1 |
2023 |
Ester Colarusso, Sara Ceccacci, Maria Chiara Monti, Erica Gazzillo, Assunta Giordano, Maria Giovanna Chini, Maria Grazia Ferraro, Marialuisa Piccolo, Dafne Ruggiero, Carlo Irace, Stefania Terracciano, Ines Bruno, Giuseppe Bifulco, Gianluigi Lauro. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders, European Journal of Medicinal Chemistry. 2023; 247: 115018115018.
https://doi.org/10.1016/j.ejmech.2022.115018 |
2 |
2022 |
Federica Pedrucci, Claudia Pappalardo, Giovanni Marzaro, Nicola Ferri, Alberto Ferlin, Luca De Toni. Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening, International Journal of Molecular Sciences. 2022; 23: 6630.
https://doi.org/10.3390/ijms23126630 |
3 |
2022 |
Markus Fleck, Michael Müller, Noah Weber, Christopher Trummer. Decoupled coordinates for machine learning-based molecular fragment linking, Machine Learning: Science and Technology. 2022; 3: 015029.
https://doi.org/10.1088/2632-2153/ac50fc |
4 |
2023 |
Friedericke S. Menke, Barbara Wicher, Lars Allmendinger, Victor Maurizot, Ivan Huc. An abiotic, tetrameric, eight-helix bundle, Chemical Science. 2023; 14: 3742.
https://doi.org/10.1039/D3SC00267E |
5 |
2022 |
Diego García Jiménez, Matteo Rossi Sebastiano, Maura Vallaro, Valentina Mileo, Daniela Pizzirani, Elisa Moretti, Giuseppe Ermondi, Giulia Caron. Designing Soluble PROTACs: Strategies and Preliminary Guidelines, Journal of Medicinal Chemistry. 2022; 65: 12639.
https://doi.org/10.1021/acs.jmedchem.2c00201 |
6 |
2022 |
Jenny Desantis, Andrea Mammoli, Michela Eleuteri, Alice Coletti, Federico Croci, Antonio Macchiarulo, Laura Goracci. PROTACs bearing piperazine-containing linkers: what effect on their protonation state?, RSC Advances. 2022; 12: 21968.
https://doi.org/10.1039/D2RA03761K |
7 |
2023 |
Weijun Gui, Sarah F. Giardina, Madeline Balzarini, Francis Barany, Thomas Kodadek. Reversible Assembly of Proteolysis Targeting Chimeras, ACS Chemical Biology. 2023; 18: 1582.
https://doi.org/10.1021/acschembio.3c00199 |
8 |
2022 |
Jiacheng Li, Ting Liu, Yuanli Song, Mingyu Wang, Liping Liu, Hongwen Zhu, Qi Li, Jin Lin, Hualiang Jiang, Kaixian Chen, Kehao Zhao, Mingliang Wang, Hu Zhou, Hua Lin, Cheng Luo. Discovery of Small-Molecule Degraders of the CDK9-Cyclin T1 Complex for Targeting Transcriptional Addiction in Prostate Cancer, Journal of Medicinal Chemistry. 2022; 65: 11034.
https://doi.org/10.1021/acs.jmedchem.2c00257 |
9 |
2023 |
Li Zhou, Bin Yu, Mengqiu Gao, Rui Chen, Zhiyu Li, Yueqing Gu, Jinlei Bian, Yi Ma. DNA framework-engineered chimeras platform enables selectively targeted protein degradation, Nature Communications. 2023; 14: 4510.
https://doi.org/10.1038/s41467-023-40244-7 |
10 |
2023 |
Huda Zahid, Jeff P. Costello, Yao Li, Jennifer R. Kimbrough, Marisa Actis, Zoran Rankovic, Qin Yan, William C. K. Pomerantz. Design of Class I/IV Bromodomain-Targeting Degraders for Chromatin Remodeling Complexes, ACS Chemical Biology. 2023; 18: 1278.
https://doi.org/10.1021/acschembio.2c00902 |
11 |
2023 |
Yu-Ling Tseng, Po-Chao Lu, Chi-Chang Lee, Ruei-Yu He, Yung-An Huang, Yin-Chen Tseng, Ting-Jen Rachel Cheng, Joseph Jen-Tse Huang, Jim-Min Fang. Degradation of neurodegenerative disease-associated TDP-43 aggregates and oligomers via a proteolysis-targeting chimera, Journal of Biomedical Science. 2023; 30: 27.
https://doi.org/10.1186/s12929-023-00921-7 |
12 |
2022 |
Jiadai Zhai, Chuang Li, Bingxia Sun, Sinan Wang, Yuting Cui, Qingzhi Gao, Feng Sang. Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines, Bioorganic & Medicinal Chemistry Letters. 2022; 78: 129041129041.
