1 |
2023 |
Ester Colarusso, Sara Ceccacci, Maria Chiara Monti, Erica Gazzillo, Assunta Giordano, Maria Giovanna Chini, Maria Grazia Ferraro, Marialuisa Piccolo, Dafne Ruggiero, Carlo Irace, Stefania Terracciano, Ines Bruno, Giuseppe Bifulco, Gianluigi Lauro. Identification of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based small molecules as selective BRD9 binders, European Journal of Medicinal Chemistry. 2023; 247: 115018115018.
https://doi.org/10.1016/j.ejmech.2022.115018 |
2 |
2022 |
Federica Pedrucci, Claudia Pappalardo, Giovanni Marzaro, Nicola Ferri, Alberto Ferlin, Luca De Toni. Proteolysis Targeting Chimeric Molecules: Tuning Molecular Strategies for a Clinically Sound Listening, International Journal of Molecular Sciences. 2022; 23: 6630.
https://doi.org/10.3390/ijms23126630 |
3 |
2022 |
Markus Fleck, Michael Müller, Noah Weber, Christopher Trummer. Decoupled coordinates for machine learning-based molecular fragment linking, Machine Learning: Science and Technology. 2022; 3: 015029.
https://doi.org/10.1088/2632-2153/ac50fc |
4 |
2022 |
Diego García Jiménez, Matteo Rossi Sebastiano, Maura Vallaro, Valentina Mileo, Daniela Pizzirani, Elisa Moretti, Giuseppe Ermondi, Giulia Caron. Designing Soluble PROTACs: Strategies and Preliminary Guidelines, Journal of Medicinal Chemistry. 2022; 65: 12639.
https://doi.org/10.1021/acs.jmedchem.2c00201 |
5 |
2022 |
Cheng-Liang Zhu, Xiaomin Luo, Tian Tian, Zijian Rao, Hanlin Wang, Zhesheng Zhou, Tian Mi, Danni Chen, Yongjin Xu, Yizhe Wu, Jinxin Che, Yubo Zhou, Jia Li, Xiaowu Dong. Structure-based rational design enables efficient discovery of a new selective and potent AKT PROTAC degrader, European Journal of Medicinal Chemistry. 2022; 238: 114459114459.
https://doi.org/10.1016/j.ejmech.2022.114459 |
6 |
2022 |
Jenny Desantis, Andrea Mammoli, Michela Eleuteri, Alice Coletti, Federico Croci, Antonio Macchiarulo, Laura Goracci. PROTACs bearing piperazine-containing linkers: what effect on their protonation state?, RSC Advances. 2022; 12: 21968.
https://doi.org/10.1039/D2RA03761K |
7 |
2022 |
Jiacheng Li, Ting Liu, Yuanli Song, Mingyu Wang, Liping Liu, Hongwen Zhu, Qi Li, Jin Lin, Hualiang Jiang, Kaixian Chen, Kehao Zhao, Mingliang Wang, Hu Zhou, Hua Lin, Cheng Luo. Discovery of Small-Molecule Degraders of the CDK9-Cyclin T1 Complex for Targeting Transcriptional Addiction in Prostate Cancer, Journal of Medicinal Chemistry. 2022; 65: 11034.
https://doi.org/10.1021/acs.jmedchem.2c00257 |
8 |
2021 |
Hannah Kiely-Collins, Georg E. Winter, Gonçalo J.L. Bernardes. The role of reversible and irreversible covalent chemistry in targeted protein degradation, Cell Chemical Biology. 2021; 28: 952.
https://doi.org/10.1016/j.chembiol.2021.03.005 |
9 |
2022 |
Ruth Nussinov, Mingzhen Zhang, Ryan Maloney, Yonglan Liu, Chung-Jung Tsai, Hyunbum Jang. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs, Journal of Molecular Biology. 2022; 434: 167569167569.
https://doi.org/10.1016/j.jmb.2022.167569 |
10 |
2021 |
José A. Villegas, Tasneem M. Vaid, Michael E. Johnson, Terry W. Moore. 2021;
https://doi.org/10.1101/2021.08.31.458424 |
11 |
2022 |
Jiadai Zhai, Chuang Li, Bingxia Sun, Sinan Wang, Yuting Cui, Qingzhi Gao, Feng Sang. Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines, Bioorganic & Medicinal Chemistry Letters. 2022; 78: 129041129041.
https://doi.org/10.1016/j.bmcl.2022.129041 |
12 |
2021 |
Martin Reynders, Dirk Trauner. Optical control of targeted protein degradation, Cell Chemical Biology. 2021; 28: 969.
