1 |
2023 |
Ester Colarusso, Sara Ceccacci, Maria Chiara Monti, Erica Gazzillo, Assunta Giordano, Maria Giovanna Chini, Maria Grazia Ferraro, Marialuisa Piccolo, Dafne Ruggiero, Carlo Irace, Stefania Terracciano, Ines Bruno, Giuseppe Bifulco, Gianluigi Lauro. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders, European Journal of Medicinal Chemistry. 2023; 247: 115018115018.
https://doi.org/10.1016/j.ejmech.2022.115018 |
2 |
2025 |
Marie L. Malone, Nicholas A. Sanchez, Stacy L. Hu, Christopher B. Phelps. 2025; 134.
https://doi.org/10.1039/9781788016032-00134 |
3 |
2022 |
Federica Pedrucci, Claudia Pappalardo, Giovanni Marzaro, Nicola Ferri, Alberto Ferlin, Luca De Toni. Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening, International Journal of Molecular Sciences. 2022; 23: 6630.
https://doi.org/10.3390/ijms23126630 |
4 |
2024 |
Rajamanikkam Kamaraj, Radim Nencka, Petr Pavek. 2024; 63: 1.
https://doi.org/10.1016/bs.armc.2024.10.002 |
5 |
2022 |
Markus Fleck, Michael Müller, Noah Weber, Christopher Trummer. Decoupled coordinates for machine learning-based molecular fragment linking, Machine Learning: Science and Technology. 2022; 3: 015029.
https://doi.org/10.1088/2632-2153/ac50fc |
6 |
2024 |
Hazem Mslati, Francesco Gentile, Mohit Pandey, Fuqiang Ban, Artem Cherkasov. PROTACable Is an Integrative Computational Pipeline of 3-D Modeling and Deep Learning To Automate the De Novo Design of PROTACs, Journal of Chemical Information and Modeling. 2024; 64: 3034.
https://doi.org/10.1021/acs.jcim.3c01878 |
7 |
2022 |
Diego García Jiménez, Matteo Rossi Sebastiano, Maura Vallaro, Valentina Mileo, Daniela Pizzirani, Elisa Moretti, Giuseppe Ermondi, Giulia Caron. Designing Soluble PROTACs: Strategies and Preliminary Guidelines, Journal of Medicinal Chemistry. 2022; 65: 12639.
https://doi.org/10.1021/acs.jmedchem.2c00201 |
8 |
2022 |
Jenny Desantis, Andrea Mammoli, Michela Eleuteri, Alice Coletti, Federico Croci, Antonio Macchiarulo, Laura Goracci. PROTACs bearing piperazine-containing linkers: what effect on their protonation state?, RSC Advances. 2022; 12: 21968.
https://doi.org/10.1039/D2RA03761K |
9 |
2024 |
Soumik De, Raghaba Sahu, Shubhendu Palei, Laxmi Narayan Nanda. Synthesis, SAR, and application of JQ1 analogs as PROTACs for cancer therapy, Bioorganic & Medicinal Chemistry. 2024; 112: 117875117875.
https://doi.org/10.1016/j.bmc.2024.117875 |
10 |
2022 |
Jiacheng Li, Ting Liu, Yuanli Song, Mingyu Wang, Liping Liu, Hongwen Zhu, Qi Li, Jin Lin, Hualiang Jiang, Kaixian Chen, Kehao Zhao, Mingliang Wang, Hu Zhou, Hua Lin, Cheng Luo. Discovery of Small-Molecule Degraders of the CDK9-Cyclin T1 Complex for Targeting Transcriptional Addiction in Prostate Cancer, Journal of Medicinal Chemistry. 2022; 65: 11034.
https://doi.org/10.1021/acs.jmedchem.2c00257 |
11 |
2023 |
Li Zhou, Bin Yu, Mengqiu Gao, Rui Chen, Zhiyu Li, Yueqing Gu, Jinlei Bian, Yi Ma. DNA framework-engineered chimeras platform enables selectively targeted protein degradation, Nature Communications. 2023; 14: 4510.
https://doi.org/10.1038/s41467-023-40244-7 |
12 |
2024 |
Ting-Ting Liu, Qing Wang, Yuxing Zhou, Baixin Ye, Tingting Liu, Linyang Yan, Jinbao Fan, Jiahao Xu, Yingjun Zhou, Zanxian Xia, Xu Deng. Discovery of a Meisoindigo-Derived PROTAC as the ATM Degrader: Revolutionizing Colorectal Cancer Therapy via Synthetic Lethality with ATR Inhibitors, Journal of Medicinal Chemistry. 2024; 67: 7620.
https://doi.org/10.1021/acs.jmedchem.4c00454 |
13 |
2023 |
Huda Zahid, Jeff P. Costello, Yao Li, Jennifer R. Kimbrough, Marisa Actis, Zoran Rankovic, Qin Yan, William C. K. Pomerantz. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes, ACS Chemical Biology. 2023; 18: 1278.
https://doi.org/10.1021/acschembio.2c00902 |
14 |
2023 |
Yu-Ling Tseng, Po-Chao Lu, Chi-Chang Lee, Ruei-Yu He, Yung-An Huang, Yin-Chen Tseng, Ting-Jen Rachel Cheng, Joseph Jen-Tse Huang, Jim-Min Fang. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera, Journal of Biomedical Science. 2023; 30: 27.
https://doi.org/10.1186/s12929-023-00921-7 |
15 |
2024 |
Varsha Virendra Palol, Suresh Kumar Saravanan, Raj Kumar Chinnadurai, Veni Subramanyam. 2024; 227.
https://doi.org/10.1016/B978-0-443-13212-4.00017-9 |
16 |
2022 |
Jiadai Zhai, Chuang Li, Bingxia Sun, Sinan Wang, Yuting Cui, Qingzhi Gao, Feng Sang. Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines, Bioorganic & Medicinal Chemistry Letters. 2022; 78: 129041129041.
https://doi.org/10.1016/j.bmcl.2022.129041 |
17 |
2022 |
Irene Preet Bhela, Alice Ranza, Federica Carolina Balestrero, Marta Serafini, Silvio Aprile, Rita Maria Concetta Di Martino, Fabrizio Condorelli, Tracey Pirali. A Versatile and Sustainable Multicomponent Platform for the Synthesis of Protein Degraders: Proof-of-Concept Application to BRD4-Degrading PROTACs, Journal of Medicinal Chemistry. 2022; 65: 15282.
https://doi.org/10.1021/acs.jmedchem.2c01218 |
18 |
2024 |
Yaxun Guo, Yuzhan Li, Zhongmei Zhou, Lei Hou, Wenjing Liu, Wenlong Ren, Dazhao Mi, Jian Sun, Xueqin Dai, Yingying Wu, Zhuo Cheng, Tingyue Wu, Qianmei Luo, Cong Tian, Fubing Li, Zhigang Yu, Yihua Chen, Ceshi Chen. Targeting PRMT5 through PROTAC for the treatment of triple-negative breast cancer, Journal of Experimental & Clinical Cancer Research. 2024; 43: 314.
https://doi.org/10.1186/s13046-024-03237-y |
19 |
2025 |
Zhen Wang, Dingpeng Zhang, Hiroyuki Inuzuka, Wenyi Wei. PROTAC technology for prostate cancer treatment, Acta Materia Medica. 2025; 4:
https://doi.org/10.15212/AMM-2024-0075 |
20 |
2023 |
Arjun Rao, Tin M. Tunjic, Michael Brunsteiner, Michael Müller, Hosein Fooladi, Chiara Gasbarri, Noah Weber. Bayesian optimization for ternary complex prediction (BOTCP), Artificial Intelligence in the Life Sciences. 2023; 3: 100072100072.
https://doi.org/10.1016/j.ailsci.2023.100072 |
21 |
2025 |
Hui Shen, Hongrui Xu, Weiqin Jin, Tianbang Wu, Jiankang Hu, Cheng Zhang, Zhixin Zhong, Junhua Li, Rui Mao, Sheng Zhang, Xiao Zhang, Xishan Wu, Jeff B Smaill, Jinxin Xu, Yan Zhang, Yong Xu. Discovery of a Potent and Selective GSPT1 Molecular Glue Degrader for the Treatment of Castration-Resistant Prostate Cancer, Journal of Medicinal Chemistry. 2025; 68: 1553.
https://doi.org/10.1021/acs.jmedchem.4c02205 |
22 |
2025 |
Anne-Sophie M. C. Marques, Ludwig G. Bauer, Tuan-Anh Nguyen, Alejandro Gonzalez Orta, Jan-Lennart Venne, Lai Cheng, Esra Balikci, Barr Tivon, Nir London, Stefan Kubicek, Kilian V. M. Huber. 2025;
https://doi.org/10.1101/2025.03.16.643557 |
23 |
2023 |
Giulia Apprato, Giulia D’Agostini, Paolo Rossetti, Giuseppe Ermondi, Giulia Caron. In Silico Tools to Extract the Drug Design Information Content of Degradation Data: The Case of PROTACs Targeting the Androgen Receptor, Molecules. 2023; 28: 1206.
https://doi.org/10.3390/molecules28031206 |
24 |
2024 |
Shareef Shaik, Prasanna Kumar Reddy Gayam, Manish Chaudhary, Gurvinder Singh, Aravinda Pai. Advances in designing ternary complexes: Integrating in-silico and biochemical methods for PROTAC optimisation in target protein degradation, Bioorganic Chemistry. 2024; 153: 107868107868.
https://doi.org/10.1016/j.bioorg.2024.107868 |
25 |
2022 |
O. A. Koroleva, Yu. V. Dutikova, A. V. Trubnikov, F. A. Zenov, E. V. Manasova, A. A. Shtil, A. V. Kurkin. PROTAC: targeted drug strategy. Principles and limitations, Russian Chemical Bulletin. 2022; 71: 2310.
https://doi.org/10.1007/s11172-022-3659-z |
26 |
2024 |
Qiao-Hong Chen, Erick Munoz, Dennis Ashong. Insight into Recent Advances in Degrading Androgen Receptor for Castration-Resistant Prostate Cancer, Cancers. 2024; 16: 663.
https://doi.org/10.3390/cancers16030663 |
27 |
2024 |
Feng Lin, Shenyi Yin, Zijian Zhang, Ying Yu, Haoming Fang, Zhen Liang, Rujie Zhu, Haitao Zhou, Jianjie Li, Kunxia Cao, Weiming Guo, Shan Qin, Yuxuan Zhang, Chenghao Lu, Han Li, Shibo Liu, Heng Zhang, Buqing Ye, Jian Lin, Yan Li, Xiaozheng Kang, Jianzhong Jeff Xi, Peng R. Chen. Multimodal targeting chimeras enable integrated immunotherapy leveraging tumor-immune microenvironment, Cell. 2024; 187: 7470.
https://doi.org/10.1016/j.cell.2024.10.016 |
28 |
2024 |
Peyton High, Cara Guernsey, Shraddha Subramanian, Joan Jacob, Kendra S. Carmon. The Evolving Paradigm of Antibody–Drug Conjugates Targeting the ErbB/HER Family of Receptor Tyrosine Kinases, Pharmaceutics. 2024; 16: 890.