https://doi.org/10.1016/j.bmcl.2022.129041 |
13 |
2021 |
Martin Reynders, Dirk Trauner. Optical control of targeted protein degradation, Cell Chemical Biology. 2021; 28: 969.
https://doi.org/10.1016/j.chembiol.2021.05.010 |
14 |
2022 |
Irene Preet Bhela, Alice Ranza, Federica Carolina Balestrero, Marta Serafini, Silvio Aprile, Rita Maria Concetta Di Martino, Fabrizio Condorelli, Tracey Pirali. A Versatile and Sustainable Multicomponent Platform for the Synthesis of Protein Degraders: Proof-of-Concept Application to BRD4-Degrading PROTACs, Journal of Medicinal Chemistry. 2022; 65: 15282.
https://doi.org/10.1021/acs.jmedchem.2c01218 |
15 |
2022 |
Vasanthanathan Poongavanam, Yoseph Atilaw, Stephan Siegel, Anja Giese, Lutz Lehmann, Daniel Meibom, Mate Erdelyi, Jan Kihlberg. Linker-Dependent Folding Rationalizes PROTAC Cell Permeability, Journal of Medicinal Chemistry. 2022; 65: 13029.
https://doi.org/10.1021/acs.jmedchem.2c00877 |
16 |
2023 |
Arjun Rao, Tin M. Tunjic, Michael Brunsteiner, Michael Müller, Hosein Fooladi, Chiara Gasbarri, Noah Weber. Bayesian optimization for ternary complex prediction (BOTCP), Artificial Intelligence in the Life Sciences. 2023; 3: 100072100072.
https://doi.org/10.1016/j.ailsci.2023.100072 |
17 |
2023 |
Giulia Apprato, Giulia D’Agostini, Paolo Rossetti, Giuseppe Ermondi, Giulia Caron. In Silico Tools to Extract the Drug Design Information Content of Degradation Data: The Case of PROTACs Targeting the Androgen Receptor, Molecules. 2023; 28: 1206.
https://doi.org/10.3390/molecules28031206 |
18 |
2022 |
Izidor Sosič, Aleša Bricelj, Christian Steinebach. E3 ligase ligand chemistries: from building blocks to protein degraders, Chemical Society Reviews. 2022; 51: 3487.
https://doi.org/10.1039/D2CS00148A |
19 |
2022 |
O. A. Koroleva, Yu. V. Dutikova, A. V. Trubnikov, F. A. Zenov, E. V. Manasova, A. A. Shtil, A. V. Kurkin. PROTAC: targeted drug strategy. Principles and limitations, Russian Chemical Bulletin. 2022; 71: 2310.
https://doi.org/10.1007/s11172-022-3659-z |
20 |
2022 |
Tatsuya Sawasaki, Satoshi Yamanaka, Hirotake Furihata, Yuuki Imai, Yuta Yanagihara, Koya Nagaoka, Yuki Shoya, Shuhei Yoshida, Norio Shibata, Akihito Taya, Takato Nagasaka, Mai Usui, Hidetaka Kosako, Kohei Nishino, Takuya Miyakawa, Masaru Tanokura. 2022;
https://doi.org/10.21203/rs.3.rs-2173987/v1 |
21 |
2021 |
Aleša Bricelj, Yuen Lam Dora Ng, Dominic Ferber, Robert Kuchta, Sina Müller, Marius Monschke, Karl G. Wagner, Jan Krönke, Izidor Sosič, Michael Gütschow, Christian Steinebach. Influence of Linker Attachment Points on the Stability and Neosubstrate Degradation of Cereblon Ligands, ACS Medicinal Chemistry Letters. 2021; 12: 1733.
https://doi.org/10.1021/acsmedchemlett.1c00368 |
22 |
2022 |
Zi Liu, Mingxing Hu, Yu Yang, Chenghao Du, Haoxuan Zhou, Chengyali Liu, Yuanwei Chen, Lei Fan, Hongqun Ma, Youling Gong, Yongmei Xie. An overview of PROTACs: a promising drug discovery paradigm, Molecular Biomedicine. 2022; 3: 46.
https://doi.org/10.1186/s43556-022-00112-0 |
23 |
2021 |
Fanwang Meng, Zhongjie Liang, Kehao Zhao, Cheng Luo. Drug design targeting active posttranslational modification protein isoforms, Medicinal Research Reviews. 2021; 41: 1701.
https://doi.org/10.1002/med.21774 |
24 |
2022 |
Zubair Anwar, Muhammad Shahzad Ali, Antonio Galvano, Alessandro Perez, Maria La Mantia, Ihtisham Bukhari, Bartlomiej Swiatczak. PROTACs: The Future of Leukemia Therapeutics, Frontiers in Cell and Developmental Biology. 2022; 10: 851087.