https://doi.org/10.1016/j.chembiol.2021.05.010 |
13 |
2022 |
Irene Preet Bhela, Alice Ranza, Federica Carolina Balestrero, Marta Serafini, Silvio Aprile, Rita Maria Concetta Di Martino, Fabrizio Condorelli, Tracey Pirali. A Versatile and Sustainable Multicomponent Platform for the Synthesis of Protein Degraders: Proof-of-Concept Application to BRD4-Degrading PROTACs, Journal of Medicinal Chemistry. 2022; 65: 15282.
https://doi.org/10.1021/acs.jmedchem.2c01218 |
14 |
2022 |
Vasanthanathan Poongavanam, Yoseph Atilaw, Stephan Siegel, Anja Giese, Lutz Lehmann, Daniel Meibom, Mate Erdelyi, Jan Kihlberg. Linker-Dependent Folding Rationalizes PROTAC Cell Permeability, Journal of Medicinal Chemistry. 2022; 65: 13029.
https://doi.org/10.1021/acs.jmedchem.2c00877 |
15 |
2021 |
Gabriel LaPlante, Wei Zhang. Targeting the Ubiquitin-Proteasome System for Cancer Therapeutics by Small-Molecule Inhibitors, Cancers. 2021; 13: 3079.
https://doi.org/10.3390/cancers13123079 |
16 |
2023 |
Giulia Apprato, Giulia D’Agostini, Paolo Rossetti, Giuseppe Ermondi, Giulia Caron. In Silico Tools to Extract the Drug Design Information Content of Degradation Data: The Case of PROTACs Targeting the Androgen Receptor, Molecules. 2023; 28: 1206.
https://doi.org/10.3390/molecules28031206 |
17 |
2022 |
Izidor Sosič, Aleša Bricelj, Christian Steinebach. E3 ligase ligand chemistries: from building blocks to protein degraders, Chemical Society Reviews. 2022; 51: 3487.
https://doi.org/10.1039/D2CS00148A |
18 |
2022 |
Tian Niu, Kailin Li, Li Jiang, Zhesheng Zhou, Ju Hong, Xuankun Chen, Xiaowu Dong, Qiaojun He, Ji Cao, Bo Yang, Cheng-Liang Zhu. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor, European Journal of Medicinal Chemistry. 2022; 228: 114012114012.
https://doi.org/10.1016/j.ejmech.2021.114012 |
19 |
2022 |
Jasmine M. Cross, Megan E. Coulson, Joshua P. Smalley, Wiktoria A. Pytel, Ozair Ismail, Justin S. Trory, Shaun M. Cowley, James T. Hodgkinson. A ‘click’ chemistry approach to novel entinostat (MS-275) based class I histone deacetylase proteolysis targeting chimeras, RSC Medicinal Chemistry. 2022; 13: 1634.
https://doi.org/10.1039/D2MD00199C |
20 |
2022 |
O. A. Koroleva, Yu. V. Dutikova, A. V. Trubnikov, F. A. Zenov, E. V. Manasova, A. A. Shtil, A. V. Kurkin. PROTAC: targeted drug strategy. Principles and limitations, Russian Chemical Bulletin. 2022; 71: 2310.
https://doi.org/10.1007/s11172-022-3659-z |
21 |
2022 |
Samantha M. Meyer, Toru Tanaka, Patrick R. A. Zanon, Jared T. Baisden, Daniel Abegg, Xueyi Yang, Yoshihiro Akahori, Zainab Alshakarchi, Michael D. Cameron, Alexander Adibekian, Matthew D. Disney. DNA-Encoded Library Screening To Inform Design of a Ribonuclease Targeting Chimera (RiboTAC), Journal of the American Chemical Society. 2022; 144: 21096.
https://doi.org/10.1021/jacs.2c07217 |
22 |
2022 |
Tatsuya Sawasaki, Satoshi Yamanaka, Hirotake Furihata, Yuuki Imai, Yuta Yanagihara, Koya Nagaoka, Yuki Shoya, Shuhei Yoshida, Norio Shibata, Akihito Taya, Takato Nagasaka, Mai Usui, Hidetaka Kosako, Kohei Nishino, Takuya Miyakawa, Masaru Tanokura. 2022;
https://doi.org/10.21203/rs.3.rs-2173987/v1 |
23 |
2022 |
Charles E. Hendrick, Jeff R. Jorgensen, Charu Chaudhry, Iulia I. Strambeanu, Jean-Francois Brazeau, Jamie Schiffer, Zhicai Shi, Jennifer D. Venable, Scott E. Wolkenberg. Direct-to-Biology Accelerates PROTAC Synthesis and the Evaluation of Linker Effects on Permeability and Degradation, ACS Medicinal Chemistry Letters. 2022; 13: 1182.
