Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues.Transplantation. 1968;6:230–47. [PubMed]
Johnstone B, Hering TM, Caplan AI, Goldberg VM, Yoo JU. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells.Exp Cell Res. 1998;238:265–72. [DOI] [PubMed]
Caplan AI. Mesenchymal Stem Cells: Time to Change the Name!Stem Cells Transl Med. 2017;6:1445–51. [DOI] [PubMed] [PMC]
Grafe I, Alexander S, Peterson JR, Snider TN, Levi B, Lee B, et al. TGF-β Family Signaling in Mesenchymal Differentiation.Cold Spring Harb Perspect Biol. 2018;10:a022202. [DOI] [PubMed] [PMC]
Song P, Han T, Xiang X, Wang Y, Fang H, Niu Y, et al. The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats.Stem Cell Res Ther. 2020;11:178. [DOI]
Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al. Mesenchymal stem cell-derived extracellular vesicles for immunomodulation and regeneration: a next generation therapeutic tool?Cell Death Dis. 2022;13:580. [DOI] [PubMed] [PMC]
Lin R, Ding Z, Ma H, Shi H, Gao Y, Qian W, et al. In Vitro Conditioned Bone Marrow-Derived Mesenchymal Stem Cells Promote De Novo Functional Enteric Nerve Regeneration, but Not Through Direct-Transdifferentiation.Stem Cells. 2015;33:3545–57. [DOI] [PubMed] [PMC]
Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo.Nanomedicine (Lond). 2012;7:1425–42. [DOI] [PubMed] [PMC]
Silva LH, Cruz FF, Morales MM, Weiss DJ, Rocco PR. Magnetic targeting as a strategy to enhance therapeutic effects of mesenchymal stromal cells.Stem Cell Res Ther. 2017;8:58. [DOI] [PubMed] [PMC]
Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion.Stem Cells. 2004;22:675–82. [DOI] [PubMed]
Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro.BMC Cell Biol. 2006;7:14. [DOI] [PubMed] [PMC]
Berebichez-Fridman R, Gómez-García R, Granados-Montiel J, Berebichez-Fastlicht E, Olivos-Meza A, Granados J, et al. The Holy Grail of Orthopedic Surgery: Mesenchymal Stem Cells-Their Current Uses and Potential Applications.Stem Cells Int. 2017;2017:2638305. [DOI] [PubMed] [PMC]
Jaibaji M, Jaibaji R, Volpin A. Mesenchymal Stem Cells in the Treatment of Cartilage Defects of the Knee: A Systematic Review of the Clinical Outcomes.Am J Sports Med. 2021;49:3716–27. [DOI] [PubMed]
Fernández-Pernas P, Barrachina L, Marquina M, Rodellar C, Arufe MC, Costa C. Mesenchymal stromal cells for articular cartilage repair: preclinical studies.Eur Cell Mater. 2020;40:88–114. [DOI] [PubMed]
Nguyen TH, Duong CM, Nguyen XH, Than UTT. Mesenchymal Stem Cell-Derived Extracellular Vesicles for Osteoarthritis Treatment: Extracellular Matrix Protection, Chondrocyte and Osteocyte Physiology, Pain and Inflammation Management.Cells. 2021;10:2887. [DOI] [PubMed] [PMC]
Zhou T, Yuan Z, Weng J, Pei D, Du X, He C, et al. Challenges and advances in clinical applications of mesenchymal stromal cells.J Hematol Oncol. 2021;14:24. [DOI] [PubMed] [PMC]
Granjeiro JM, Borchio PGM, Ribeiro IPB, Paiva KBS. Bioengineering breakthroughs: The impact of stem cell models on advanced therapy medicinal product development.World J Stem Cells. 2024;16:860–72. [DOI] [PubMed] [PMC]
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells.Science. 1999;284:143–7. [DOI] [PubMed]
Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue.Stem Cells. 2006;24:1294–301. [DOI] [PubMed]
Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, et al. Mesenchymal stem cells: Mechanisms of immunomodulation and homing.Cell Transplant. 2010;19:667–79. [DOI] [PubMed] [PMC]
Xiong Z, Hu Y, Jiang M, Liu B, Jin W, Chen H, et al. Hypoxic bone marrow mesenchymal stem cell exosomes promote angiogenesis and enhance endometrial injury repair through the miR-424-5p-mediated DLL4/Notch signaling pathway.PeerJ. 2024;12:e16953. [DOI] [PubMed] [PMC]
Shimomura O, Johnson FH, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea.J Cell Comp Physiol. 1962;59:223–39. [DOI] [PubMed]
Han X, Yang N, Cui Y, Xu Y, Dang G, Song C. Simvastatin mobilizes bone marrow stromal cells migrating to injured areas and promotes functional recovery after spinal cord injury in the rat.Neurosci Lett. 2012;521:136–41. [DOI] [PubMed]
Yin H, Wang Y, Sun Z, Sun X, Xu Y, Li P, et al. Induction of mesenchymal stem cell chondrogenic differentiation and functional cartilage microtissue formation for in vivo cartilage regeneration by cartilage extracellular matrix-derived particles.Acta Biomater. 2016;33:96–109. [DOI] [PubMed]
Li D, Cheng P, Jiang H, Cao T, Wang J, Gao Y, et al. Vascularization converts the lineage fate of bone mesenchymal stem cells to endothelial cells in tissue-engineered bone grafts by modulating FGF2-RhoA/ROCK signaling.Cell Death Dis. 2018;9:959. [DOI] [PubMed] [PMC]
Safi E, Ficklscherer A, Bondarava M, Betz O, Zhang A, Jansson V, et al. Migration of Mesenchymal Stem Cells of Bursal Tissue after Rotator Cuff Repair in Rats.Joints. 2018;6:4–9. [DOI] [PubMed] [PMC]
Yi XM, Chen Y, Tu GJ. Neuregulin-1 impacting bone marrow mesenchymal stem cell migration is conducive to functional recovery following spinal cord injury.Mol Med Rep. 2019;20:41–8. [DOI] [PubMed] [PMC]
He Q, Wan C, Li X, Lee G, Gardiner T, Li G. Peripheral blood derived mesenchymal stem cells in the GFP rats.Orthop Procs. 2006;88:405.