https://doi.org/10.3389/fcell.2022.851087 |
25 |
2022 |
Cheng-Liang Zhu, Xiaomin Luo, Tian Tian, Zijian Rao, Hanlin Wang, Zhesheng Zhou, Zizheng Gao, Tian Mi, Danni Chen, Yongjin Xu, Yizhe Wu, Jinxin Che, Peihua Luo, Yubo Zhou, Jia Li, Xiaowu Dong. Structure-Based Rational Design Enables Discovery of a New Selective and Potent Akt Degrader with Improved Dermatologic Safety, SSRN Electronic Journal . 2022;
https://doi.org/10.2139/ssrn.4056755 |
26 |
2023 |
Liam Thomas Hales, Philip Evan Thompson. Solid‐Phase Synthesis of PROTACs and SNIPERs on Backbone Amide Linked (BAL) Resin, Chemistry – A European Journal. 2023; e202301975.
https://doi.org/10.1002/chem.202301975 |
27 |
2023 |
Mingyu Wang, Rongkun Lin, Jiacheng Li, Yuying Suo, Jing Gao, Liping Liu, Liyuan Zhou, Yicheng Ni, Ziqun Yang, Jie Zheng, Jin Lin, Hu Zhou, Cheng Luo, Hua Lin. Discovery of LL-K8-22: A Selective, Durable, and Small-Molecule Degrader of the CDK8-Cyclin C Complex, Journal of Medicinal Chemistry. 2023; 66: 4932.
https://doi.org/10.1021/acs.jmedchem.2c02045 |
28 |
2022 |
Jyotsana Madan, Vijay Kamal Ahuja, Kamal Dua, Susanta Samajdar, Murali Ramchandra, Sanjeev Giri. PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras, BioDrugs. 2022; 36: 609.
https://doi.org/10.1007/s40259-022-00551-9 |
29 |
2022 |
Miklós Békés, David R. Langley, Craig M. Crews. PROTAC targeted protein degraders: the past is prologue, Nature Reviews Drug Discovery. 2022; 21: 181.
https://doi.org/10.1038/s41573-021-00371-6 |
30 |
2023 |
Robert J. Tokarski, Chia M. Sharpe, Andrew C. Huntsman, Brittney K. Mize, Oluwatosin R. Ayinde, Emily H. Stahl, James R. Lerma, Andrew Reed, Bridget Carmichael, Natarajan Muthusamy, John C. Byrd, James R. Fuchs. Bifunctional degraders of cyclin dependent kinase 9 (CDK9): Probing the relationship between linker length, properties, and selective protein degradation, European Journal of Medicinal Chemistry. 2023; 254: 115342115342.
https://doi.org/10.1016/j.ejmech.2023.115342 |
31 |
2022 |
Guangyan Du, Jie Jiang, Nathaniel J. Henning, Nozhat Safaee, Eriko Koide, Radosław P. Nowak, Katherine A. Donovan, Hojong Yoon, Inchul You, Hong Yue, Nicholas A. Eleuteri, Zhixiang He, Zhengnian Li, Hubert T. Huang, Jianwei Che, Behnam Nabet, Tinghu Zhang, Eric S. Fischer, Nathanael S. Gray. Exploring the target scope of KEAP1 E3 ligase-based PROTACs, Cell Chemical Biology. 2022; 29: 1470.
https://doi.org/10.1016/j.chembiol.2022.08.003 |
32 |
2022 |
Olga Bakulina, Alexander Sapegin, Alexander S. Bunev, Mikhail Krasavin. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs), Mendeleev Communications. 2022; 32: 419.
https://doi.org/10.1016/j.mencom.2022.07.001 |
33 |
2021 |
Olga D. Jarosińska, Stefan G. D. Rüdiger. Molecular Strategies to Target Protein Aggregation in Huntington’s Disease, Frontiers in Molecular Biosciences. 2021; 8: 769184.
https://doi.org/10.3389/fmolb.2021.769184 |
34 |
2022 |
Arvind Negi, Anne Sophie Voisin‐Chiret. Strategies to Reduce the On‐Target Platelet Toxicity of Bcl‐xL Inhibitors: PROTACs, SNIPERs and Prodrug‐Based Approaches, ChemBioChem. 2022; 23: e202100689.
https://doi.org/10.1002/cbic.202100689 |
35 |
2023 |
Tin M. Tunjic, Noah Weber, Michael Brunsteiner. Computer aided drug design in the development of proteolysis targeting chimeras, Computational and Structural Biotechnology Journal. 2023; 21: 2058.
https://doi.org/10.1016/j.csbj.2023.02.042 |
36 |
2022 |
Bohan Ma, Yizeng Fan, Dize Zhang, Yi Wei, Yanlin Jian, Donghua Liu, Zixi Wang, Yang Gao, Jian Ma, Yule Chen, Shan Xu, Lei Li. De Novo Design of an Androgen Receptor DNA Binding Domain‐Targeted peptide PROTAC for Prostate Cancer Therapy, Advanced Science. 2022; 9: 2201859.
