AI: artificial intelligence; TACE: transarterial chemoembolization; IR: interventional radiology; HCC: hepatocellular carcinoma; AUC: Area Under the Curve.
Declarations
Author contributions
HY: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. The author read and approved the submitted version.
Conflicts of interest
The author declares that there are no conflicts of interest or competing financial interests to disclose.
Ethical approval
As this is a narrative review of previously published literature and does not involve original human or animal research, ethical approval from an Institutional Review Board (IRB) was not required.
Consent to participate
Not applicable.
Consent to publication
Not applicable; this manuscript does not contain individual patient data or identifying information.
Availability of data and materials
No new datasets were generated or analyzed during the preparation of this narrative review. All information presented is derived from cited, publicly available literature.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
He Y, Gao Q, Mo S, Huang K, Liao Y, Liang T, et al. Artificial intelligence algorithm was used to establish and verify the prediction model of portal hypertension in hepatocellular carcinoma based on clinical parameters and imaging features.J Gastrointest Oncol. 2025;16:159–75. [DOI] [PubMed] [PMC]
Mauro E, de Castro T, Zeitlhoefler M, Sung MW, Villanueva A, Mazzaferro V, et al. Hepatocellular carcinoma: Epidemiology, diagnosis and treatment.JHEP Rep. 2025;7:101571. [DOI] [PubMed] [PMC]
Kalo E, Read S, George J, Majumdar A, Ahlenstiel G. Can Artificial Intelligence and Machine Learning Transform Prediction and Treatment of Post-Transjugular Intrahepatic Portosystemic Shunt (TIPS) Overt Hepatic Encephalopathy?Gastro Hep Adv. 2024;4:100560. [DOI] [PubMed] [PMC]
Wang Q, Jiao J, Zhang C. Application of artificial intelligence in portal hypertension and esophagogastric varices.World J Gastroenterol. 2025;31:108508. [DOI] [PubMed] [PMC]
Hung ML, Lee EW. Role of Transjugular Intrahepatic Portosystemic Shunt in the Management of Portal Hypertension: Review and Update of the Literature.Clin Liver Dis. 2019;23:737–54. [DOI] [PubMed]
Keshavarz P, Nezami N, Yazdanpanah F, Khojaste-Sarakhsi M, Mohammadigoldar Z, Azami M, et al. Prediction of treatment response and outcome of transarterial chemoembolization in patients with hepatocellular carcinoma using artificial intelligence: A systematic review of efficacy.Eur J Radiol. 2025;184:111948. [DOI] [PubMed]
Kuhn TN, Engelhardt WD, Kahl VH, Alkukhun A, Gross M, Iseke S, et al. Artificial Intelligence-Driven Patient Selection for Preoperative Portal Vein Embolization for Patients with Colorectal Cancer Liver Metastases.J Vasc Interv Radiol. 2025;36:477–88. [DOI] [PubMed]
Ayyub J, Dabhi KN, Gohil NV, Tanveer N, Hussein S, Pingili S, et al. Evaluation of the Safety and Efficacy of Conventional Transarterial Chemoembolization (cTACE) and Drug-Eluting Bead (DEB)-TACE in the Management of Unresectable Hepatocellular Carcinoma: A Systematic Review.Cureus. 2023;15:e41943. [DOI] [PubMed] [PMC]
Patel KR, Menon H, Patel RR, Huang EP, Verma V, Escorcia FE. Locoregional Therapies for Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis.JAMA Netw Open. 2024;7:e2447995. [DOI] [PubMed] [PMC]
Soykan EA, Aarts BM, Lopez-Yurda M, Kuhlmann KFD, Erdmann JI, Kok N, et al. Predictive Factors for Hypertrophy of the Future Liver Remnant After Portal Vein Embolization: A Systematic Review.Cardiovasc Intervent Radiol. 2021;44:1355–66. [DOI] [PubMed] [PMC]
Letzen B, Wang CJ, Chapiro J. The Role of Artificial Intelligence in Interventional Oncology: A Primer.J Vasc Interv Radiol. 2019;30:38–41.e1. [DOI] [PubMed]