https://doi.org/10.1021/acsmedchemlett.2c00124 |
24 |
2022 |
Lisbeth R. Kjølbye, Gilberto P. Pereira, Alessio Bartocci, Martina Pannuzzo, Simone Albani, Alessandro Marchetto, Brian Jiménez-García, Juliette Martin, Giulia Rossetti, Marco Cecchini, Sangwook Wu, Luca Monticelli, Paulo C. T. Souza. Towards design of drugs and delivery systems with the Martini coarse-grained model, QRB Discovery. 2022; 3: e19.
https://doi.org/10.1017/qrd.2022.16 |
25 |
2023 |
Qian-Qian Zhou, Hai-Tao Xiao, Fan Yang, Yong-Dan Wang, Ping Li, Zu-Guo Zheng. Advancing targeted protein degradation for metabolic diseases therapy, Pharmacological Research. 2023; 188: 106627106627.
https://doi.org/10.1016/j.phrs.2022.106627 |
26 |
2021 |
Aleša Bricelj, Yuen Lam Dora Ng, Dominic Ferber, Robert Kuchta, Sina Müller, Marius Monschke, Karl G. Wagner, Jan Krönke, Izidor Sosič, Michael Gütschow, Christian Steinebach. Influence of Linker Attachment Points on the Stability and Neosubstrate Degradation of Cereblon Ligands, ACS Medicinal Chemistry Letters. 2021; 12: 1733.
https://doi.org/10.1021/acsmedchemlett.1c00368 |
27 |
2021 |
Kunal Nepali, Jing-Ping Liou. Recent developments in epigenetic cancer therapeutics: clinical advancement and emerging trends, Journal of Biomedical Science. 2021; 28: 27.
https://doi.org/10.1186/s12929-021-00721-x |
28 |
2022 |
Xingui Liu, Alexia F. Kalogeropulou, Sofia Domingos, Nikolai Makukhin, Raja S. Nirujogi, Francois Singh, Natalia Shpiro, Anton Saalfrank, Esther Sammler, Ian G. Ganley, Rui Moreira, Dario R. Alessi, Alessio Ciulli. Discovery of XL01126: A Potent, Fast, Cooperative, Selective, Orally Bioavailable, and Blood–Brain Barrier Penetrant PROTAC Degrader of Leucine-Rich Repeat Kinase 2, Journal of the American Chemical Society. 2022; 144: 16930.
https://doi.org/10.1021/jacs.2c05499 |
29 |
2022 |
Zi Liu, Mingxing Hu, Yu Yang, Chenghao Du, Haoxuan Zhou, Chengyali Liu, Yuanwei Chen, Lei Fan, Hongqun Ma, Youling Gong, Yongmei Xie. An overview of PROTACs: a promising drug discovery paradigm, Molecular Biomedicine. 2022; 3: 46.
https://doi.org/10.1186/s43556-022-00112-0 |
30 |
2021 |
Fanwang Meng, Zhongjie Liang, Kehao Zhao, Cheng Luo. Drug design targeting active posttranslational modification protein isoforms, Medicinal Research Reviews. 2021; 41: 1701.
https://doi.org/10.1002/med.21774 |
31 |
2022 |
Zubair Anwar, Muhammad Shahzad Ali, Antonio Galvano, Alessandro Perez, Maria La Mantia, Ihtisham Bukhari, Bartlomiej Swiatczak. PROTACs: The Future of Leukemia Therapeutics, Frontiers in Cell and Developmental Biology. 2022; 10: 851087.
https://doi.org/10.3389/fcell.2022.851087 |
32 |
2022 |
Jyotsana Madan, Vijay Kamal Ahuja, Kamal Dua, Susanta Samajdar, Murali Ramchandra, Sanjeev Giri. PROTACs: Current Trends in Protein Degradation by Proteolysis-Targeting Chimeras, BioDrugs. 2022; 36: 609.
https://doi.org/10.1007/s40259-022-00551-9 |
33 |
2022 |
Miklós Békés, David R. Langley, Craig M. Crews. PROTAC targeted protein degraders: the past is prologue, Nature Reviews Drug Discovery. 2022; 21: 181.