https://doi.org/10.3390/pharmaceutics16070890 |
29 |
2025 |
Olivia Shade, Amy Ryan, Gabriella Belsito, Alexander Deiters. Investigating protein degradability through site-specific ubiquitin ligase recruitment, RSC Chemical Biology. 2025; 6: 240.
https://doi.org/10.1039/D4CB00273C |
30 |
2023 |
Suddhasatwa Banerjee, Sachin Sharma, Amandeep Thakur, Ritika Sachdeva, Ram Sharma, Kunal Nepali, Jing Ping Liou. N-Heterocycle based Degraders (PROTACs) Manifesting Anticancer
Efficacy: Recent Advances, Current Drug Targets. 2023; 24: 1184.
https://doi.org/10.2174/0113894501273969231102095615 |
31 |
2022 |
Zubair Anwar, Muhammad Shahzad Ali, Antonio Galvano, Alessandro Perez, Maria La Mantia, Ihtisham Bukhari, Bartlomiej Swiatczak. PROTACs: The Future of Leukemia Therapeutics, Frontiers in Cell and Developmental Biology. 2022; 10: 851087.
https://doi.org/10.3389/fcell.2022.851087 |
32 |
2024 |
Abhishek Wahi, Hemant R. Jadhav, Shikha Thakur, Sushma Dev, Priyanka Mohanty, Priti Jain. 2024; 39.
https://doi.org/10.1007/978-981-97-5077-1_3 |
33 |
2023 |
Liam Thomas Hales, Philip Evan Thompson. Solid‐Phase Synthesis of PROTACs and SNIPERs on Backbone Amide Linked (BAL) Resin, Chemistry – A European Journal. 2023; 29: e202301975.
https://doi.org/10.1002/chem.202301975 |
34 |
2023 |
Mingyu Wang, Rongkun Lin, Jiacheng Li, Yuying Suo, Jing Gao, Liping Liu, Liyuan Zhou, Yicheng Ni, Ziqun Yang, Jie Zheng, Jin Lin, Hu Zhou, Cheng Luo, Hua Lin. Discovery of LL-K8-22: A Selective, Durable, and Small-Molecule Degrader of the CDK8-Cyclin C Complex, Journal of Medicinal Chemistry. 2023; 66: 4932.
https://doi.org/10.1021/acs.jmedchem.2c02045 |
35 |
2022 |
Miklós Békés, David R. Langley, Craig M. Crews. PROTAC targeted protein degraders: the past is prologue, Nature Reviews Drug Discovery. 2022; 21: 181.
https://doi.org/10.1038/s41573-021-00371-6 |
36 |
2023 |
Robert J. Tokarski, Chia M. Sharpe, Andrew C. Huntsman, Brittney K. Mize, Oluwatosin R. Ayinde, Emily H. Stahl, James R. Lerma, Andrew Reed, Bridget Carmichael, Natarajan Muthusamy, John C. Byrd, James R. Fuchs. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): Probing the relationship between linker length, properties, and selective protein degradation, European Journal of Medicinal Chemistry. 2023; 254: 115342115342.
https://doi.org/10.1016/j.ejmech.2023.115342 |
37 |
2022 |
Guangyan Du, Jie Jiang, Nathaniel J. Henning, Nozhat Safaee, Eriko Koide, Radosław P. Nowak, Katherine A. Donovan, Hojong Yoon, Inchul You, Hong Yue, Nicholas A. Eleuteri, Zhixiang He, Zhengnian Li, Hubert T. Huang, Jianwei Che, Behnam Nabet, Tinghu Zhang, Eric S. Fischer, Nathanael S. Gray. Exploring the target scope of KEAP1 E3 ligase-based PROTACs, Cell Chemical Biology. 2022; 29: 1470.
https://doi.org/10.1016/j.chembiol.2022.08.003 |
38 |
2024 |
Jianchao Zhang, Xiao Chen, Congli Chen, Fengming Li, Xiaoxiao Song, Chaowei Liu, Kefan Liao, Ming-Yuan Su, Chris Soon Heng Tan, Lijing Fang, Hai Rao. Distinct Amino Acid-Based PROTACs Target Oncogenic Kinases for Degradation in Non-Small Cell Lung Cancer (NSCLC), Journal of Medicinal Chemistry. 2024; 67: 13666.
https://doi.org/10.1021/acs.jmedchem.4c00208 |
39 |
2021 |
Olga D. Jarosińska, Stefan G. D. Rüdiger. Molecular Strategies to Target Protein Aggregation in Huntington’s Disease, Frontiers in Molecular Biosciences. 2021; 8: 769184.
https://doi.org/10.3389/fmolb.2021.769184 |
40 |
2022 |
Arvind Negi, Anne Sophie Voisin‐Chiret. Strategies to Reduce the On‐Target Platelet Toxicity of Bcl‐xL Inhibitors: PROTACs, SNIPERs and Prodrug‐Based Approaches, ChemBioChem. 2022; 23: e202100689.
https://doi.org/10.1002/cbic.202100689 |
41 |
2022 |
Bohan Ma, Yizeng Fan, Dize Zhang, Yi Wei, Yanlin Jian, Donghua Liu, Zixi Wang, Yang Gao, Jian Ma, Yule Chen, Shan Xu, Lei Li. De Novo Design of an Androgen Receptor DNA Binding Domain‐Targeted peptide PROTAC for Prostate Cancer Therapy, Advanced Science. 2022; 9: 2201859.
https://doi.org/10.1002/advs.202201859 |
42 |
2022 |
Chaoguo Cao, Ming He, Liguo Wang, Yuna He, Yu Rao. Chemistries of bifunctional PROTAC degraders, Chemical Society Reviews. 2022; 51: 7066.
https://doi.org/10.1039/D2CS00220E |
43 |
2021 |
Giuseppe Ermondi, Diego Garcia-Jimenez, Giulia Caron. PROTACs and Building Blocks: The 2D Chemical Space in Very Early Drug Discovery, Molecules. 2021; 26: 672.
https://doi.org/10.3390/molecules26030672 |
44 |
2023 |
Martin P. Schwalm, Andreas Krämer, Anja Dölle, Janik Weckesser, Xufen Yu, Jian Jin, Krishna Saxena, Stefan Knapp. 2023;
https://doi.org/10.1101/2023.01.11.523589 |
45 |
2025 |
Saooda Ibrahim, Muhammad Umer Khan, Iqra Khurram, Raima Rehman, Abdur Rauf, Zubair Ahmad, Abdullah S. M. Aljohani, Waleed Al Abdulmonem, Mohammed Mansour Quradha. Navigating PROTACs in Cancer Therapy: Advancements, Challenges, and Future Horizons, Food Science & Nutrition. 2025; 13: e70011.
https://doi.org/10.1002/fsn3.70011 |
46 |
2022 |
Robert S. Foti, 2022; 716.
https://doi.org/10.1016/B978-0-12-820472-6.00141-9 |
47 |
2023 |
Mansi Joshi, Pranay Dey, Abhijit De. Recent advancements in targeted protein knockdown technologies—emerging paradigms for targeted therapy, Exploration of Targeted Anti-tumor Therapy. 2023; 4: 1227.
https://doi.org/10.37349/etat.2023.00194 |
48 |
2021 |
M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. 2021; 60: 67.
https://doi.org/10.1016/bs.pmch.2021.01.002 |
49 |
2023 |
Nobuo Cho, Mikihiko Naito. 2023; 681: 41.
https://doi.org/10.1016/bs.mie.2022.09.001 |
50 |
2023 |
Huanghao Mai, Matthew H. Zimmer, Thomas F. Miller. Exploring PROTAC Cooperativity with Coarse-Grained Alchemical Methods, The Journal of Physical Chemistry B. 2023; 127: 446.
https://doi.org/10.1021/acs.jpcb.2c05795 |
51 |
2023 |
Chien-Ting Kao, Chieh-Te Lin, Cheng-Li Chou, Chu-Chung Lin. Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design, Journal of Chemical Information and Modeling. 2023; 63: 2918.
https://doi.org/10.1021/acs.jcim.2c01287 |
52 |
2024 |
Hiroki Tanimoto, Takenori Tomohiro. Spot the difference in reactivity: a comprehensive review of site-selective multicomponent conjugation exploiting multi-azide compounds, Chemical Communications. 2024; 60: 12062.
https://doi.org/10.1039/D4CC03359K |
53 |
2023 |
Jean M. Etersque, Iris K. Lee, Nitika Sharma, Kexiang Xu, Andrew Ruff, Justin D. Northrup, Swarbhanu Sarkar, Tommy Nguyen, Richard Lauman, George M. Burslem, Mark A. Sellmyer. Regulation of eDHFR-tagged proteins with trimethoprim PROTACs, Nature Communications. 2023; 14: 7071.
https://doi.org/10.1038/s41467-023-42820-3 |
54 |
2024 |
Miaomiao Xu, Jingfeng Fu, Yuan Pei, Mengna Li, Weijuan Kan, Ruyu Yan, Chaoyue Xia, Jingkun Ma, Peipei Wang, Yan Zhang, Yue Gao, Yaxi Yang, Yubo Zhou, Jia Li, Bing Zhou. Discovery of a Highly Potent, Selective and Efficacious USP7 Degrader for the Treatment of Acute Lymphoblastic Leukemia, Journal of Medicinal Chemistry. 2024; 67: 13197.
https://doi.org/10.1021/acs.jmedchem.4c01134 |
55 |
2024 |
Kiran Palyada, Renee Hukkanen, Stephanie Leuenroth-Quinn, Allison Vitsky, Richard Peterson, Katie Stamp, Clare Hoover, Laurie Volak. Session 5: Protein Degraders, Toxicologic Pathology. 2024; 52: 553.
https://doi.org/10.1177/01926233241300452 |
56 |
2025 |
Paige J. Monsen, Prashant V. Bommi, Arabela A. Grigorescu, Kristen L. Lauing, Yingyu Mao, Payton Berardi, Lijie Zhai, Oluwatomilayo Ojo, Manon Penco-Campillo, Taylor Koch, Michael Egozi, Sonam Jha, Sara F. Dunne, Hong Jiang, Guiqin Song, Fang Zhang, Steven Kregel, Ali Vaziri-Gohar, Sean W. Fanning, Pilar Sanchez-Gomez, Jacob M. Allen, Bakhtiar Yamini, Rimas V. Lukas, Derek A. Wainwright, Gary E. Schiltz. Rational Design and Optimization of a Potent IDO1 Proteolysis Targeting Chimera (PROTAC), Journal of Medicinal Chemistry. 2025; 68: 4961.
https://doi.org/10.1021/acs.jmedchem.5c00026 |
57 |
2021 |
Hannah Kiely-Collins, Georg E. Winter, Gonçalo J.L. Bernardes. The role of reversible and irreversible covalent chemistry in targeted protein degradation, Cell Chemical Biology. 2021; 28: 952.
https://doi.org/10.1016/j.chembiol.2021.03.005 |
58 |
2022 |
Ruth Nussinov, Mingzhen Zhang, Ryan Maloney, Yonglan Liu, Chung-Jung Tsai, Hyunbum Jang. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs, Journal of Molecular Biology. 2022; 434: 167569167569.
