Photography-based diagnostic models

Author, yearTask; classes (n)Feature extractors/Features extractedClassifierAccuracySpecificity (TNR)Sensitivity (recall)Precision (PPV)AUCF1-score or Jaccard index
Camalan et al. [1], 2021Classification; suspicious (54) and normal (54) ROIs in photographic images-Inception ResNet-v286.5%-----
-ResNet-10179.3%-----
Figueroa et al. [2], 2022Classification; suspicious (i.e., OSCC and OPMD) (~ 2,800) and normal (~ 2,800) photographic images-GAIN network84.84% 89.3%76.6%---
Flügge et al. [3], 2023Classification; OSCC (703) and normal (703) photographic images-Swin-transformer DL network0.980.980.98--0.98
Jubair et al. [4], 2022Classification; suspicious [i.e., OSCC and OPMD (236)] and benign (480) photographic images-EfficientNetB085%84.5%--0.92-
Jurczyszyn et al. [5], 2020Classification; OSCC (35) and normal (35) photographic images (1 normal and one of leukoplakia in the same patient)MaZda software/Textural features, as run length matrix (two), co-occurrence matrix (two), Haar Wavelet transformation (two)Probabilistic neural network-97%100%---
Lim et al. [6], 2021Classification; no referral (493), refer—cancer/high-risk (636), refer—low-risk (685), and refer—other reasons (641)-ResNet-101--61.70%61.96%-61.68%
Shamim et al. [7], 2019Classification; benign and precancerous (200) photographic images-VGG1998%97%89%---
AlexNet93%94%88%---
GoogLeNet93%88%80%---
ResNet5090%96%84%---
Inceptionv393%88%83%---
SqueezeNet93%96%85%---
Classification; types of tongue lesions (300) photographic images-VGG1997%-----
AlexNet83%-----
GoogLeNet88%-----
ResNet5097%-----
Inceptionv392%-----
SqueezeNet90%-----
Sharma et al. [8], 2022Classification; OSCC (121), OPMD (102) and normal (106) photographic images-VGG1976%-OSCC: 0.43OSCC: 0.76OSCC: 0.92OSCC: 0.45
-Normal: 1Normal: 0.9Normal: 0.99Normal: 0.95
-OPMD: 0.78OPMD: 0.7OPMD: 0.88OPMD: 0.74
VGG1672%---OSCC: 0.94-
---Normal: 0.96-
---OPMD: 0.92-
MobileNet72%---OSCC: 0.88-
---Normal: 0.99-
---OPMD: 0.80-
InceptionV368%---OSCC: 0.88-
---Normal: 0.1-
---OPMD: 0.88-
ResNet5036%---OSCC: 0.43-
---Normal: 0.33-
---OPMD: 0.42-
Song et al. [9], 2021Classification; malignant (911), premalignant (1,100), benign (243) and normal (2,417) polarized white light photographic images-VGG1980%-79%83%-81%
Song et al. [10], 2023Classification; suspicious (1,062), normal (978) photographic images-SE-ABN87.7%88.6%86.8%87.5%--
SE-ABN + manually edited attention maps90.3%90.8%89.8%89.9%--
Tanriver et al. [11], 2021Segmentation, object detection and classification; carcinoma (162), OPMD (248) and benign (274) photographic images-EfficientNet-b4--85.5%86.9%-85.8%
Inception-v4--85.5%87.7%-85.8%
DenseNet-161--84.1%87.9%-84.4%
ResNet-152--81.2%82.6%-81.1%
Ensemble--84.1%84.9%-84.3%
Thomas et al. [12], 2013Classification; 192 sections of photographic images from 16 patientsGLCM, GLRL and intensity based first order features (eleven selected features)Backpropagation based ANN97.92%-----
Warin et al. [13], 2021Object detection and classification; OPMD (350) and normal (350) photographic images-DenseNet-121-100%98.75%99%0.9999%
Warin et al. [14], 2022Object detection and classification; OPMD (315) and OSCC (365) photographic images-DenseNet-169-OSCC: 99%OSCC: 99%OSCC: 98%OSCC: 1OSCC: 98%
-OPMD: 97%OPMD: 95%OPMD: 95%OPMD: 0.98OPMD: 95%
ResNet-101-OSCC: 94%OSCC: 92%OSCC: 96%OSCC: 0.99OSCC: 94%
-OPMD: 94%OPMD: 97%OPMD: 97%OPMD: 0.97OPMD: 97%
Warin et al. [15], 2022Object detection and classification; OPMD (300) and normal (300) photographic images-DenseNet-121-90%100%91%0.9595%
ResNet-50-91.67%98.39%92%0.9595%
Welikala et al. [16], 2020Object detection and classification; referral (1,054) and non-referral (379) photographic images-ResNet-101--93.88%67.15%-78.30%
Xue et al. [17], 2022Classification; ruler (440) and non-ruler (2,377) photographic images; first batch (2,817 images/250 patients), second batch (4,331 images/168 patients)-ResNetSt99.6%99.6%100%97.9%99.6%98.9%
Vit99.8%99.8%100%0.9899.8%99.5%

ANN: artificial neural network; DL: deep learning; GAIN: guided attention inference; GLCM: gray-level co-occurrence matrix; GLRL: grey level run-length matrix; OPMD: oral potentially malignant disorders; OSCC: oral squamous cell carcinoma; PPV: positive predictive value; ROI: region of interest; TNR: true negative rate; AUC: area under the curv