body.Nat Biotechnol. 2010;28:1300–3. [DOI] [PubMed] [PMC]
Sadauskas E, Wallin H, Stoltenberg M, Vogel U, Doering P, Larsen A, et al. Kupffer cells are central in the removal of nanoparticles from the organism.Part Fibre Toxicol. 2007;4:10. [DOI] [PubMed] [PMC]
Gao Y, Lim J, Teoh S, Xu C. Emerging translational research on magnetic nanoparticles for regenerative medicine.Chem Soc Rev. 2015;44:6306–29. [DOI] [PubMed]
Karimi M, Ghasemi A, Zangabad PS, Rahighi R, Basri SMM, Mirshekari H, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems.Chem Soc Rev. 2016;45:1457–501. [DOI] [PubMed] [PMC]
Schleich N, Danhier F, Préat V. Iron oxide-loaded nanotheranostics: major obstacles to in vivo studies and clinical translation.J Control Release. 2015;198:35–54. [DOI] [PubMed]
Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings.Sci Rep. 2018;8:2082. [DOI] [PubMed] [PMC]
Chung EJ, Leon L, Rinaldi C, editors. Nanoparticles for biomedical applications: fundamental concepts, biological interactions and clinical applications. Amsterdam: Elsevier; 2019.
Hu CJ, Zhang L, Aryal S, Cheung C, Fang RH, Zhang L. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform.Proc Natl Acad Sci U S A. 2011;108:10980–5. [DOI] [PubMed] [PMC]
Fang RH, Hu CJ, Luk BT, Gao W, Copp JA, Tai Y, et al. Cancer cell membrane-coated nanoparticles for anticancer vaccination and drug delivery.Nano Lett. 2014;14:2181–8. [DOI] [PubMed] [PMC]
Silva CO, Pinho JO, Lopes JM, Almeida AJ, Gaspar MM, Reis C. Current Trends in Cancer Nanotheranostics: Metallic, Polymeric, and Lipid-Based Systems.Pharmaceutics. 2019;11:22. [DOI] [PubMed] [PMC]
Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, et al. Microfluidic platform for controlled synthesis of polymeric nanoparticles.Nano Lett. 2008;8:2906–12. [DOI] [PubMed]
McNeil SE. Evaluation of nanomedicines: stick to the basics.Nat Rev Mater. 2016;1:16073. [DOI]
International Organization for Standardization (ISO). International Organization for Standardization (2017) ISO/TR 10993-22:2017 – Biological evaluation of medical devices – Part 22: Guidance on nanomaterials. Geneva: ISO; 2017.
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery.Colloids Surf B Biointerfaces. 2017;159:217–31. [DOI] [PubMed]
Barré-Sinoussi F, Montagutelli X. Animal models are essential to biological research: issues and perspectives.Future Sci OA. 2015;1:FSO63. [DOI] [PubMed] [PMC]
Deng J, Li Q, Wang F. Novel administration strategies for tissue-specific delivery of extracellular vesicles.Extracell Vesicle. 2024;4:100057. [DOI]
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects.J Nanobiotechnology. 2018;16:71. [DOI] [PubMed] [PMC]
Sung YK, Kim SW. Recent advances in polymeric drug delivery systems.Biomater Res. 2020;24:12. [DOI] [PubMed] [PMC]
Bumcrot D, Manoharan M, Koteliansky V, Sah DWY. RNAi therapeutics: a potential new class of pharmaceutical drugs.Nat Chem Biol. 2006;2:711–9. [DOI] [PubMed] [PMC]
Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, et al. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance.Front Mol Biosci. 2020;7:193. [DOI] [PubMed] [PMC]
Noury H, Rahdar A, Ferreira LFR, Jamalpoor Z. AI-driven innovations in smart multifunctional nanocarriers for drug and gene delivery: A mini-review.Crit Rev Oncol Hematol. 2025;210:104701. [DOI] [PubMed]
Bhatia SN, Ingber DE. Microfluidic organs-on-chips.Nat Biotechnol. 2014;32:760–72. [DOI] [PubMed]