https://doi.org/10.1002/advs.202201859 |
37 |
2023 |
Yi-Qian Li, William G. Lannigan, Shabnam Davoodi, Fereidoon Daryaee, Ana Corrionero, Patricia Alfonso, Jose A. Rodriguez-Santamaria, Nan Wang, John D. Haley, Peter J. Tonge. Discovery of Novel Bruton’s Tyrosine Kinase PROTACs with Enhanced Selectivity and Cellular Efficacy, Journal of Medicinal Chemistry. 2023; 66: 7454.
https://doi.org/10.1021/acs.jmedchem.3c00176 |
38 |
2022 |
Chaoguo Cao, Ming He, Liguo Wang, Yuna He, Yu Rao. Chemistries of bifunctional PROTAC degraders, Chemical Society Reviews. 2022; 51: 7066.
https://doi.org/10.1039/D2CS00220E |
39 |
2022 |
Lakshmi R. Bollu, Prashant V. Bommi, Paige J. Monsen, Lijie Zhai, Kristen L. Lauing, April Bell, Miri Kim, Erik Ladomersky, Xinyu Yang, Leonidas C. Platanias, Daniela E. Matei, Marcelo G. Bonini, Hidayatullah G. Munshi, Rintaro Hashizume, Jennifer D. Wu, Bin Zhang, Charles David James, Peiwen Chen, Masha Kocherginsky, Craig Horbinski, Michael D. Cameron, Arabela A. Grigorescu, Bakhtiar Yamini, Rimas V. Lukas, Gary E. Schiltz, Derek A. Wainwright. Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma, Journal of Medicinal Chemistry. 2022; 65: 15642.
https://doi.org/10.1021/acs.jmedchem.2c00771 |
40 |
2021 |
Giuseppe Ermondi, Diego Garcia-Jimenez, Giulia Caron. PROTACs and Building Blocks: The 2D Chemical Space in Very Early Drug Discovery, Molecules. 2021; 26: 672.
https://doi.org/10.3390/molecules26030672 |
41 |
2022 |
Hanqiao Xu, Takashi Kurohara, Reina Takano, Hidetomo Yokoo, Norihito Shibata, Nobumichi Ohoka, Takao Inoue, Mikihiko Naito, Yosuke Demizu. Development of Rapid and Facile Solid‐Phase Synthesis of PROTACs via a Variety of Binding Styles, ChemistryOpen. 2022; 11: e202200131.
https://doi.org/10.1002/open.202200131 |
42 |
2023 |
Oluwatosin R. Ayinde, Chia Sharpe, Emily Stahl, Robert J. Tokarski, James R. Lerma, Natarajan Muthusamy, John C. Byrd, James R. Fuchs. Examination of the Impact of Triazole Position within Linkers on Solubility and Lipophilicity of a CDK9 Degrader Series, ACS Medicinal Chemistry Letters. 2023; 14: 936.
https://doi.org/10.1021/acsmedchemlett.3c00082 |
43 |
2021 |
Yingxin Lu, Danwen Sun, Donghuai Xiao, Yingying Shao, Mingbo Su, Yubo Zhou, Jia Li, Shulei Zhu, Wei Lu. Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands, Molecules. 2021; 26: 7241.
https://doi.org/10.3390/molecules26237241 |
44 |
2023 |
Martin P. Schwalm, Andreas Krämer, Anja Dölle, Janik Weckesser, Xufen Yu, Jian Jin, Krishna Saxena, Stefan Knapp. 2023;
https://doi.org/10.1101/2023.01.11.523589 |
45 |
2023 |
Xiao Cheng, Shiqi Hu, Ke Cheng. Microneedle Patch Delivery of PROTACs for Anti-Cancer Therapy, ACS Nano. 2023; 17: 11855.
https://doi.org/10.1021/acsnano.3c03166 |
46 |
2022 |
Robert S. Foti, 2022; 716.
https://doi.org/10.1016/B978-0-12-820472-6.00141-9 |
47 |
2023 |
Madeline Balzarini, Weijun Gui, Isuru M. Jayalath, Bin-Bin Schell, Joel Tong, Thomas Kodadek. 2023;
https://doi.org/10.1101/2023.07.19.549534 |
48 |
2021 |
M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. 2021; 60: 67.
https://doi.org/10.1016/bs.pmch.2021.01.002 |
49 |
2023 |
Atsunori Kaneshige, Longchuan Bai, Mi Wang, Donna McEachern, Jennifer L. Meagher, Renqi Xu, Paul D. Kirchhoff, Bo Wen, Duxin Sun, Jeanne A. Stuckey, Shaomeng Wang. Discovery of a Potent and Selective STAT5 PROTAC Degrader with Strong Antitumor Activity In Vivo in Acute Myeloid Leukemia, Journal of Medicinal Chemistry. 2023; 66: 2717.