Gurgitano M, Angileri SA, Rodà GM, Liguori A, Pandolfi M, Ierardi AM, et al. Interventional Radiology ex-machina: impact of Artificial Intelligence on practice.Radiol Med. 2021;126:998–1006. [DOI] [PubMed] [PMC]
Boeken T, Feydy J, Lecler A, Soyer P, Feydy A, Barat M, et al. Artificial intelligence in diagnostic and interventional radiology: Where are we now?Diagn Interv Imaging. 2023;104:1–5. [DOI] [PubMed]
Forner A, Reig M, Bruix J. Hepatocellular carcinoma.Lancet. 2018;391:1301–14. [DOI] [PubMed]
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data.Radiology. 2016;278:563–77. [DOI] [PubMed] [PMC]
Lencioni R, de Baere T, Soulen MC, Rilling WS, Geschwind JH. Lipiodol transarterial chemoembolization for hepatocellular carcinoma: A systematic review of efficacy and safety data.Hepatology. 2016;64:106–16. [DOI] [PubMed]
Lencioni R. Management of hepatocellular carcinoma with transarterial chemoembolization in the era of systemic targeted therapy.Crit Rev Oncol Hematol. 2012;83:216–24. [DOI] [PubMed]
Thornburg B. Hepatic Encephalopathy following Transjugular Intrahepatic Portosystemic Shunt Placement.Semin Intervent Radiol. 2023;40:262–8. [DOI] [PubMed] [PMC]
Lesaunier A, Khlaut J, Dancette C, Tselikas L, Bonnet B, Boeken T. Artificial intelligence in interventional radiology: Current concepts and future trends.Diagn Interv Imaging. 2025;106:5–10. [DOI] [PubMed]
Warren BE, Bilbily A, Gichoya JW, Conway A, Li B, Fawzy A, et al. An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge.Can Assoc Radiol J. 2024;75:558–67. [DOI] [PubMed]
Chapiro J, Allen B, Abajian A, Wood B, Kothary N, Daye D, et al. Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel on Artificial Intelligence in Interventional Radiology: From Code to Bedside.J Vasc Interv Radiol. 2022;33:1113–20. [DOI] [PubMed]
Najafi A, Cazzato RL, Meyer BC, Pereira PL, Alberich A, López A, et al. CIRSE Position Paper on Artificial Intelligence in Interventional Radiology.Cardiovasc Intervent Radiol. 2023;46:1303–7. [DOI] [PubMed]
Kallini JR, Moriarty JM. Artificial Intelligence in Interventional Radiology.Semin Intervent Radiol. 2022;39:341–7. [DOI] [PubMed] [PMC]
Matsui Y, Ueda D, Fujita S, Fushimi Y, Tsuboyama T, Kamagata K, et al. Applications of artificial intelligence in interventional oncology: An up-to-date review of the literature.Jpn J Radiol. 2025;43:164–76. [DOI] [PubMed] [PMC]
D’Amore B, Smolinski-Zhao S, Daye D, Uppot RN. Role of Machine Learning and Artificial Intelligence in Interventional Oncology.Curr Oncol Rep. 2021;23:70. [DOI] [PubMed]
Iezzi R, Goldberg SN, Merlino B, Posa A, Valentini V, Manfredi R. Artificial Intelligence in Interventional Radiology: A Literature Review and Future Perspectives.J Oncol. 2019;2019:6153041. [DOI] [PubMed] [PMC]
Rawat W, Wang Z. Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review.Neural Comput. 2017;29:2352–449. [DOI] [PubMed]
Yao L, Adwan H, Bernatz S, Li H, Vogl TJ. Artificial intelligence for multi-time-point arterial phase contrast-enhanced MRI profiling to predict prognosis after transarterial chemoembolization in hepatocellular carcinoma.Radiol Med. 2025;130:1517–39. [DOI] [PubMed] [PMC]
Tan D, Zhai Y, Hu Z, Xu B, Zheng T, Chen Y, et al. Dual-stage artificial intelligence-powered screening for accurate classification of thyroid nodules: enhancing fine needle aspiration biopsy precision.Quant Imaging Med Surg. 2025;15:5719–38. [DOI] [PubMed] [PMC]
Chang SC, Wang P, Wang W, Su TH, Kao JH, Lin C. A BCLC Staging System for Hepatocellular Carcinoma using Swin Transformer and CT Imaging.Annu Int Conf IEEE Eng Med Biol Soc. 2024:1–4. [DOI] [PubMed]
Yan S, Wang C, Chen W, Lyu J. Swin transformer-based GAN for multi-modal medical image translation.Front Oncol. 2022;12:942511. [DOI] [PubMed] [PMC]