https://doi.org/10.1038/s41573-021-00371-6 |
34 |
2022 |
Guangyan Du, Jie Jiang, Nathaniel J. Henning, Nozhat Safaee, Eriko Koide, Radosław P. Nowak, Katherine A. Donovan, Hojong Yoon, Inchul You, Hong Yue, Nicholas A. Eleuteri, Zhixiang He, Zhengnian Li, Hubert T. Huang, Jianwei Che, Behnam Nabet, Tinghu Zhang, Eric S. Fischer, Nathanael S. Gray. Exploring the target scope of KEAP1 E3 ligase-based PROTACs, Cell Chemical Biology. 2022; 29: 1470.
https://doi.org/10.1016/j.chembiol.2022.08.003 |
35 |
2021 |
Chiara Tarantelli, Eleonora Cannas, Hillarie Ekeh, Carmelo Moscatello, Eugenio Gaudio, Luciano Cascione, Sara Napoli, Cesare Rech, Andrea Testa, Chiara Maniaci, Andrea Rinaldi, Emanuele Zucca, Anastasios Stathis, Alessio Ciulli, Francesco Bertoni. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type, Exploration of Targeted Anti-tumor Therapy. 2021; 2: 586.
https://doi.org/10.37349/etat.2021.00065 |
36 |
2022 |
Olga Bakulina, Alexander Sapegin, Alexander S. Bunev, Mikhail Krasavin. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs), Mendeleev Communications. 2022; 32: 419.
https://doi.org/10.1016/j.mencom.2022.07.001 |
37 |
2021 |
Olga D. Jarosińska, Stefan G. D. Rüdiger. Molecular Strategies to Target Protein Aggregation in Huntington’s Disease, Frontiers in Molecular Biosciences. 2021; 8: 769184.
https://doi.org/10.3389/fmolb.2021.769184 |
38 |
2021 |
Ying Wang, Isabella Haight, Rishi Gupta, Anil Vasudevan. What is in Our Kit? An Analysis of Building Blocks Used in Medicinal Chemistry Parallel Libraries, Journal of Medicinal Chemistry. 2021; 64: 17115.
https://doi.org/10.1021/acs.jmedchem.1c01139 |
39 |
2022 |
Arvind Negi, Anne Sophie Voisin‐Chiret.
Strategies to Reduce the On‐Target Platelet Toxicity of Bcl‐x
L
Inhibitors: PROTACs, SNIPERs and Prodrug‐Based Approaches
, ChemBioChem. 2022; 23:
https://doi.org/10.1002/cbic.202100689 |
40 |
2022 |
Bohan Ma, Yizeng Fan, Dize Zhang, Yi Wei, Yanlin Jian, Donghua Liu, Zixi Wang, Yang Gao, Jian Ma, Yule Chen, Shan Xu, Lei Li. De Novo Design of an Androgen Receptor DNA Binding Domain‐Targeted peptide PROTAC for Prostate Cancer Therapy, Advanced Science. 2022; 9: 2201859.
https://doi.org/10.1002/advs.202201859 |
41 |
2023 |
Deep Rohan Chatterjee, Saumya Kapoor, Meenakshi Jain, Rudradip Das, Moumita Ghosh Chowdhury, Amit Shard. PROTACting the kinome with covalent warheads, Drug Discovery Today. 2023; 28: 103417103417.
https://doi.org/10.1016/j.drudis.2022.103417 |
42 |
2023 |
Ki Bum Hong, Hongchan An. Degrader–Antibody Conjugates: Emerging New Modality, Journal of Medicinal Chemistry. 2023; 66: 140.
https://doi.org/10.1021/acs.jmedchem.2c01791 |
43 |
2022 |
Alberto Juan, María del Mar Noblejas-López, María Arenas-Moreira, Carlos Alonso-Moreno, Alberto Ocaña. Options to Improve the Action of PROTACs in Cancer: Development of Controlled Delivery Nanoparticles, Frontiers in Cell and Developmental Biology. 2022; 9: 805336.
https://doi.org/10.3389/fcell.2021.805336 |
44 |
2022 |
Fabian Fischer, Leandro A Alves Avelar, Laoise Murray, Thomas Kurz. Designing HDAC-PROTACs: lessons learned so far, Future Medicinal Chemistry. 2022; 14: 143.