https://doi.org/10.1021/acs.jmedchem.2c01665 |
50 |
2023 |
Nobuo Cho, Mikihiko Naito. 2023; 681: 41.
https://doi.org/10.1016/bs.mie.2022.09.001 |
51 |
2023 |
Huanghao Mai, Matthew H. Zimmer, Thomas F. Miller. Exploring PROTAC Cooperativity with Coarse-Grained Alchemical Methods, The Journal of Physical Chemistry B. 2023; 127: 446.
https://doi.org/10.1021/acs.jpcb.2c05795 |
52 |
2023 |
Chien-Ting Kao, Chieh-Te Lin, Cheng-Li Chou, Chu-Chung Lin. Fragment Linker Prediction Using the Deep Encoder-Decoder Network for PROTACs Drug Design, Journal of Chemical Information and Modeling. 2023; 63: 2918.
https://doi.org/10.1021/acs.jcim.2c01287 |
53 |
2022 |
Cheng-Liang Zhu, Xiaomin Luo, Tian Tian, Zijian Rao, Hanlin Wang, Zhesheng Zhou, Tian Mi, Danni Chen, Yongjin Xu, Yizhe Wu, Jinxin Che, Yubo Zhou, Jia Li, Xiaowu Dong. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader, European Journal of Medicinal Chemistry. 2022; 238: 114459114459.
https://doi.org/10.1016/j.ejmech.2022.114459 |
54 |
2021 |
Hannah Kiely-Collins, Georg E. Winter, Gonçalo J.L. Bernardes. The role of reversible and irreversible covalent chemistry in targeted protein degradation, Cell Chemical Biology. 2021; 28: 952.
https://doi.org/10.1016/j.chembiol.2021.03.005 |
55 |
2022 |
Ruth Nussinov, Mingzhen Zhang, Ryan Maloney, Yonglan Liu, Chung-Jung Tsai, Hyunbum Jang. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs, Journal of Molecular Biology. 2022; 434: 167569167569.
https://doi.org/10.1016/j.jmb.2022.167569 |
56 |
2023 |
Matthew N. O’Brien Laramy, Suman Luthra, Matthew F. Brown, Derek W. Bartlett. Delivering on the promise of protein degraders, Nature Reviews Drug Discovery. 2023; 22: 410.
https://doi.org/10.1038/s41573-023-00652-2 |
57 |
2021 |
José A. Villegas, Tasneem M. Vaid, Michael E. Johnson, Terry W. Moore. 2021;
https://doi.org/10.1101/2021.08.31.458424 |
58 |
2023 |
Yu Chen, Wen Li, Song Kwon, Yixin Wang, Zhaoting Li, Quanyin Hu. Small-Molecule Ferritin Degrader as a Pyroptosis Inducer, Journal of the American Chemical Society. 2023; 145: 9815.
https://doi.org/10.1021/jacs.3c01852 |
59 |
2023 |
José A. Villegas, Tasneem M. Vaid, Michael E. Johnson, Terry W. Moore. Mapping the energy landscape of PROTAC-mediated protein-protein interactions, Computational and Structural Biotechnology Journal. 2023; 21: 1885.
https://doi.org/10.1016/j.csbj.2023.02.049 |
60 |
2021 |
Gabriel LaPlante, Wei Zhang. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors, Cancers. 2021; 13: 3079.
https://doi.org/10.3390/cancers13123079 |
61 |
2023 |
Jeremy M. Kelm, Deepti S. Pandey, Evan Malin, Hussein Kansou, Sahil Arora, Raj Kumar, Navnath S. Gavande. PROTAC’ing oncoproteins: targeted protein degradation for cancer therapy, Molecular Cancer. 2023; 22: 62.
https://doi.org/10.1186/s12943-022-01707-5 |
62 |
2023 |
Ammar Usman Danazumi, Ibtida Tabassum Ishmam, Salisu Idris, Matylda Anna Izert, Emmanuel Oluwadare Balogun, Maria Wiktoria Górna. Targeted protein degradation might present a novel therapeutic approach in the fight against African trypanosomiasis, European Journal of Pharmaceutical Sciences. 2023; 186: 106451106451.
https://doi.org/10.1016/j.ejps.2023.106451 |
63 |
2022 |
Tian Niu, Kailin Li, Li Jiang, Zhesheng Zhou, Ju Hong, Xuankun Chen, Xiaowu Dong, Qiaojun He, Ji Cao, Bo Yang, Cheng-Liang Zhu. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor, European Journal of Medicinal Chemistry. 2022; 228: 114012114012.
https://doi.org/10.1016/j.ejmech.2021.114012 |
64 |
2022 |
Jasmine M. Cross, Megan E. Coulson, Joshua P. Smalley, Wiktoria A. Pytel, Ozair Ismail, Justin S. Trory, Shaun M. Cowley, James T. Hodgkinson. A ‘click’ chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras, RSC Medicinal Chemistry. 2022; 13: 1634.