Liu P, Song Y, Chai M, Han Z, Zhang Y. Swin-UNet++: A Nested Swin Transformer Architecture for Location Identification and Morphology Segmentation of Dimples on 2.25Cr1Mo0.25V Fractured Surface.Materials (Basel). 2021;14:7504. [DOI] [PubMed] [PMC]
Cornelis FH, Filippiadis DK, Wiggermann P, Solomon SB, Madoff DC, Milot L, et al. Evaluation of navigation and robotic systems for percutaneous image-guided interventions: A novel metric for advanced imaging and artificial intelligence integration.Diagn Interv Imaging. 2025;106:157–68. [DOI] [PubMed]
Lee A, Baker TS, Bederson JB, Rapoport BI. Levels of autonomy in FDA-cleared surgical robots: a systematic review.NPJ Digit Med. 2024;7:103. [DOI] [PubMed] [PMC]
Bonnet B, Tselikas L. Robotics and artificial intelligence in the real world of interventional radiology: Innovation or illusion?Diagn Interv Imaging. 2025;106:145–6. [DOI] [PubMed]
Mazaheri S, Loya MF, Newsome J, Lungren M, Gichoya JW. Challenges of Implementing Artificial Intelligence in Interventional Radiology.Semin Intervent Radiol. 2021;38:554–9. [DOI] [PubMed] [PMC]
Cho EEL, Law M, Yu Z, Yong JN, Tan CS, Tan EY, et al. Artificial Intelligence and Machine Learning Predicting Transarterial Chemoembolization Outcomes: A Systematic Review.Dig Dis Sci. 2025;70:533–42. [DOI] [PubMed]
Kiani I, Razeghian I, Valizadeh P, Esmaeilian Y, Jannatdoust P, Khosravi B. Performance of Artificial Intelligence Models in Predicting Responsiveness of Hepatocellular Carcinoma to Transarterial Chemoembolization (TACE): A Systematic Review and Meta-Analysis.J Am Coll Radiol. 2026;23:76–88. [DOI] [PubMed]
Chaichana A, Frey EC, Teyateeti A, Rhoongsittichai K, Tocharoenchai C, Pusuwan P, et al. Automated segmentation of lung, liver, and liver tumors from Tc-99m MAA SPECT/CT images for Y-90 radioembolization using convolutional neural networks.Med Phys. 2021;48:7877–90. [DOI] [PubMed] [PMC]
Jia Y, Li Z, Akhavanallaf A, Fessler JA, Dewaraja YK. 90Y SPECT scatter estimation and voxel dosimetry in radioembolization using a unified deep learning framework.EJNMMI Phys. 2023;10:82. [DOI] [PubMed] [PMC]
Rangraz EJ, Coudyzer W, Maleux G, Baete K, Deroose CM, Nuyts J. Multi-modal image analysis for semi-automatic segmentation of the total liver and liver arterial perfusion territories for radioembolization.EJNMMI Res. 2019;9:19. [DOI] [PubMed] [PMC]
He K, Liu X, Shahzad R, Reimer R, Thiele F, Niehoff J, et al. Advanced Deep Learning Approach to Automatically Segment Malignant Tumors and Ablation Zone in the Liver With Contrast-Enhanced CT.Front Oncol. 2021;11:669437. [DOI] [PubMed] [PMC]
Lin Z, Li G, Chen J, Chen Z, Chen Y, Lin S. Effect of heat sink on the recurrence of small malignant hepatic tumors after radiofrequency ablation.J Cancer Res Ther. 2016;12:C153–8. [DOI] [PubMed]
Plachouris D, Tzolas I, Gatos I, Papadimitroulas P, Spyridonidis T, Apostolopoulos D, et al. A deep-learning-based prediction model for the biodistribution of 90Y microspheres in liver radioembolization.Med Phys. 2021;48:7427–38. [DOI] [PubMed]
Crombé A, Palussière J, Catena V, Cazayus M, Fonck M, Béchade D, et al. Radiofrequency ablation of lung metastases of colorectal cancer: could early radiomics analysis of the ablation zone help detect local tumor progression?Br J Radiol. 2023;96:20201371. [DOI] [PubMed] [PMC]
Ren H, An C, Fu W, Wu J, Yao W, Yu J, et al. Prediction of local tumor progression after microwave ablation for early-stage hepatocellular carcinoma with machine learning.J Cancer Res Ther. 2023;19:978–87. [DOI] [PubMed]
Matsumoto T, Endo K, Yamamoto S, Suda S, Tomita K, Kamei S, et al. Dose length product and outcome of CT fluoroscopy-guided interventions using a new 320-detector row CT scanner with deep-learning reconstruction and new bow-tie filter.Br J Radiol. 2022;95:20211159. [DOI] [PubMed] [PMC]