https://doi.org/10.1016/j.jmb.2022.167569 |
59 |
2023 |
Matthew N. O’Brien Laramy, Suman Luthra, Matthew F. Brown, Derek W. Bartlett. Delivering on the promise of protein degraders, Nature Reviews Drug Discovery. 2023; 22: 410.
https://doi.org/10.1038/s41573-023-00652-2 |
60 |
2024 |
Aleša Bricelj, Yuen Lam Dora Ng, Martina Gobec, Robert Kuchta, Wanyi Hu, Špela Javornik, Miha Rožič, Michael Gütschow, Guangrong Zheng, Jan Krönke, Christian Steinebach, Izidor Sosič. Design, Synthesis, and Evaluation of BCL‐2 Targeting PROTACs, Chemistry – A European Journal. 2024; 30: e202400430.
https://doi.org/10.1002/chem.202400430 |
61 |
2021 |
Gabriel LaPlante, Wei Zhang. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors, Cancers. 2021; 13: 3079.
https://doi.org/10.3390/cancers13123079 |
62 |
2023 |
Jeremy M. Kelm, Deepti S. Pandey, Evan Malin, Hussein Kansou, Sahil Arora, Raj Kumar, Navnath S. Gavande. PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy, Molecular Cancer. 2023; 22: 62.
https://doi.org/10.1186/s12943-022-01707-5 |
63 |
2025 |
Jacopo Zattoni, Paola Vottero, Gea Carena, Chiara Uliveto, Giulia Pozzati, Benedetta Morabito, Ebenezea Gitari, Jack Tuszynski, Maral Aminpour. A comprehensive primer and review of PROTACs and their In Silico design, Computer Methods and Programs in Biomedicine. 2025; 264: 108687108687.
https://doi.org/10.1016/j.cmpb.2025.108687 |
64 |
2025 |
Gengwu Li, Wei Chen, Dan Liu, Shibing Tang. Recent advances in medicinal chemistry strategies for the development of METTL3 inhibitors, European Journal of Medicinal Chemistry. 2025; 290: 117560117560.
https://doi.org/10.1016/j.ejmech.2025.117560 |
65 |
2025 |
Sydney E. Nelson, James R. Tucker, Madelen G. Prado, Lillian C. Tierney, Sarah L. Quigley, Andrew T. Lumpkin, Cayden J. Dodd, Viola Hasko, Savannah L. Howie, Aastha, Britton K. Ody, Jun Yin, Jennifer M. Heemstra, Mark Turlington. Development of Dual Aurora‐A and Aurora‐B Degrading PROTACs for MYCN‐Amplified Neuroblastoma, ChemMedChem. 2025; 20: e202400703.
https://doi.org/10.1002/cmdc.202400703 |
66 |
2025 |
Atharva Mahajan, Gauri Panzade, Tiyasa Bhuniya, Purbasha Das, Bidyabati Bhattacharjee, Sagnik Das, Ankita Chowdhury, Kashmira Chakraborty, Sudeepta Guha, Anushka Samant, Anuvab Dey, Subhrojyoti Ghosh. Revolutionizing lung cancer treatment: Introducing PROTAC therapy as a novel paradigm in targeted therapeutics, Current Problems in Cancer. 2025; 54: 101172101172.
https://doi.org/10.1016/j.currproblcancer.2024.101172 |
67 |
2022 |
Samantha M. Meyer, Toru Tanaka, Patrick R. A. Zanon, Jared T. Baisden, Daniel Abegg, Xueyi Yang, Yoshihiro Akahori, Zainab Alshakarchi, Michael D. Cameron, Alexander Adibekian, Matthew D. Disney. DNA-Encoded Library Screening To Inform Design of a Ribonuclease Targeting Chimera (RiboTAC), Journal of the American Chemical Society. 2022; 144: 21096.
https://doi.org/10.1021/jacs.2c07217 |
68 |
2024 |
Ranbir Singh Saluja, Madhura P. Vaidya, Prashant S. Kharkar. 2024; 21.
https://doi.org/10.1007/978-981-97-5077-1_2 |
69 |
2024 |
Yong Chen, Zihan Xia, Ujjwal Suwal, Pekka Rappu, Jyrki Heino, Olivier De Wever, Bruno G. De Geest. Dual-ligand PROTACS mediate superior target protein degradation in vitro and therapeutic efficacy in vivo, Chemical Science. 2024; 15: 17691.
https://doi.org/10.1039/D4SC03555K |
70 |
2022 |
Lisbeth R. Kjølbye, Gilberto P. Pereira, Alessio Bartocci, Martina Pannuzzo, Simone Albani, Alessandro Marchetto, Brian Jiménez-García, Juliette Martin, Giulia Rossetti, Marco Cecchini, Sangwook Wu, Luca Monticelli, Paulo C. T. Souza. Towards design of drugs and delivery systems with the Martini coarse-grained model, QRB Discovery. 2022; 3: e19.
https://doi.org/10.1017/qrd.2022.16 |
71 |
2023 |
Poornachandra Yedla, Ahmed O. Babalghith, Vindhya Vasini Andra, Riyaz Syed. PROTACs in the Management of Prostate Cancer, Molecules. 2023; 28: 3698.
https://doi.org/10.3390/molecules28093698 |
72 |
2023 |
Qian-Qian Zhou, Hai-Tao Xiao, Fan Yang, Yong-Dan Wang, Ping Li, Zu-Guo Zheng. Advancing targeted protein degradation for metabolic diseases therapy, Pharmacological Research. 2023; 188: 106627106627.
https://doi.org/10.1016/j.phrs.2022.106627 |
73 |
2023 |
Hai‐Jun Liu, Wei Chen, Gongwei Wu, Jun Zhou, Chuang Liu, Zhongmin Tang, Xiangang Huang, Jingjing Gao, Yufen Xiao, Na Kong, Nitin Joshi, Yihai Cao, Reza Abdi, Wei Tao. Glutathione‐Scavenging Nanoparticle‐Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects, Advanced Science. 2023; 10: 2207439.
https://doi.org/10.1002/advs.202207439 |
74 |
2025 |
Brittney Racioppo, Dany Pechalrieu, Daniel Abegg, Brendan Dwyer, Neal Thomas Ramseier, Ying S. Hu, Alexander Adibekian. Chemoproteomics-Enabled De Novo Proteolysis Targeting Chimera Discovery Platform Identifies a Metallothionein Degrader to Probe Its Role in Cancer, Journal of the American Chemical Society. 2025; 147: 7817.
https://doi.org/10.1021/jacs.4c17827 |
75 |
2021 |
Kunal Nepali, Jing-Ping Liou. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends, Journal of Biomedical Science. 2021; 28: 27.
https://doi.org/10.1186/s12929-021-00721-x |
76 |
2022 |
Xingui Liu, Alexia F. Kalogeropulou, Sofia Domingos, Nikolai Makukhin, Raja S. Nirujogi, Francois Singh, Natalia Shpiro, Anton Saalfrank, Esther Sammler, Ian G. Ganley, Rui Moreira, Dario R. Alessi, Alessio Ciulli. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2, Journal of the American Chemical Society. 2022; 144: 16930.
https://doi.org/10.1021/jacs.2c05499 |
77 |
2025 |
Tae Hyun Bae, Ki Woon Sung, Tri M. Pham, Abdo J. Najy, Alaleh Zamiri, Hyejeong Jang, Su Ran Mun, Seongho Kim, Ha Kyoung Kwon, Yeon Sung Son, Dongping Shi, Steven Kregel, Elisabeth I. Heath, Michael L. Cher, Yong Tae Kwon, Hyeong-Reh Choi Kim. An Autophagy-Targeting Chimera Induces Degradation of Androgen Receptor Mutants and AR-v7 in Castration-Resistant Prostate Cancer, Cancer Research. 2025; 85: 342.
https://doi.org/10.1158/0008-5472.CAN-24-0591 |
78 |
2025 |
Lisha Wang, Banesh Sooram, Rajnish Kumar, Sophia Schedin‐Weiss, Lars O. Tjernberg, Bengt Winblad. Tau degradation in Alzheimer's disease: Mechanisms and therapeutic opportunities, Alzheimer's & Dementia. 2025; 21: e70048.
https://doi.org/10.1002/alz.70048 |
79 |
2023 |
Yang Zhou, Shujing Xu, Nerea López-Carrobles, Dang Ding, Xinyong Liu, Luis Menéndez-Arias, Peng Zhan. Recent advances in the molecular design and applications of proteolysis targeting chimera-based multi-specific antiviral modality, Acta Materia Medica. 2023; 2:
https://doi.org/10.15212/AMM-2023-0019 |
80 |
2024 |
Qianwen Guan, Shuaishuai Xing, Lei Wang, Jiawei Zhu, Can Guo, Chunlei Xu, Qun Zhao, Yulan Wu, Yao Chen, Haopeng Sun. Triazoles in Medicinal Chemistry: Physicochemical Properties, Bioisosterism, and Application, Journal of Medicinal Chemistry. 2024; 67: 7788.
https://doi.org/10.1021/acs.jmedchem.4c00652 |
81 |
2023 |
Chelsi M. Almodóvar‐Rivera, Zhen Zhang, Jingyao Li, Haibo Xie, Yu Zhao, Le Guo, Marissa G. Mannhardt, Weiping Tang. A Modular Chemistry Platform for the Development of a Cereblon E3 Ligase‐Based Partial PROTAC Library, ChemBioChem. 2023; 24: e202300482.
https://doi.org/10.1002/cbic.202300482 |
82 |
2024 |
Florian Wittlinger, Blessing C. Ogboo, Ekaterina Shevchenko, Tahereh Damghani, Calvin D. Pham, Ilse K. Schaeffner, Brandon T. Oligny, Surbhi P. Chitnis, Tyler S. Beyett, Alexander Rasch, Brian Buckley, Daniel A. Urul, Tatiana Shaurova, Earl W. May, Erik M. Schaefer, Michael J. Eck, Pamela A. Hershberger, Antti Poso, Stefan A. Laufer, David E. Heppner. Linking ATP and allosteric sites to achieve superadditive binding with bivalent EGFR kinase inhibitors, Communications Chemistry. 2024; 7: 38.
https://doi.org/10.1038/s42004-024-01108-3 |
83 |
2025 |
Yonghyeok Kim, Seon Jeong Baek, Eun-Kyung Yoon, Minhee Choi, Jung-Hoon Kim, Kyungtae Kim, Chi Hoon Park, Byung Il Lee. Identification of novel 7-hydroxycoumarin derivatives as ELOC binders with potential to modulate CRL2 complex formation, Scientific Reports. 2025; 15: 3622.
https://doi.org/10.1038/s41598-025-88166-2 |
84 |
2023 |
Rajni Bala, Rakesh Kumar Sindhu, Reecha Madaan, Shantanu Kumar Yadav. PROTAC: A Novel Drug Delivery Technology for Targeting Proteins in
Cancer Cells, Current Drug Discovery Technologies. 2023; 20: e311022210504.