https://doi.org/10.1039/D2MD00199C |
65 |
2022 |
Samantha M. Meyer, Toru Tanaka, Patrick R. A. Zanon, Jared T. Baisden, Daniel Abegg, Xueyi Yang, Yoshihiro Akahori, Zainab Alshakarchi, Michael D. Cameron, Alexander Adibekian, Matthew D. Disney. DNA-Encoded Library Screening To Inform Design of a Ribonuclease Targeting Chimera (RiboTAC), Journal of the American Chemical Society. 2022; 144: 21096.
https://doi.org/10.1021/jacs.2c07217 |
66 |
2022 |
Charles E. Hendrick, Jeff R. Jorgensen, Charu Chaudhry, Iulia I. Strambeanu, Jean-Francois Brazeau, Jamie Schiffer, Zhicai Shi, Jennifer D. Venable, Scott E. Wolkenberg. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation, ACS Medicinal Chemistry Letters. 2022; 13: 1182.
https://doi.org/10.1021/acsmedchemlett.2c00124 |
67 |
2022 |
Lisbeth R. Kjølbye, Gilberto P. Pereira, Alessio Bartocci, Martina Pannuzzo, Simone Albani, Alessandro Marchetto, Brian Jiménez-García, Juliette Martin, Giulia Rossetti, Marco Cecchini, Sangwook Wu, Luca Monticelli, Paulo C. T. Souza. Towards design of drugs and delivery systems with the Martini coarse-grained model, QRB Discovery. 2022; 3: e19.
https://doi.org/10.1017/qrd.2022.16 |
68 |
2023 |
Poornachandra Yedla, Ahmed O. Babalghith, Vindhya Vasini Andra, Riyaz Syed. PROTACs in the Management of Prostate Cancer, Molecules. 2023; 28: 3698.
https://doi.org/10.3390/molecules28093698 |
69 |
2023 |
Qian-Qian Zhou, Hai-Tao Xiao, Fan Yang, Yong-Dan Wang, Ping Li, Zu-Guo Zheng. Advancing targeted protein degradation for metabolic diseases therapy, Pharmacological Research. 2023; 188: 106627106627.
https://doi.org/10.1016/j.phrs.2022.106627 |
70 |
2023 |
Hai‐Jun Liu, Wei Chen, Gongwei Wu, Jun Zhou, Chuang Liu, Zhongmin Tang, Xiangang Huang, Jingjing Gao, Yufen Xiao, Na Kong, Nitin Joshi, Yihai Cao, Reza Abdi, Wei Tao. Glutathione‐Scavenging Nanoparticle‐Mediated PROTACs Delivery for Targeted Protein Degradation and Amplified Antitumor Effects, Advanced Science. 2023; 10: 2207439.
https://doi.org/10.1002/advs.202207439 |
71 |
2021 |
Kunal Nepali, Jing-Ping Liou. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends, Journal of Biomedical Science. 2021; 28: 27.
https://doi.org/10.1186/s12929-021-00721-x |
72 |
2022 |
Xingui Liu, Alexia F. Kalogeropulou, Sofia Domingos, Nikolai Makukhin, Raja S. Nirujogi, Francois Singh, Natalia Shpiro, Anton Saalfrank, Esther Sammler, Ian G. Ganley, Rui Moreira, Dario R. Alessi, Alessio Ciulli. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2, Journal of the American Chemical Society. 2022; 144: 16930.
https://doi.org/10.1021/jacs.2c05499 |
73 |
2023 |
Song Chen, Zhendong Chen, Lixue Lu, Yunpeng Zhao, Ronghui Zhou, Qiong Xie, Yongzhi Shu, Jun Lin, Xufen Yu, Yonghui Wang. Discovery of novel BTK PROTACs with improved metabolic stability via linker rigidification strategy, European Journal of Medicinal Chemistry. 2023; 255: 115403115403.
https://doi.org/10.1016/j.ejmech.2023.115403 |
74 |
2023 |
Yang Zhou, Shujing Xu, Nerea López-Carrobles, Dang Ding, Xinyong Liu, Luis Menéndez-Arias, Peng Zhan. Recent advances in the molecular design and applications of proteolysis targeting chimera-based multi-specific antiviral modality, Acta Materia Medica. 2023; 2:
https://doi.org/10.15212/AMM-2023-0019 |
75 |
2023 |
Satoshi Yamanaka, Hirotake Furihata, Yuta Yanagihara, Akihito Taya, Takato Nagasaka, Mai Usui, Koya Nagaoka, Yuki Shoya, Kohei Nishino, Shuhei Yoshida, Hidetaka Kosako, Masaru Tanokura, Takuya Miyakawa, Yuuki Imai, Norio Shibata, Tatsuya Sawasaki. Lenalidomide derivatives and proteolysis-targeting chimeras for controlling neosubstrate degradation, Nature Communications. 2023; 14: 4683.