Kim Y, Keum J, Kim J, Chun J, Oh S, Kim K, et al. Real-World Colonoscopy Video Integration to Improve Artificial Intelligence Polyp Detection Performance and Reduce Manual Annotation Labor.Diagnostics (Basel). 2025;15:901. [DOI] [PubMed] [PMC]
Yao L, Xiong H, Li Q, Wang W, Wu Z, Tan X, et al. Validation of artificial intelligence-based bowel preparation assessment in screening colonoscopy (with video).Gastrointest Endosc. 2024;100:728–36.e9. [DOI] [PubMed]
Soleymanjahi S, Huebner J, Elmansy L, Rajashekar N, Lüdtke N, Paracha R, et al. Artificial Intelligence-Assisted Colonoscopy for Polyp Detection: A Systematic Review and Meta-analysis.Ann Intern Med. 2024;177:1652–63. [DOI] [PubMed]
Kono K, Sakakura Y, Fujimoto T. Real-Time Artificial Intelligence-Assisted Middle Meningeal Artery Embolization Using Liquid Embolic Agents for Chronic Subdural Hematoma: A Preliminary Experience.Neurosurgery. 2025;[Epub ahead of print]. [DOI] [PubMed]
Sakakura Y, Masuo O, Fujimoto T, Terada T, Kono K. Pioneering artificial intelligence-based real time assistance for intracranial liquid embolization in humans: an initial experience.J Neurointerv Surg. 2025;17:748–52. [DOI] [PubMed]
Yu Q, Huang Y, Li X, Pavlides M, Liu D, Luo H, et al. An imaging-based artificial intelligence model for non-invasive grading of hepatic venous pressure gradient in cirrhotic portal hypertension.Cell Rep Med. 2022;3:100563. [DOI] [PubMed] [PMC]
Luo B, Li Z, Zhang K, Wu S, Chen W, Fu N, et al. Using deep learning models in magnetic resonance cholangiopancreatography images to diagnose common bile duct stones.Scand J Gastroenterol. 2024;59:118–24. [DOI] [PubMed]
Saraiva MM, Ribeiro T, González-Haba M, Castillo BA, Ferreira JPS, Boas FV, et al. Deep Learning for Automatic Diagnosis and Morphologic Characterization of Malignant Biliary Strictures Using Digital Cholangioscopy: A Multicentric Study.Cancers (Basel). 2023;15:4827. [DOI] [PubMed] [PMC]
Yang S, Wang Y, Ai D, Geng H, Zhang D, Xiao D, et al. Augmented Reality Navigation System for Biliary Interventional Procedures With Dynamic Respiratory Motion Correction.IEEE Trans Biomed Eng. 2024;71:700–11. [DOI] [PubMed]
Liu F, Bi M, Jing X, Ding H, Zeng J, Zheng R, et al. Multiparametric US for Identifying Metabolic Dysfunction-associated Steatohepatitis: A Prospective Multicenter Study.Radiology. 2024;310:e232416. [DOI] [PubMed]
van Tongeren OLRM, Vanmaele A, Rastogi V, Hoeks SE, Verhagen HJM, de Bruin JL. Volume Measurements for Surveillance after Endovascular Aneurysm Repair using Artificial Intelligence.Eur J Vasc Endovasc Surg. 2025;69:61–70. [DOI] [PubMed]
Rockwell HD, Cyphers ED, Makary MS, Keller EJ. Ethical Considerations for Artificial Intelligence in Interventional Radiology: Balancing Innovation and Patient Care.Semin Intervent Radiol. 2023;40:323–6. [DOI] [PubMed] [PMC]
van Rijswijk RE, Bogdanovic M, Roy J, Yeung KK, Zeebregts CJ, Geelkerken RH, et al. Multimodal Artificial Intelligence Model for Prediction of Abdominal Aortic Aneurysm Shrinkage After Endovascular Repair (the ART in EVAR study).J Endovasc Ther. 2025;15266028251314359. [DOI] [PubMed]
Robertshaw H, Karstensen L, Jackson B, Sadati H, Rhode K, Ourselin S, et al. Artificial intelligence in the autonomous navigation of endovascular interventions: a systematic review.Front Hum Neurosci. 2023;17:1239374. [DOI] [PubMed] [PMC]
Anibal JT, Huth HB, Boeken T, Daye D, Gichoya J, Muñoz FG, et al. Interventional Radiology Reporting Standards and Checklist for Artificial Intelligence Research Evaluation (iCARE).J Vasc Interv Radiol. 2025;36:1381–8.e4. [DOI] [PubMed]
Prontera PP, Prusciano FR, Lattarulo M, Tsaturyan A, Addabbo F, Sciorio C, et al. ChatGPT artificial intelligence in clinical data analysis: an example comparing standard vs fusion prostate biopsy outcomes after robotic-assisted radical prostatectomy (RaRP).Arch Ital Urol Androl. 2025;97:13596. [DOI] [PubMed]