https://doi.org/10.2174/1570163820666221031124612 |
85 |
2024 |
Khanh Quynh Thi Nguyen, Hieu Hien Nguyen, Huong Thi Thu Phung, Khanh Linh Chung, Thien Y. Vu. A close-up shot of protein-protein docking, from experiment to theory and reverse with the PROTAC performers, Journal of Biomolecular Structure and Dynamics. 2024; 1.
https://doi.org/10.1080/07391102.2024.2308778 |
86 |
2025 |
Sasikumar Kotagiri, Yawen Wang, Yanyan Han, Xiaobing Liang, Nicholas Blazanin, Hira Mazhar, Manu Sebastian, Phuong Kieu Nguyen, Yongying Jiang, Yonathan Lissanu. Discovery of Novel, Potent, and Orally Bioavailable SMARCA2 Proteolysis-Targeting Chimeras with Synergistic Antitumor Activity in Combination with Kirsten Rat Sarcoma Viral Oncogene Homologue G12C Inhibitors, Journal of Medicinal Chemistry. 2025; acs.jmedchem.4c02577.
https://doi.org/10.1021/acs.jmedchem.4c02577 |
87 |
2024 |
Ke‐Nian Yan, Yong‐Qiang Nie, Jia‐Yu Wang, Guang‐Liang Yin, Qia Liu, Hao Hu, Xiaoxia Sun, Xiao‐Hua Chen. Accelerating PROTACs Discovery Through a Direct‐to‐Biology Platform Enabled by Modular Photoclick Chemistry, Advanced Science. 2024; 11: 2400594.
https://doi.org/10.1002/advs.202400594 |
88 |
2024 |
Ashraf Mohammed, Kelly Churion, Adithi Danda, Steven J. Philips, Aseem Z. Ansari. A “Goldilocks Zone” for Recruiting BET Proteins with Bromodomain-1-Selective Ligands, ACS Chemical Biology. 2024; 19: 2268.
https://doi.org/10.1021/acschembio.4c00505 |
89 |
2023 |
Keisuke Hamada, Ten Hashimoto, Rinoka Iwashita, Yuji Yamada, Yamato Kikkawa, Motoyoshi Nomizu. Development of a bispecific DNA-aptamer-based lysosome-targeting chimera for HER2 protein degradation, Cell Reports Physical Science. 2023; 4: 101296101296.
https://doi.org/10.1016/j.xcrp.2023.101296 |
90 |
2024 |
Qiyan Wang, Ting Su, Furong Cheng, Shurong Zhou, Xiang Liu, Mi Wang, You Xu, Ri Tang, Shimiao Liao, Jordan Dailey, Guolan Xiao, Chunpeng Yang, Hanning Wen, Weijia Zheng, Bo Wen, Katarzyna M Tyc, Jinze Liu, Duxin Sun, Shaomeng Wang, Guizhi Zhu. 2024;
https://doi.org/10.1101/2024.10.01.616069 |
91 |
2024 |
Yerim Jin, Yeongju Lee. Proteolysis Targeting Chimeras (PROTACs) in Breast Cancer Therapy, ChemMedChem. 2024; 19: e202400267.
https://doi.org/10.1002/cmdc.202400267 |
92 |
2024 |
Yan-Dong Tang, Changqing Yu, Xue-Hui Cai. Novel technologies are turning a dream into reality: conditionally replicating viruses as vaccines, Trends in Microbiology. 2024; 32: 292.
https://doi.org/10.1016/j.tim.2023.09.002 |
93 |
2023 |
Ryan P. Wurz, Huan Rui, Ken Dellamaggiore, Sudipa Ghimire-Rijal, Kaylee Choi, Kate Smither, Albert Amegadzie, Ning Chen, Xiaofen Li, Abhisek Banerjee, Qing Chen, Dane Mohl, Amit Vaish. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation, Nature Communications. 2023; 14: 4177.
https://doi.org/10.1038/s41467-023-39904-5 |
94 |
2022 |
Fabian Fischer, Leandro A Alves Avelar, Laoise Murray, Thomas Kurz. Designing HDAC-PROTACs: Lessons Learned So Far, Future Medicinal Chemistry. 2022; 14: 143.
https://doi.org/10.4155/fmc-2021-0206 |
95 |
2025 |
Emma Inganäs, Hanna Lavén, Rémi Caraballo, Fredrik Klingegård, MyLan Eklund, Linda Andersson, Constanze Hilgendorf, Pär Matsson. 2025;
https://doi.org/10.1101/2025.03.18.643966 |
96 |
2022 |
Yiqing Zhang, Xiaoxia Liu, Daniel J Klionsky, Boxun Lu, Qing Zhong. Manipulating autophagic degradation in human diseases: from mechanisms to interventions, Life Medicine. 2022; 1: 120.
https://doi.org/10.1093/lifemedi/lnac043 |
97 |
2024 |
Keerti Jain, Sukuru Chinna Reddy, Sreevardhan Moode, Piyush Mehra, Sofiya Tarannum, Manisha Patel, Vineet Kumar Jain, Harvinder Popli. 2024; 89.
https://doi.org/10.1007/978-981-97-5077-1_5 |
98 |
2023 |
Melissa Guardigni, Letizia Pruccoli, Alan Santini, Angela De Simone, Matteo Bersani, Francesca Spyrakis, Flavia Frabetti, Elisa Uliassi, Vincenza Andrisano, Barbara Pagliarani, Paula Fernández-Gómez, Valle Palomo, Maria Laura Bolognesi, Andrea Tarozzi, Andrea Milelli. PROTAC-Induced Glycogen Synthase Kinase 3β Degradation as a Potential Therapeutic Strategy for Alzheimer’s Disease, ACS Chemical Neuroscience. 2023; 14: 1963.
https://doi.org/10.1021/acschemneuro.3c00096 |
99 |
2025 |
Wenbin Huang, Hongjian Zhang, Yayun Zhou, Xuechao Liu, Qilei Zhang, Xiaopeng Ma. Liquid Chromatography Combined With Tandem Mass Spectrometry for the Pharmacokinetic and Metabolism Studies of PROTAC ARV‐471 in Rats, Biomedical Chromatography. 2025; 39: e6068.
https://doi.org/10.1002/bmc.6068 |
100 |
2025 |
Xiuxiu Lu, Venkata R. Sabbasani, Bakar Hassan, Rolf E. Swenson, Kylie J. Walters. Optimization of the PROTAC linker region of the proteasome substrate receptor hRpn13 rationalized structural modeling with molecular dynamics, Journal of Biological Chemistry. 2025; 108520108520.
https://doi.org/10.1016/j.jbc.2025.108520 |
101 |
2023 |
Chunlan Pu, Shirui Wang, Lei Liu, Zhonghui Feng, Hongjia Zhang, Qianyuan Gong, Yueshan Sun, Yuanbiao Guo, Rui Li. Current strategies for improving limitations of proteolysis targeting chimeras, Chinese Chemical Letters. 2023; 34: 107927107927.
https://doi.org/10.1016/j.cclet.2022.107927 |
102 |
2023 |
Nikol A. Zografou-Barredo, Alex J. Hallatt, Jennyfer Goujon-Ricci, Céline Cano. A beginner’s guide to current synthetic linker strategies towards VHL-recruiting PROTACs, Bioorganic & Medicinal Chemistry. 2023; 88-89: 117334117334.
https://doi.org/10.1016/j.bmc.2023.117334 |
103 |
2024 |
Ye Tian, Maximilian Seifermann, Liana Bauer, Charlotte Luchena, Janne J. Wiedmann, Stefan Schmidt, Alexander Geisel, Sergii Afonin, Julius Höpfner, Marius Brehm, Xinyong Liu, Carsten Hopf, Anna A. Popova, Pavel A. Levkin. High‐Throughput Miniaturized Synthesis of PROTAC‐Like Molecules, Small. 2024; 20: 2307215.
https://doi.org/10.1002/smll.202307215 |
104 |
2024 |
Mengdie Hu, Xiaomei Li, Lin Wang, Yanping Zhang, Yujie Sun, Hui Hua, Huina Liu, Ting Cai, Dongsheng Zhu, Qiuping Xiang. ZX703: A Small-Molecule Degrader of GPX4 Inducing Ferroptosis in Human Cancer Cells, ACS Medicinal Chemistry Letters. 2024; 15: 406.
https://doi.org/10.1021/acsmedchemlett.3c00571 |
105 |
2025 |
Jie Huang, Xuekun Fu, Fang Qiu, Zhijian Liang, Chunhao Cao, Zhuqian Wang, Hongzhen Chen, Siran Yue, Duoli Xie, Yiying Liang, Aiping Lu, Chao Liang. Discovery of a Natural Ent-Kaurene Diterpenoid Oridonin as an E3 Ligase Recruiter for PROTACs, Journal of the American Chemical Society. 2025; 147: 1920.
https://doi.org/10.1021/jacs.4c14650 |
106 |
2023 |
Friedericke S. Menke, Barbara Wicher, Lars Allmendinger, Victor Maurizot, Ivan Huc. An abiotic, tetrameric, eight-helix bundle, Chemical Science. 2023; 14: 3742.
https://doi.org/10.1039/D3SC00267E |
107 |
2023 |
Weijun Gui, Sarah F. Giardina, Madeline Balzarini, Francis Barany, Thomas Kodadek. Reversible Assembly of Proteolysis Targeting Chimeras, ACS Chemical Biology. 2023; 18: 1582.
https://doi.org/10.1021/acschembio.3c00199 |
108 |
2024 |
Diego Garcia Jimenez, Matteo Rossi Sebastiano, Maura Vallaro, Giuseppe Ermondi, Giulia Caron. IMHB-Mediated Chameleonicity in Drug Design: A Focus on Structurally Related PROTACs, Journal of Medicinal Chemistry. 2024; 67: 11421.
https://doi.org/10.1021/acs.jmedchem.4c01200 |
109 |
2024 |
Yunrui Qiu, Rafal P. Wiewiora, Jesus A. Izaguirre, Huafeng Xu, Woody Sherman, Weiping Tang, Xuhui Huang. Non-Markovian Dynamic Models Identify Non-Canonical KRAS-VHL Encounter Complex Conformations for Novel PROTAC Design, JACS Au. 2024; 4: 3857.
https://doi.org/10.1021/jacsau.4c00503 |
110 |
2023 |
Yao Ge, Weiheng Huang, Sebastian Ahrens, Anke Spannenberg, Ralf Jackstell, Matthias Beller. Synthesis of non-equivalent diamides and amido-esters via Pd-catalysed carbonylation, Nature Synthesis. 2023; 3: 202.
https://doi.org/10.1038/s44160-023-00411-6 |
111 |
2024 |
Katharina Hilbig, Russell Towers, Marc Schmitz, Martin Bornhäuser, Petra Lennig, Yixin Zhang. Cyclosporin A-Based PROTACs Can Deplete Abundant Cellular Cyclophilin A without Suppressing T Cell Activation, Molecules. 2024; 29: 2779.
https://doi.org/10.3390/molecules29122779 |
112 |
2021 |
Martin Reynders, Dirk Trauner. Optical control of targeted protein degradation, Cell Chemical Biology. 2021; 28: 969.
https://doi.org/10.1016/j.chembiol.2021.05.010 |
113 |
2025 |
Ryan N Cole, Qinghua Fang, Kanako Matsuoka, Zhou Wang. Androgen receptor inhibitors in treating prostate cancer, Asian Journal of Andrology. 2025; 27: 144.