https://doi.org/10.1038/s41467-023-40385-9 |
76 |
2023 |
Chelsi M. Almodóvar‐Rivera, Zhen Zhang, Jingyao Li, Haibo Xie, Yu Zhao, Le Guo, Marissa G. Mannhardt, Weiping Tang. A Modular Chemistry Platform for the Development of a Cereblon E3 Ligase‐Based Partial PROTAC Library, ChemBioChem. 2023; e202300482.
https://doi.org/10.1002/cbic.202300482 |
77 |
2023 |
Toshihiko Tashima, Proteolysis-Targeting Chimera (PROTAC) Delivery into the Brain across the Blood-Brain Barrier, Antibodies. 2023; 12: 43.
https://doi.org/10.3390/antib12030043 |
78 |
2023 |
Rajni Bala, Rakesh Kumar Sindhu, Reecha Madaan, Shantanu Kumar Yadav. PROTAC: A Novel Drug Delivery Technology for Targeting Proteins in
Cancer Cells, Current Drug Discovery Technologies. 2023; 20: e311022210504.
https://doi.org/10.2174/1570163820666221031124612 |
79 |
2021 |
Chiara Tarantelli, Eleonora Cannas, Hillarie Ekeh, Carmelo Moscatello, Eugenio Gaudio, Luciano Cascione, Sara Napoli, Cesare Rech, Andrea Testa, Chiara Maniaci, Andrea Rinaldi, Emanuele Zucca, Anastasios Stathis, Alessio Ciulli, Francesco Bertoni. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type, Exploration of Targeted Anti-tumor Therapy. 2021; 2: 586.
https://doi.org/10.37349/etat.2021.00065 |
80 |
2023 |
Daniel H. O’ Donovan, Claudia De Fusco, Lara Kuhnke, Andreas Reichel. Trends in Molecular Properties, Bioavailability, and Permeability across the Bayer Compound Collection, Journal of Medicinal Chemistry. 2023; 66: 2347.
https://doi.org/10.1021/acs.jmedchem.2c01577 |
81 |
2023 |
Mayuri P Kannan, Sarojini Sreeraman, Chaitanya S Somala, Raja BS Kushwah, Saravanan K Mani, Vickram Sundaram, Anand Thirunavukarasou. Advancement of targeted protein degradation strategies as therapeutics for undruggable disease targets, Future Medicinal Chemistry. 2023; 15: 867.
https://doi.org/10.4155/fmc-2023-0072 |
82 |
2021 |
Ying Wang, Isabella Haight, Rishi Gupta, Anil Vasudevan. What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries, Journal of Medicinal Chemistry. 2021; 64: 17115.
https://doi.org/10.1021/acs.jmedchem.1c01139 |
83 |
2023 |
Chuang Li, Peng Zhang, Gaojie Chang, Mingyue Pan, Fengke Lu, Jiahao Huang, Yanzhi Wang, Qingyan Zhao, Bingxia Sun, Yuting Cui, Feng Sang. Proteolysis Targeting Chimeras (PROTACs) Based on Imatinib Induced Degradation of BCR‐ABL in K562 Cells, ChemistrySelect. 2023; 8: e202300095.
https://doi.org/10.1002/slct.202300095 |
84 |
2023 |
Keisuke Hamada, Ten Hashimoto, Rinoka Iwashita, Yuji Yamada, Yamato Kikkawa, Motoyoshi Nomizu. Development of a bispecific DNA-aptamer-based lysosome-targeting chimera for HER2 protein degradation, Cell Reports Physical Science. 2023; 4: 101296101296.
https://doi.org/10.1016/j.xcrp.2023.101296 |
85 |
2023 |
Deep Rohan Chatterjee, Saumya Kapoor, Meenakshi Jain, Rudradip Das, Moumita Ghosh Chowdhury, Amit Shard. PROTACting the kinome with covalent warheads, Drug Discovery Today. 2023; 28: 103417103417.
https://doi.org/10.1016/j.drudis.2022.103417 |
86 |
2023 |
Ki Bum Hong, Hongchan An. Degrader–Antibody Conjugates: Emerging New Modality, Journal of Medicinal Chemistry. 2023; 66: 140.
https://doi.org/10.1021/acs.jmedchem.2c01791 |
87 |
2023 |
Hanqiao Xu, Takashi Kurohara, Nobumichi Ohoka, Genichiro Tsuji, Takao Inoue, Mikihiko Naito, Yosuke Demizu. Development of versatile solid-phase methods for syntheses of PROTACs with diverse E3 ligands, Bioorganic & Medicinal Chemistry. 2023; 86: 117293117293.