https://doi.org/10.4155/fmc-2021-0206 |
45 |
2022 |
Chaoguo Cao, Ming He, Liguo Wang, Yuna He, Yu Rao. Chemistries of bifunctional PROTAC degraders, Chemical Society Reviews. 2022; 51: 7066.
https://doi.org/10.1039/D2CS00220E |
46 |
2022 |
Lakshmi R. Bollu, Prashant V. Bommi, Paige J. Monsen, Lijie Zhai, Kristen L. Lauing, April Bell, Miri Kim, Erik Ladomersky, Xinyu Yang, Leonidas C. Platanias, Daniela E. Matei, Marcelo G. Bonini, Hidayatullah G. Munshi, Rintaro Hashizume, Jennifer D. Wu, Bin Zhang, Charles David James, Peiwen Chen, Masha Kocherginsky, Craig Horbinski, Michael D. Cameron, Arabela A. Grigorescu, Bakhtiar Yamini, Rimas V. Lukas, Gary E. Schiltz, Derek A. Wainwright. Identification and Characterization of a Novel Indoleamine 2,3-Dioxygenase 1 Protein Degrader for Glioblastoma, Journal of Medicinal Chemistry. 2022; 65: 15642.
https://doi.org/10.1021/acs.jmedchem.2c00771 |
47 |
2021 |
Giuseppe Ermondi, Diego Garcia-Jimenez, Giulia Caron. PROTACs and Building Blocks: The 2D Chemical Space in Very Early Drug Discovery, Molecules. 2021; 26: 672.
https://doi.org/10.3390/molecules26030672 |
48 |
2022 |
Hanqiao Xu, Takashi Kurohara, Reina Takano, Hidetomo Yokoo, Norihito Shibata, Nobumichi Ohoka, Takao Inoue, Mikihiko Naito, Yosuke Demizu. Development of Rapid and Facile Solid‐Phase Synthesis of PROTACs via a Variety of Binding Styles, ChemistryOpen. 2022; 11:
https://doi.org/10.1002/open.202200131 |
49 |
2022 |
Yiqing Zhang, Xiaoxia Liu, Daniel J Klionsky, Boxun Lu, Qing Zhong. Manipulating autophagic degradation in human diseases: from mechanisms to interventions, Life Medicine. 2022; 1: 120.
https://doi.org/10.1093/lifemedi/lnac043 |
50 |
2021 |
Yingxin Lu, Danwen Sun, Donghuai Xiao, Yingying Shao, Mingbo Su, Yubo Zhou, Jia Li, Shulei Zhu, Wei Lu. Design, Synthesis, and Biological Evaluation of HDAC Degraders with CRBN E3 Ligase Ligands, Molecules. 2021; 26: 7241.
https://doi.org/10.3390/molecules26237241 |
51 |
2022 |
Chunlan Pu, Shirui Wang, Lei Liu, Zhonghui Feng, Hongjia Zhang, Qianyuan Gong, Yueshan Sun, Yuanbiao Guo, Rui Li. Current strategies for improving limitations of proteolysis targeting chimeras, Chinese Chemical Letters. 2022; 107927107927.
https://doi.org/10.1016/j.cclet.2022.107927 |
52 |
2022 |
Marine C. Aublette, Tom A. Harrison, Elizabeth J. Thorpe, Morgan S. Gadd. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases, Bioorganic & Medicinal Chemistry Letters. 2022; 64: 128636128636.
https://doi.org/10.1016/j.bmcl.2022.128636 |
53 |
2023 |
Martin P. Schwalm, Andreas Krämer, Anja Dölle, Janik Weckesser, Xufen Yu, Jian Jin, Krishna Saxena, Stefan Knapp. 2023;
https://doi.org/10.1101/2023.01.11.523589 |
54 |
2022 |
Robert S. Foti, 2022; 716.
https://doi.org/10.1016/B978-0-12-820472-6.00141-9 |
55 |
2021 |
M. Maneiro, E. De Vita, D. Conole, C.S. Kounde, Q. Zhang, E.W. Tate. 2021; 60: 67.
https://doi.org/10.1016/bs.pmch.2021.01.002 |
56 |
2022 |
Nobuo Cho, Mikihiko Naito. 2022;
https://doi.org/10.1016/bs.mie.2022.09.001 |
57 |
2023 |
Huanghao Mai, Matthew H. Zimmer, Thomas F. Miller. Exploring PROTAC Cooperativity with Coarse-Grained Alchemical Methods, The Journal of Physical Chemistry B. 2023; 127: 446.
https://doi.org/10.1021/acs.jpcb.2c05795 |