https://doi.org/10.4103/aja202494 |
114 |
2022 |
Vasanthanathan Poongavanam, Yoseph Atilaw, Stephan Siegel, Anja Giese, Lutz Lehmann, Daniel Meibom, Mate Erdelyi, Jan Kihlberg. Linker-Dependent Folding Rationalizes PROTAC Cell Permeability, Journal of Medicinal Chemistry. 2022; 65: 13029.
https://doi.org/10.1021/acs.jmedchem.2c00877 |
115 |
2024 |
Deepa S. Mandlik, Satish K. Mandlik. 2024; 209.
https://doi.org/10.1007/978-981-97-5077-1_11 |
116 |
2023 |
Daigo Asano, Hideo Takakusa, Daisuke Nakai. Oral Absorption of Middle-to-Large Molecules and Its Improvement, with a Focus on New Modality Drugs, Pharmaceutics. 2023; 16: 47.
https://doi.org/10.3390/pharmaceutics16010047 |
117 |
2024 |
Xiao Wang, Zhao-Long Qin, Na Li, Mei-Qi Jia, Qiu-Ge Liu, Yi-Ru Bai, Jian Song, Shuo Yuan, Sai-Yang Zhang. Annual review of PROTAC degraders as anticancer agents in 2022, European Journal of Medicinal Chemistry. 2024; 267: 116166116166.
https://doi.org/10.1016/j.ejmech.2024.116166 |
118 |
2022 |
Izidor Sosič, Aleša Bricelj, Christian Steinebach. E3 ligase ligand chemistries: from building blocks to protein degraders, Chemical Society Reviews. 2022; 51: 3487.
https://doi.org/10.1039/D2CS00148A |
119 |
2025 |
Cody A. Loy, Eslam M. H. Ali, Laurence J. Seabrook, Timothy J. Harris, Kate A. Kragness, Lauren Albrecht, Darci J. Trader. ByeTAC: Bypassing E-Ligase-Targeting Chimeras for Direct Proteasome Degradation, Journal of Medicinal Chemistry. 2025; acs.jmedchem.5c00485.
https://doi.org/10.1021/acs.jmedchem.5c00485 |
120 |
2022 |
Tatsuya Sawasaki, Satoshi Yamanaka, Hirotake Furihata, Yuuki Imai, Yuta Yanagihara, Koya Nagaoka, Yuki Shoya, Shuhei Yoshida, Norio Shibata, Akihito Taya, Takato Nagasaka, Mai Usui, Hidetaka Kosako, Kohei Nishino, Takuya Miyakawa, Masaru Tanokura. 2022;
https://doi.org/10.21203/rs.3.rs-2173987/v1 |
121 |
2024 |
Mahdi Hasan, Deepanjan Panda, Guy Mann, Ashraf Brik. De novo Semi‐Synthetic Platform for Monitoring Protein degradation in Live Cells, ChemBioChem. 2024; 25: e202300731.
https://doi.org/10.1002/cbic.202300731 |
122 |
2025 |
Gernot Wolf, Conner Craigon, Shao Thing Teoh, Patrick Essletzbichler, Svenja Onstein, Diane Cassidy, Esther C.H. Uijttewaal, Vojtech Dvorak, Yuting Cao, Ariel Bensimon, Ulrich Elling, Alessio Ciulli, Giulio Superti-Furga. The efflux pump ABCC1/MRP1 constitutively restricts PROTAC sensitivity in cancer cells, Cell Chemical Biology. 2025; 32: 291.
https://doi.org/10.1016/j.chembiol.2024.11.009 |
123 |
2021 |
Aleša Bricelj, Yuen Lam Dora Ng, Dominic Ferber, Robert Kuchta, Sina Müller, Marius Monschke, Karl G. Wagner, Jan Krönke, Izidor Sosič, Michael Gütschow, Christian Steinebach. Influence of Linker Attachment Points on the Stability and Neosubstrate Degradation of Cereblon Ligands, ACS Medicinal Chemistry Letters. 2021; 12: 1733.
https://doi.org/10.1021/acsmedchemlett.1c00368 |
124 |
2023 |
Elisa Y. Lai, Binbin Yuan, Lutz Ackermann, Magnus J. Johansson. Ruthenium‐Catalyzed Aminocarbonylation with Isocyanates Through Weak Coordinating Groups, Chemistry – A European Journal. 2023; 29: e202302023.
https://doi.org/10.1002/chem.202302023 |
125 |
2024 |
Şevki Adem, Ümit Yırtıcı, Mesut Aydın, Ravi Rawat, Volkan Eyüpoğlu. Natural flavonoids as promising 6‐phosphogluconate dehydrogenase inhibitor candidates: In silico and in vitro assessments, Archiv der Pharmazie. 2024; 357: 2300326.
https://doi.org/10.1002/ardp.202300326 |
126 |
2022 |
Zi Liu, Mingxing Hu, Yu Yang, Chenghao Du, Haoxuan Zhou, Chengyali Liu, Yuanwei Chen, Lei Fan, Hongqun Ma, Youling Gong, Yongmei Xie. An overview of PROTACs: a promising drug discovery paradigm, Molecular Biomedicine. 2022; 3: 46.
https://doi.org/10.1186/s43556-022-00112-0 |
127 |
2024 |
Ritesh P. Bhole, Sapana Patil, Harshad S. Kapare, Rupesh V. Chikhale, Shailendra S. Gurav. PROTAC Beyond Cancer- Exploring the New Therapeutic Potential of Proteolysis Targeting Chimeras, Current Topics in Medicinal Chemistry. 2024; 24: 2050.
https://doi.org/10.2174/0115680266309968240621072550 |
128 |
2024 |
Andressa Francielli Bonjorno, Aline Renata Pavan, Guilherme F. S. Fernandes, Cauê Benito Scarim, Daniele Castagnolo, Jean Leandro Dos Santos. BacPROTACs targeting Clp protease: a promising strategy for anti-mycobacterial drug discovery, Frontiers in Chemistry. 2024; 12: 1358539.
https://doi.org/10.3389/fchem.2024.1358539 |
129 |
2025 |
Baolong Pan, Simon J. Mountford, Maki Kiso, Danielle E. Anderson, Georgina Papadakis, Kate E. Jarman, Danielle R. Tilmanis, Belinda Maher, Thomas Tran, Jake Shortt, Seiya Yamayoshi, Yoshihiro Kawaoka, Philip E. Thompson, Sam A. Greenall, Nadia Warner. Targeted protein degraders of SARS-CoV-2 Mpro are more active than enzymatic inhibition alone with activity against nirmatrelvir resistant virus, Communications Medicine. 2025; 5: 140.
https://doi.org/10.1038/s43856-025-00863-1 |
130 |
2024 |
Shadid U. Zaman, Piyusha P. Pagare, Boshi Huang, Grace Rilee, Zhikun Ma, Yan Zhang, Jiong Li. Novel PROTAC probes targeting FOSL1 degradation to eliminate head and neck squamous cell carcinoma cancer stem cells, Bioorganic Chemistry. 2024; 151: 107613107613.
https://doi.org/10.1016/j.bioorg.2024.107613 |
131 |
2025 |
Ching Lin, Jui-Ling Hsu, Yu-Tung Hsu, Kuo-Chen Fan, Sian-Siou Wu, Miao-Hsia Lin, Jih-Hwa Guh, Chao-Wu Yu. Design and synthesis of novel HDAC6 inhibitor dimer as HDAC6 degrader for cancer treatment by palladium catalysed dimerisation, Journal of Enzyme Inhibition and Medicinal Chemistry. 2025; 40: 2468355.
https://doi.org/10.1080/14756366.2025.2468355 |
132 |
2021 |
Fanwang Meng, Zhongjie Liang, Kehao Zhao, Cheng Luo. Drug design targeting active posttranslational modification protein isoforms, Medicinal Research Reviews. 2021; 41: 1701.
https://doi.org/10.1002/med.21774 |
133 |
2025 |
Shinya Sato, Mei Matsukawa, Masaaki Takemoto, Takumi Okamoto, Atsushi Saito, Issei Omura, Koji Matsuhisa, Hiroaki Ikeda, Kazunori Imaizumi, Masayuki Kaneko. Development of a versatile system for evaluating the target protein degradation activity of novel ubiquitin ligases utilizing existing PROTACs, Biochemical and Biophysical Research Communications. 2025; 749: 151370151370.
https://doi.org/10.1016/j.bbrc.2025.151370 |
134 |
2022 |
Cheng-Liang Zhu, Xiaomin Luo, Tian Tian, Zijian Rao, Hanlin Wang, Zhesheng Zhou, Zizheng Gao, Tian Mi, Danni Chen, Yongjin Xu, Yizhe Wu, Jinxin Che, Peihua Luo, Yubo Zhou, Jia Li, Xiaowu Dong. Structure-Based Rational Design Enables Discovery of a New Selective and Potent Akt Degrader with Improved Dermatologic Safety, SSRN Electronic Journal . 2022;
https://doi.org/10.2139/ssrn.4056755 |
135 |
2024 |
Sasikumar Kotagiri, Yawen Wang, Yanyan Han, Xiaobing Liang, Nicholas Blazanin, Phuong Kieu Nguyen, Yongying Jiang, Yonathan Lissanu. 2024;
https://doi.org/10.1101/2024.08.23.608456 |
136 |
2022 |
Jyotsana Madan, Vijay Kamal Ahuja, Kamal Dua, Susanta Samajdar, Murali Ramchandra, Sanjeev Giri. PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras, BioDrugs. 2022; 36: 609.
https://doi.org/10.1007/s40259-022-00551-9 |
137 |
2024 |
Jinhua Liu, Yaqi Deng, Jiabin Yin, Jian Ji, Cong Guan, Xuwen Chen, Xiang Wu, Tong Zhu, Shunying Liu. A one-pot photocatalytic triazole-based linkerology for PROTACs, Cell Reports Physical Science. 2024; 5: 102139102139.
https://doi.org/10.1016/j.xcrp.2024.102139 |
138 |
2022 |
Olga Bakulina, Alexander Sapegin, Alexander S. Bunev, Mikhail Krasavin. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs), Mendeleev Communications. 2022; 32: 419.
https://doi.org/10.1016/j.mencom.2022.07.001 |
139 |
2025 |
Shiou‐Ting Lin, Chien‐Hua Wang, Ai‐Lin Chen, Tsung‐Shing Andrew Wang. Utilizing Alkyne‐Nitrone Cycloaddition for the Convenient Multi‐Component Assembly of Protein Degraders and Biological Probes, Chemistry – A European Journal. 2025; 31: e202403184.
https://doi.org/10.1002/chem.202403184 |
140 |
2025 |
Georges A. Leconte, Gillian E. Gadbois, Yadira Sepulveda, Ady Schwarz, Erin Chang, Raymond T. Suhandynata, Jeremiah D. Momper, Fleur M. Ferguson. 2025;
https://doi.org/10.1101/2025.04.18.649560 |
141 |
2023 |
Yi-Qian Li, William G. Lannigan, Shabnam Davoodi, Fereidoon Daryaee, Ana Corrionero, Patricia Alfonso, Jose A. Rodriguez-Santamaria, Nan Wang, John D. Haley, Peter J. Tonge. Discovery of Novel Bruton’s Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy, Journal of Medicinal Chemistry. 2023; 66: 7454.