https://doi.org/10.1016/j.bmc.2023.117293 |
88 |
2023 |
Martin P. Schwalm, Andreas Krämer, Anja Dölle, Janik Weckesser, Xufen Yu, Jian Jin, Krishna Saxena, Stefan Knapp. Tracking the PROTAC degradation pathway in living cells highlights the importance of ternary complex measurement for PROTAC optimization, Cell Chemical Biology. 2023; 30: 753.
https://doi.org/10.1016/j.chembiol.2023.06.002 |
89 |
2023 |
Ryan P. Wurz, Huan Rui, Ken Dellamaggiore, Sudipa Ghimire-Rijal, Kaylee Choi, Kate Smither, Albert Amegadzie, Ning Chen, Xiaofen Li, Abhisek Banerjee, Qing Chen, Dane Mohl, Amit Vaish. Affinity and cooperativity modulate ternary complex formation to drive targeted protein degradation, Nature Communications. 2023; 14: 4177.
https://doi.org/10.1038/s41467-023-39904-5 |
90 |
2022 |
Alberto Juan, María del Mar Noblejas-López, María Arenas-Moreira, Carlos Alonso-Moreno, Alberto Ocaña. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles, Frontiers in Cell and Developmental Biology. 2022; 9: 805336.
https://doi.org/10.3389/fcell.2021.805336 |
91 |
2022 |
Fabian Fischer, Leandro A Alves Avelar, Laoise Murray, Thomas Kurz. Designing HDAC-PROTACs: lessons learned so far, Future Medicinal Chemistry. 2022; 14: 143.
https://doi.org/10.4155/fmc-2021-0206 |
92 |
2023 |
Francesco Di Palma, Carlo Abate, Sergio Decherchi, Andrea Cavalli. Ligandability and druggability assessment via machine learning, WIREs Computational Molecular Science. 2023; 13: e1676.
https://doi.org/10.1002/wcms.1676 |
93 |
2023 |
Yuen Lam Dora Ng, Aleša Bricelj, Jacqueline A. Jansen, Arunima Murgai, Kirsten Peter, Katherine A. Donovan, Michael Gütschow, Jan Krönke, Christian Steinebach, Izidor Sosič. Heterobifunctional Ligase Recruiters Enable pan-Degradation of Inhibitor of Apoptosis Proteins, Journal of Medicinal Chemistry. 2023; 66: 4703.
https://doi.org/10.1021/acs.jmedchem.2c01817 |
94 |
2022 |
Yiqing Zhang, Xiaoxia Liu, Daniel J Klionsky, Boxun Lu, Qing Zhong. Manipulating autophagic degradation in human diseases: from mechanisms to interventions, Life Medicine. 2022; 1: 120.
https://doi.org/10.1093/lifemedi/lnac043 |
95 |
2023 |
Melissa Guardigni, Letizia Pruccoli, Alan Santini, Angela De Simone, Matteo Bersani, Francesca Spyrakis, Flavia Frabetti, Elisa Uliassi, Vincenza Andrisano, Barbara Pagliarani, Paula Fernández-Gómez, Valle Palomo, Maria Laura Bolognesi, Andrea Tarozzi, Andrea Milelli. PROTAC-Induced Glycogen Synthase Kinase 3β Degradation as a Potential Therapeutic Strategy for Alzheimer’s Disease, ACS Chemical Neuroscience. 2023; 14: 1963.
https://doi.org/10.1021/acschemneuro.3c00096 |
96 |
2023 |
Liwen Hua, Danni Wang, Keran Wang, Yuxuan Wang, Jinying Gu, Qiuyue Zhang, Qidong You, Lei Wang. Design of Tracers in Fluorescence Polarization Assay for Extensive Application in Small Molecule Drug Discovery, Journal of Medicinal Chemistry. 2023; 66: 10934.
https://doi.org/10.1021/acs.jmedchem.3c00881 |
97 |
2023 |
Chunlan Pu, Shirui Wang, Lei Liu, Zhonghui Feng, Hongjia Zhang, Qianyuan Gong, Yueshan Sun, Yuanbiao Guo, Rui Li. Current strategies for improving limitations of proteolysis targeting chimeras, Chinese Chemical Letters. 2023; 34: 107927107927.
https://doi.org/10.1016/j.cclet.2022.107927 |
98 |
2022 |
Marine C. Aublette, Tom A. Harrison, Elizabeth J. Thorpe, Morgan S. Gadd. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases, Bioorganic & Medicinal Chemistry Letters. 2022; 64: 128636128636.
https://doi.org/10.1016/j.bmcl.2022.128636 |
99 |
2023 |
Nikol A. Zografou-Barredo, Alex J. Hallatt, Jennyfer Goujon-Ricci, Céline Cano. A beginner’s guide to current synthetic linker strategies towards VHL-recruiting PROTACs, Bioorganic & Medicinal Chemistry. 2023; 88-89: 117334117334.
https://doi.org/10.1016/j.bmc.2023.117334 |