https://doi.org/10.1021/acs.jmedchem.3c00176 |
142 |
2024 |
Kun Wang, Zehui Zhou, Xinyi Ma, Jiahang Xu, Wangyang Xu, Guizhen Zhou, Chuan Zhou, Huajie Li, Mingyue Zheng, Sulin Zhang, Tianfeng Xu. Design, synthesis, and bioevaluation of SOS1 PROTACs derived from pyrido[2,3-d]pyrimidin-7-one-based SOS1 inhibitor, Bioorganic & Medicinal Chemistry Letters. 2024; 107: 129780129780.
https://doi.org/10.1016/j.bmcl.2024.129780 |
143 |
2024 |
Si-Han Zhang, Na Zeng, Jin-Zhou Xu, Chen-Qian Liu, Meng-Yao Xu, Jian-Xuan Sun, Ye An, Xing-Yu Zhong, Lin-Tao Miao, Shao-Gang Wang, Qi-Dong Xia. Recent breakthroughs in innovative elements, multidimensional enhancements, derived technologies, and novel applications of PROTACs, Biomedicine & Pharmacotherapy. 2024; 180: 117584117584.
https://doi.org/10.1016/j.biopha.2024.117584 |
144 |
2024 |
Olivia Shade, Amy Ryan, Gabriella Belsito, Alexander Deiters. 2024;
https://doi.org/10.1101/2024.11.11.623099 |
145 |
2024 |
Luca Licenziato, Eugenio Mazzone, Chiara Tarantelli, Paolo Accornero, Andrea Rinaldi, Sara Divari, Wilfred Leung, Suzin Webb, Raffaella De Maria, Luca Aresu. Thinking Outside the Box: Indirect Myc Modulation in Canine B-Cell Lymphoma, Animals. 2024; 14: 1466.
https://doi.org/10.3390/ani14101466 |
146 |
2022 |
Lakshmi R. Bollu, Prashant V. Bommi, Paige J. Monsen, Lijie Zhai, Kristen L. Lauing, April Bell, Miri Kim, Erik Ladomersky, Xinyu Yang, Leonidas C. Platanias, Daniela E. Matei, Marcelo G. Bonini, Hidayatullah G. Munshi, Rintaro Hashizume, Jennifer D. Wu, Bin Zhang, Charles David James, Peiwen Chen, Masha Kocherginsky, Craig Horbinski, Michael D. Cameron, Arabela A. Grigorescu, Bakhtiar Yamini, Rimas V. Lukas, Gary E. Schiltz, Derek A. Wainwright. Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma, Journal of Medicinal Chemistry. 2022; 65: 15642.
https://doi.org/10.1021/acs.jmedchem.2c00771 |
147 |
2024 |
You Li, Nicky Hwang, Andrew Snedeker, Stanley M. Lemon, Daisy Noe, Liren Sun, Jason A. Clement, Tianlun Zhou, Liudi Tang, Timothy Block, Yanming Du. “PROTAC” modified dihydroquinolizinones (DHQs) that cause degradation of PAPD-5 and inhibition of hepatitis A virus and hepatitis B virus, in vitro, Bioorganic & Medicinal Chemistry Letters. 2024; 102: 129680129680.
https://doi.org/10.1016/j.bmcl.2024.129680 |
148 |
2022 |
Hanqiao Xu, Takashi Kurohara, Reina Takano, Hidetomo Yokoo, Norihito Shibata, Nobumichi Ohoka, Takao Inoue, Mikihiko Naito, Yosuke Demizu. Development of Rapid and Facile Solid‐Phase Synthesis of PROTACs via a Variety of Binding Styles, ChemistryOpen. 2022; 11: e202200131.
https://doi.org/10.1002/open.202200131 |
149 |
2024 |
Špela Janež, Samo Guzelj, Žiga Jakopin. Linker Chemistry and Connectivity Fine-Tune the Immune Response and Kinetic Solubility of Conjugated NOD2/TLR7 Agonists, Bioconjugate Chemistry. 2024; 35: 1723.
https://doi.org/10.1021/acs.bioconjchem.4c00321 |
150 |
2024 |
Sandra Kuemper, Andrew G. Cairns, Kristian Birchall, Zhi Yao, Jonathan M. Large. Targeted protein degradation in CNS disorders: a promising route to novel therapeutics?, Frontiers in Molecular Neuroscience. 2024; 17: 1370509.
https://doi.org/10.3389/fnmol.2024.1370509 |
151 |
2024 |
Fenglei Li, Qiaoyu Hu, Yongqi Zhou, Hao Yang, Fang Bai. DiffPROTACs is a deep learning-based generator for proteolysis targeting chimeras, Briefings in Bioinformatics. 2024; 25: bbae358.
https://doi.org/10.1093/bib/bbae358 |
152 |
2023 |
Oluwatosin R. Ayinde, Chia Sharpe, Emily Stahl, Robert J. Tokarski, James R. Lerma, Natarajan Muthusamy, John C. Byrd, James R. Fuchs. Examination of the Impact of Triazole Position within Linkers on Solubility and Lipophilicity of a CDK9 Degrader Series, ACS Medicinal Chemistry Letters. 2023; 14: 936.
https://doi.org/10.1021/acsmedchemlett.3c00082 |
153 |
2023 |
Xiao Cheng, Shiqi Hu, Ke Cheng. Microneedle Patch Delivery of PROTACs for Anti-Cancer Therapy, ACS Nano. 2023; 17: 11855.
https://doi.org/10.1021/acsnano.3c03166 |
154 |
2023 |
Madeline Balzarini, Weijun Gui, Isuru M. Jayalath, Bin-Bin Schell, Joel Tong, Thomas Kodadek. 2023;
https://doi.org/10.1101/2023.07.19.549534 |
155 |
2023 |
Atsunori Kaneshige, Longchuan Bai, Mi Wang, Donna McEachern, Jennifer L. Meagher, Renqi Xu, Paul D. Kirchhoff, Bo Wen, Duxin Sun, Jeanne A. Stuckey, Shaomeng Wang. Discovery of a Potent and Selective STAT5 PROTAC Degrader with Strong Antitumor Activity In Vivo in Acute Myeloid Leukemia, Journal of Medicinal Chemistry. 2023; 66: 2717.
https://doi.org/10.1021/acs.jmedchem.2c01665 |
156 |
2023 |
Christine M. Arndt, Jacqueline Bitai, Jessica Brunner, Till Opatz, Paola Martinelli, Andreas Gollner, Kevin R. Sokol, Matthias Krumb. One-Pot Synthesis of Cereblon Proteolysis Targeting Chimeras via Photoinduced C(sp2)–C(sp3) Cross Coupling and Amide Formation for Proteolysis Targeting Chimera Library Synthesis, Journal of Medicinal Chemistry. 2023; 66: 16939.
https://doi.org/10.1021/acs.jmedchem.3c01613 |
157 |
|
,
https://doi.org/ |
158 |
2024 |
Makenzie Vorderbruggen, Carlos A. Velázquez-Martínez, Amarnath Natarajan, Adam R. Karpf. PROTACs in Ovarian Cancer: Current Advancements and Future Perspectives, International Journal of Molecular Sciences. 2024; 25: 5067.
https://doi.org/10.3390/ijms25105067 |
159 |
2025 |
Ebna Azizal Omar, Rajesh R., Pronoy Kanti Das, Rohit Pal, Gurubasavaraja Swamy Purawarga Matada, Lalmohan Maji. Next-generation cancer therapeutics: PROTACs and the role of heterocyclic warheads in targeting resistance, European Journal of Medicinal Chemistry. 2025; 281: 117034117034.
https://doi.org/10.1016/j.ejmech.2024.117034 |
160 |
2024 |
Martina Pierri, Xingui Liu, Alena Kroupova, Zoe Rutter, Alex J. Hallatt, Alessio Ciulli. Stereochemical inversion at a 1,4-cyclohexyl PROTAC linker fine-tunes conformation and binding affinity, Bioorganic & Medicinal Chemistry Letters. 2024; 110: 129861129861.
https://doi.org/10.1016/j.bmcl.2024.129861 |
161 |
2024 |
Zhuqian Wang, Siran Yue, Xinxin Chen, Jin Li, Peixi Zhu, Hongzhen Chen, Fang Qiu, Duoli Xie, Yiying Liang, Defang Li, Aiping Lu, Chao Liang. Design of Murine Double Minute 2 Proteolysis Targeting Chimera Degraders with a Built-In Tumor-Targeting Ability, Journal of Medicinal Chemistry. 2024; 67: 18865.
https://doi.org/10.1021/acs.jmedchem.4c01228 |
162 |
2022 |
Cheng-Liang Zhu, Xiaomin Luo, Tian Tian, Zijian Rao, Hanlin Wang, Zhesheng Zhou, Tian Mi, Danni Chen, Yongjin Xu, Yizhe Wu, Jinxin Che, Yubo Zhou, Jia Li, Xiaowu Dong. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader, European Journal of Medicinal Chemistry. 2022; 238: 114459114459.
https://doi.org/10.1016/j.ejmech.2022.114459 |
163 |
2024 |
Jianyu Liu, Yanzhuo Liu, Jiao Tang, Qianyuan Gong, Guoyi Yan, Hengrui Fan, Xueping Zhang, Chunlan Pu. Recent advances in dual PROTACs degrader strategies for disease treatment, European Journal of Medicinal Chemistry. 2024; 279: 116901116901.
https://doi.org/10.1016/j.ejmech.2024.116901 |
164 |
2024 |
Nisha Setia, Haider Thaer Abdulhameed Almuqdadi, Mohammad Abid. Journey of Von Hippel-Lindau (VHL) E3 ligase in PROTACs design: From VHL ligands to VHL-based degraders, European Journal of Medicinal Chemistry. 2024; 265: 116041116041.
https://doi.org/10.1016/j.ejmech.2023.116041 |
165 |
2021 |
José A. Villegas, Tasneem M. Vaid, Michael E. Johnson, Terry W. Moore. 2021;
https://doi.org/10.1101/2021.08.31.458424 |
166 |
2023 |
Yu Chen, Wen Li, Song Kwon, Yixin Wang, Zhaoting Li, Quanyin Hu. Small-Molecule Ferritin Degrader as a Pyroptosis Inducer, Journal of the American Chemical Society. 2023; 145: 9815.
https://doi.org/10.1021/jacs.3c01852 |
167 |
2025 |
Elisa Uliassi, Maria Laura Bolognesi, Andrea Milelli. Targeting Tau Protein with Proximity Inducing Modulators: A New Frontier to Combat Tauopathies, ACS Pharmacology & Translational Science. 2025; 8: 654.
https://doi.org/10.1021/acsptsci.4c00733 |
168 |
2024 |
Joe L. Smy, Roxanne Ifill, Storm Hassell-Hart. Brønsted acid-mediated thiazole synthesis from sulfoxonium ylides, Chemical Communications. 2024; 60: 12401.
https://doi.org/10.1039/D4CC03905J |
169 |
2023 |
Hazem Mslati, Francesco Gentile, Mohit Pandey, Fuqiang Ban, Artem Cherkasov. 2023;
https://doi.org/10.1101/2023.11.20.567951 |
170 |
2025 |
Sadettin Y. Ugurlu, David McDonald, Ramazan Enisoglu, Zexuan Zhu, Shan He. MEGA PROTAC, MEGA DOCK-based PROTAC mediated ternary complex formation pipeline with sequential filtering and rank aggregation, Scientific Reports. 2025; 15: 5545.
https://doi.org/10.1038/s41598-024-83558-2 |
171 |
2023 |
Diksha Choudhary, Amritpal Kaur, Pargat Singh, Gaurav Chaudhary, Rajwinder Kaur, Mohammad F. Bayan, Balakumar Chandrasekaran, Saeed M. Marji, Reema Ayman. Target protein degradation by protacs: A budding cancer treatment strategy, Pharmacology & Therapeutics. 2023; 250: 108525108525.
https://doi.org/10.1016/j.pharmthera.2023.108525 |
172 |
2023 |
Ammar Usman Danazumi, Ibtida Tabassum Ishmam, Salisu Idris, Matylda Anna Izert, Emmanuel Oluwadare Balogun, Maria Wiktoria Górna. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis, European Journal of Pharmaceutical Sciences. 2023; 186: 106451106451.
https://doi.org/10.1016/j.ejps.2023.106451 |
173 |
2022 |
Tian Niu, Kailin Li, Li Jiang, Zhesheng Zhou, Ju Hong, Xuankun Chen, Xiaowu Dong, Qiaojun He, Ji Cao, Bo Yang, Cheng-Liang Zhu. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor, European Journal of Medicinal Chemistry. 2022; 228: 114012114012.
https://doi.org/10.1016/j.ejmech.2021.114012 |
174 |
2024 |
Yang Li, Junfeng Qu, Lizhi Jiang, Xiaoyu Peng, Kaiyue Wu, Miaojia Chen, Yuanyuan Peng, Xuan Cao. Application and challenges of nitrogen heterocycles in PROTAC linker, European Journal of Medicinal Chemistry. 2024; 273: 116520116520.
https://doi.org/10.1016/j.ejmech.2024.116520 |
175 |
2022 |
Jasmine M. Cross, Megan E. Coulson, Joshua P. Smalley, Wiktoria A. Pytel, Ozair Ismail, Justin S. Trory, Shaun M. Cowley, James T. Hodgkinson. A ‘click’ chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras, RSC Medicinal Chemistry. 2022; 13: 1634.
https://doi.org/10.1039/D2MD00199C |
176 |
2024 |
Riya Thapa, Asif Ahmad Bhat, Gaurav Gupta, S. Renuka Jyothi, Irwanjot Kaur, Sachin Kumar, Naveen Sharma, G. V. Siva Prasad, Atreyi Pramanik, Haider Ali. CRBN‐PROTACs in Cancer Therapy: From Mechanistic Insights to Clinical Applications, Chemical Biology & Drug Design. 2024; 104: e70009.
https://doi.org/10.1111/cbdd.70009 |
177 |
2022 |
Charles E. Hendrick, Jeff R. Jorgensen, Charu Chaudhry, Iulia I. Strambeanu, Jean-Francois Brazeau, Jamie Schiffer, Zhicai Shi, Jennifer D. Venable, Scott E. Wolkenberg. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation, ACS Medicinal Chemistry Letters. 2022; 13: 1182.
https://doi.org/10.1021/acsmedchemlett.2c00124 |
178 |
2025 |
Ziting Feng, Duoli Xie, Fang Qiu, Jie Huang, Zhuqian Wang, Chao Liang. Development of hybrid aptamers-engineered PROTACs for degrading VEGF165 in both tumor- and vascular endothelial cells, European Journal of Medicinal Chemistry. 2025; 281: 117027117027.
https://doi.org/10.1016/j.ejmech.2024.117027 |
179 |
2025 |
Yordanos Esubalew Abeje, Lianne H. E. Wieske, Vasanthanathan Poongavanam, Stefanie Maassen, Yoseph Atilaw, Philipp Cromm, Lutz Lehmann, Mate Erdelyi, Daniel Meibom, Jan Kihlberg. Impact of Linker Composition on VHL PROTAC Cell Permeability, Journal of Medicinal Chemistry. 2025; 68: 638.
https://doi.org/10.1021/acs.jmedchem.4c02492 |
180 |
2025 |
Shiwei Song, Wanrong Yang, Wanyi Tai. Proteolysis targeting chimera of BI-2536 induces potent dual degradation of PLK1 and BET proteins, Bioorganic & Medicinal Chemistry. 2025; 120: 118087118087.
https://doi.org/10.1016/j.bmc.2025.118087 |
181 |
2024 |
Jie Yue, Bingxin Peng, Yu Chen, Jieyu Jin, Xinda Zhao, Chao Shen, Xiangyang Ji, Chang-Yu Hsieh, Jianfei Song, Tingjun Hou, Yafeng Deng, Jike Wang. Unlocking comprehensive molecular design across all scenarios with large language model and unordered chemical language, Chemical Science. 2024; 15: 13727.
https://doi.org/10.1039/D4SC03744H |
182 |
2024 |
Junli Huang, Zeli Ma, Xiaopeng Peng, Zichao Yang, Yuhao Wu, Guanghong Zhong, Tianfeng Ouyang, Zhen Chen, Yao Liu, Qirui Wang, Jianjun Chen, Ting Chen, Zhenhua Zeng. Discovery of Novel Potent and Fast BTK PROTACs for the Treatment of Osteoclasts-Related Inflammatory Diseases, Journal of Medicinal Chemistry. 2024; 67: 2438.
https://doi.org/10.1021/acs.jmedchem.3c01414 |
183 |
2023 |
Song Chen, Zhendong Chen, Lixue Lu, Yunpeng Zhao, Ronghui Zhou, Qiong Xie, Yongzhi Shu, Jun Lin, Xufen Yu, Yonghui Wang. Discovery of novel BTK PROTACs with improved metabolic stability via linker rigidification strategy, European Journal of Medicinal Chemistry. 2023; 255: 115403115403.
https://doi.org/10.1016/j.ejmech.2023.115403 |
184 |
2024 |
Chi He, Xiaochu Ba, Hunter P. Shunatona, Jacob T. Edwards, Yi-Xin Li, Taylor M. Keller, Roger D. Sommer, Christoph W. Zapf, Deborah S. Mortensen. Discovery of an Azabicyclo[2.1.1]hexane Piperazinium Salt and Its Application in Medicinal Chemistry via a Rearrangement, Organic Letters. 2024; 26: 5318.
https://doi.org/10.1021/acs.orglett.4c01696 |
185 |
2024 |
Inna A. Volynkina, Elena N. Bychkova, Anastasiia O. Karakchieva, Alexander S. Tikhomirov, George V. Zatonsky, Svetlana E. Solovieva, Maksim M. Martynov, Natalia E. Grammatikova, Andrey G. Tereshchenkov, Alena Paleskava, Andrey L. Konevega, Petr V. Sergiev, Olga A. Dontsova, Ilya A. Osterman, Andrey E. Shchekotikhin, Anna N. Tevyashova. Hybrid Molecules of Azithromycin with Chloramphenicol and Metronidazole: Synthesis and Study of Antibacterial Properties, Pharmaceuticals. 2024; 17: 187.
https://doi.org/10.3390/ph17020187 |
186 |
2023 |
Satoshi Yamanaka, Hirotake Furihata, Yuta Yanagihara, Akihito Taya, Takato Nagasaka, Mai Usui, Koya Nagaoka, Yuki Shoya, Kohei Nishino, Shuhei Yoshida, Hidetaka Kosako, Masaru Tanokura, Takuya Miyakawa, Yuuki Imai, Norio Shibata, Tatsuya Sawasaki. Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation, Nature Communications. 2023; 14: 4683.
https://doi.org/10.1038/s41467-023-40385-9 |
187 |
2024 |
Corentin Bouvier, Rachel Lawrence, Francesca Cavallo, Wendy Xolalpa, Allan Jordan, Roland Hjerpe, Manuel S. Rodriguez. Breaking Bad Proteins—Discovery Approaches and the Road to Clinic for Degraders, Cells. 2024; 13: 578.
https://doi.org/10.3390/cells13070578 |
188 |
2024 |
Diana Castagna, Benoit Gourdet, Roland Hjerpe, Philip MacFaul, Andrew Novak, Guillaume Revol, Etienne Rochette, Allan Jordan. 2024; 63: 61.
https://doi.org/10.1016/bs.pmch.2024.07.002 |
189 |
2023 |
Toshihiko Tashima, Proteolysis-Targeting Chimera (PROTAC) Delivery into the Brain across the Blood-Brain Barrier, Antibodies. 2023; 12: 43.
https://doi.org/10.3390/antib12030043 |
190 |
2023 |
Paul D. O’Dowd, Graeme P. Sullivan, Daniel A. Rodrigues, Tríona Ní Chonghaile, Darren M. Griffith. First-in-class metallo-PROTAC as an effective degrader of select Pt-binding proteins, Chemical Communications. 2023; 59: 12641.
https://doi.org/10.1039/D3CC03340F |
191 |
2024 |
Eslam M. H. Ali, Cody A. Loy, Darci J. Trader. 2024;
https://doi.org/10.1101/2024.01.20.576376 |
192 |
2024 |
Sankarprasad Bhuniya, Eirinaios I. Vrettos. Hypoxia-Activated Theragnostic Prodrugs (HATPs): Current State and Future Perspectives, Pharmaceutics. 2024; 16: 557.
https://doi.org/10.3390/pharmaceutics16040557 |
193 |
2025 |
Xue Zhi Zhao, Wenjie Wang, Md Rasel Al Mahmud, Keli Agama, Yves Pommier, Terrence R. Burke. Application of a bivalent “click” approach to target tyrosyl-DNA phosphodiesterase 1 (TDP1), RSC Medicinal Chemistry. 2025;
https://doi.org/10.1039/D4MD00824C |
194 |
2024 |
Wuxiang Mao, Nathalie M. Vandecan, Christopher R. Bingham, Pui Ki Tsang, Peter Ulintz, Rachel Sexton, Daniel A. Bochar, Sofia D. Merajver, Matthew B. Soellner. Selective and Potent PROTAC Degraders of c-Src Kinase, ACS Chemical Biology. 2024; 19: 110.
https://doi.org/10.1021/acschembio.3c00548 |
195 |
2024 |
Madeline Balzarini, Joel Tong, Weijun Gui, Isuru M. Jayalath, Bin-Bin Schell, Thomas Kodadek. Recruitment to the Proteasome Is Necessary but Not Sufficient for Chemically Induced, Ubiquitin-Independent Degradation of Native Proteins, ACS Chemical Biology. 2024; 19: 2323.
https://doi.org/10.1021/acschembio.4c00422 |
196 |
2024 |
Yifei He, Yuandong Zheng, Chenggu Zhu, Peng Lei, Jinghua Yu, Chongzhuang Tang, Hao Chen, Xingxing Diao. Radioactive ADME Demonstrates ARV-110’s High Druggability Despite Low Oral Bioavailability, Journal of Medicinal Chemistry. 2024; 67: 14277.
https://doi.org/10.1021/acs.jmedchem.4c01104 |
197 |
2021 |
Chiara Tarantelli, Eleonora Cannas, Hillarie Ekeh, Carmelo Moscatello, Eugenio Gaudio, Luciano Cascione, Sara Napoli, Cesare Rech, Andrea Testa, Chiara Maniaci, Andrea Rinaldi, Emanuele Zucca, Anastasios Stathis, Alessio Ciulli, Francesco Bertoni. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type, Exploration of Targeted Anti-tumor Therapy. 2021; 2: 586.
https://doi.org/10.37349/etat.2021.00065 |
198 |
2023 |
Daniel H. O’ Donovan, Claudia De Fusco, Lara Kuhnke, Andreas Reichel. Trends in Molecular Properties, Bioavailability, and Permeability across the Bayer Compound Collection, Journal of Medicinal Chemistry. 2023; 66: 2347.
https://doi.org/10.1021/acs.jmedchem.2c01577 |
199 |
2023 |
Mayuri P Kannan, Sarojini Sreeraman, Chaitanya S Somala, Raja BS Kushwah, Saravanan K Mani, Vickram Sundaram, Anand Thirunavukarasou. Advancement of Targeted Protein Degradation Strategies As Therapeutics for Undruggable Disease Targets, Future Medicinal Chemistry. 2023; 15: 867.
https://doi.org/10.4155/fmc-2023-0072 |
200 |
2024 |
Ümit Yırtıcı, Natural flavonoids as promising lactate dehydrogenase A inhibitors: Comprehensive in vitro and in silico analysis, Archiv der Pharmazie. 2024; 357: 2400455.
https://doi.org/10.1002/ardp.202400455 |
201 |
2021 |
Ying Wang, Isabella Haight, Rishi Gupta, Anil Vasudevan. What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries, Journal of Medicinal Chemistry. 2021; 64: 17115.
https://doi.org/10.1021/acs.jmedchem.1c01139 |
202 |
2023 |
Chuang Li, Peng Zhang, Gaojie Chang, Mingyue Pan, Fengke Lu, Jiahao Huang, Yanzhi Wang, Qingyan Zhao, Bingxia Sun, Yuting Cui, Feng Sang. Proteolysis Targeting Chimeras (PROTACs) Based on Imatinib Induced Degradation of BCR‐ABL in K562 Cells, ChemistrySelect. 2023; 8: e202300095.
https://doi.org/10.1002/slct.202300095 |
203 |
2024 |
Yaolin Guo, Xiaoxue Li, Yang Xie, Yuxi Wang. What influences the activity of Degrader−Antibody conjugates (DACs), European Journal of Medicinal Chemistry. 2024; 268: 116216116216.
https://doi.org/10.1016/j.ejmech.2024.116216 |
204 |
2023 |
Deep Rohan Chatterjee, Saumya Kapoor, Meenakshi Jain, Rudradip Das, Moumita Ghosh Chowdhury, Amit Shard. PROTACting the kinome with covalent warheads, Drug Discovery Today. 2023; 28: 103417103417.
https://doi.org/10.1016/j.drudis.2022.103417 |
205 |
2023 |
Ki Bum Hong, Hongchan An. Degrader–Antibody Conjugates: Emerging New Modality, Journal of Medicinal Chemistry. 2023; 66: 140.
https://doi.org/10.1021/acs.jmedchem.2c01791 |
206 |
2023 |
Hanqiao Xu, Takashi Kurohara, Nobumichi Ohoka, Genichiro Tsuji, Takao Inoue, Mikihiko Naito, Yosuke Demizu. Development of versatile solid-phase methods for syntheses of PROTACs with diverse E3 ligands, Bioorganic & Medicinal Chemistry. 2023; 86: 117293117293.
https://doi.org/10.1016/j.bmc.2023.117293 |
207 |
2023 |
David Heppner, Florian Wittlinger, Blessing Ogboo, Ekaterina Shevchenko, Tahereh Damghani, Calvin Pham, Ilse Schaeffner, Brandon Oligny, Surbhi Chitnis, Tyler Beyett, Alexander Rasch, Brian Buckley, Daniel Urul, Tatiana Shaurova, Earl May, Erik Schaefer, Michael Eck, Pamela Hershberger, Antti Poso, Stefan Laufer. 2023;
https://doi.org/10.21203/rs.3.rs-3286949/v1 |
208 |
2023 |
Martin P. Schwalm, Andreas Krämer, Anja Dölle, Janik Weckesser, Xufen Yu, Jian Jin, Krishna Saxena, Stefan Knapp. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization, Cell Chemical Biology. 2023; 30: 753.
https://doi.org/10.1016/j.chembiol.2023.06.002 |
209 |
2025 |
Andrew McGown, Vesna Vetma, Damien Crepin, Yan Lin, Claire Adcock, Conner Craigon, Jordan Nafie, Daniel von Emloh, Léa Sutton, Kiera Bailey, Lewis Edmunds, Manvendra Sharma, Jonathan D. Wilden, Simon J. Coles, Graham J. Tizzard, William Farnaby, Alessio Ciulli, George E. Kostakis, John Spencer. Use of Aldehyde–Alkyne–Amine Couplings to Generate Medicinal Chemistry-Relevant Linkers, ACS Medicinal Chemistry Letters. 2025; 16: 278.
https://doi.org/10.1021/acsmedchemlett.4c00531 |
210 |
2022 |
Alberto Juan, María del Mar Noblejas-López, María Arenas-Moreira, Carlos Alonso-Moreno, Alberto Ocaña. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles, Frontiers in Cell and Developmental Biology. 2022; 9: 805336.
https://doi.org/10.3389/fcell.2021.805336 |
211 |
2024 |
Xuewu Liang, Hairu Ren, Fengyang Han, Renwen Liang, Jiayan Zhao, Hong Liu. The new direction of drug development: Degradation of undruggable targets through targeting chimera technology, Medicinal Research Reviews. 2024; 44: 632.
https://doi.org/10.1002/med.21992 |
212 |
2023 |
Francesco Di Palma, Carlo Abate, Sergio Decherchi, Andrea Cavalli. Ligandability and druggability assessment via machine learning, WIREs Computational Molecular Science. 2023; 13: e1676.
https://doi.org/10.1002/wcms.1676 |
213 |
2024 |
Michela Eleuteri, Jenny Desantis, Gabriele Cruciani, Raimondo Germani, Laura Goracci. Use of ionic liquids in amidation reactions for proteolysis targeting chimera synthesis, Organic & Biomolecular Chemistry. 2024; 22: 3477.
https://doi.org/10.1039/D4OB00304G |
214 |
2023 |
Yuen Lam Dora Ng, Aleša Bricelj, Jacqueline A. Jansen, Arunima Murgai, Kirsten Peter, Katherine A. Donovan, Michael Gütschow, Jan Krönke, Christian Steinebach, Izidor Sosič. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins, Journal of Medicinal Chemistry. 2023; 66: 4703.
https://doi.org/10.1021/acs.jmedchem.2c01817 |
215 |
2025 |
Paige J. Monsen, Prashant V. Bommi, Arabela A. Grigorescu, Kristen L. Lauing, Yingyu Mao, Payton Berardi, Lijie Zhai, Oluwatomilayo Ojo, Manon Penco-Campillo, Taylor Koch, Michael Egozi, Sonam V. Jha, Sara F. Dunne, Hong Jiang, Guiqin Song, Fang Zhang, Steven Kregel, Ali Vaziri-Gohar, Sean Fanning, Pilar Sanchez-Gomez, Jacob M. Allen, Bakhtiar Yamini, Rimas V. Lukas, Derek A. Wainwright, Gary E. Schiltz. 2025;
https://doi.org/10.1101/2025.01.07.631731 |
216 |
2024 |
Jiankang Hu, Hongrui Xu, Tianbang Wu, Cheng Zhang, Hui Shen, Ruibo Dong, Qingqing Hu, Qiuping Xiang, Shuang Chai, Guolong Luo, Xiaoshan Chen, Yumin Huang, Xiaofan Zhao, Chao Peng, Xishan Wu, Bin Lin, Yan Zhang, Yong Xu. Discovery of Highly Potent and Efficient CBP/p300 Degraders with Strong In Vivo Antitumor Activity, Journal of Medicinal Chemistry. 2024; 67: 6952.
https://doi.org/10.1021/acs.jmedchem.3c02195 |
217 |
2024 |
Mingming Zheng, Xiao-Yu Zhang, Weijiao Chen, Fei Xia, Huanaoyu Yang, Kai Yuan, Peng Yang. Molecules Inducing Specific Cyclin-Dependent Kinase Degradation and their Possible Use in Cancer Therapy, Future Medicinal Chemistry. 2024; 16: 369.
https://doi.org/10.4155/fmc-2023-0259 |
218 |
2024 |
Bohan Ma, Donghua Liu, Zhe Wang, Dize Zhang, Yanlin Jian, Kun Zhang, Tianyang Zhou, Yibo Gao, Yizeng Fan, Jian Ma, Yang Gao, Yule Chen, Si Chen, Jing Liu, Xiang Li, Lei Li. A Top-Down Design Approach for Generating a Peptide PROTAC Drug Targeting Androgen Receptor for Androgenetic Alopecia Therapy, Journal of Medicinal Chemistry. 2024; 67: 10336.
https://doi.org/10.1021/acs.jmedchem.4c00828 |
219 |
2023 |
Liwen Hua, Danni Wang, Keran Wang, Yuxuan Wang, Jinying Gu, Qiuyue Zhang, Qidong You, Lei Wang. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery, Journal of Medicinal Chemistry. 2023; 66: 10934.
https://doi.org/10.1021/acs.jmedchem.3c00881 |
220 |
2023 |
Daniele Antermite, Stig D. Friis, Johan R. Johansson, Okky Dwichandra Putra, Lutz Ackermann, Magnus J. Johansson. Late-stage synthesis of heterobifunctional molecules for PROTAC applications via ruthenium-catalysed C‒H amidation, Nature Communications. 2023; 14: 8222.
https://doi.org/10.1038/s41467-023-43789-9 |
221 |
2025 |
Akash Vikal, Rashmi Maurya, Brij Bihari Patel, Rajeev Sharma, Preeti Patel, Umesh K. Patil, Balak Das Kurmi. Protacs in cancer therapy: mechanisms, design, clinical trials, and future directions, Drug Delivery and Translational Research. 2025; 15: 1801.
https://doi.org/10.1007/s13346-024-01754-z |
222 |
2022 |
Marine C. Aublette, Tom A. Harrison, Elizabeth J. Thorpe, Morgan S. Gadd. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases, Bioorganic & Medicinal Chemistry Letters. 2022; 64: 128636128636.
https://doi.org/10.1016/j.bmcl.2022.128636 |
223 |
2024 |
Advait Dubey, Kavita Pal, Vikram Gota. 2024; 169.
https://doi.org/10.1007/978-981-97-5077-1_9 |