Rooney GE, Moran C, McMahon SS, Ritter T, Maenz M, Flügel A, et al. Gene-modified mesenchymal stem cells express functionally active nerve growth factor on an engineered poly lactic glycolic acid (PLGA) substrate.Tissue Eng Part A. 2008;14:681–90.
Zhang J, Qi H, Wang H, Hu P, Ou L, Guo S, et al. Engineering of vascular grafts with genetically modified bone marrow mesenchymal stem cells on poly (propylene carbonate) graft.Artif Organs. 2006;30:898–905. [DOI]
Hakamata Y, Tahara K, Uchida H, Sakuma Y, Nakamura M, Kume A, et al. Green fluorescent protein-transgenic rat: a tool for organ transplantation research.Biochem Biophys Res Commun. 2001;286:779–85. [DOI]
Natsu K, Ochi M, Mochizuki Y, Hachisuka H, Yanada S, Yasunaga Y. Allogeneic Bone Marrow-Derived Mesenchymal Stromal Cells Promote the Regeneration of Injured Skeletal Muscle without Differentiation into Myofibers.Tissue Eng. 2004;10:1093–112. [DOI]
Yamasaki T, Deie M, Shinomiya R, Izuta Y, Yasunaga Y, Yanada S, et al. Meniscal regeneration using tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.J Biomed Mater Res A. 2005;75:23–30. [DOI] [PubMed]
Yamasaki T, Deie M, Shinomiya R, Yasunaga Y, Yanada S, Ochi M. Transplantation of meniscus regenerated by tissue engineering with a scaffold derived from a rat meniscus and mesenchymal stromal cells derived from rat bone marrow.Artif Organs. 2008;32:519–24. [DOI] [PubMed]
Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T, et al. Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration.Knee Surg Sports Traumatol Arthrosc. 2006;14:1307–14. [DOI] [PubMed]
Kanaya A, Deie M, Adachi N, Nishimori M, Yanada S, Ochi M. Intra-articular injection of mesenchymal stromal cells in partially torn anterior cruciate ligaments in a rat model.Arthroscopy. 2007;23:610–7. [DOI] [PubMed]
Kubo T, Sugita T, Shimose S, Nitta Y, Ikuta Y, Murakami T. Targeted systemic chemotherapy using magnetic liposomes with incorporated adriamycin for osteosarcoma in hamsters.Int J Oncol. 2001;18:121–5. [DOI] [PubMed]
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation.N Engl J Med. 1994;331:889–95. [DOI] [PubMed]
Gille J, Behrens P, Schulz AP, Oheim R, Kienast B. Matrix-Associated Autologous Chondrocyte Implantation: A Clinical Follow-Up at 15 Years.Cartilage. 2016;7:309–15. [DOI] [PubMed] [PMC]
Shimomura K, Yasui Y, Koizumi K, Chijimatsu R, Hart DA, Yonetani Y, et al. First-in-Human Pilot Study of Implantation of a Scaffold-Free Tissue-Engineered Construct Generated From Autologous Synovial Mesenchymal Stem Cells for Repair of Knee Chondral Lesions.Am J Sports Med. 2018;46:2384–93. [DOI] [PubMed]
Ochi M, Uchio Y, Kawasaki K, Wakitani S, Iwasa J. Transplantation of cartilage-like tissue made by tissue engineering in the treatment of cartilage defects of the knee.J Bone Joint Surg Br. 2002;84:571–8. [DOI] [PubMed]
Marcacci M, Berruto M, Brocchetta D, Delcogliano A, Ghinelli D, Gobbi A, et al. Articular cartilage engineering with Hyalograft C: 3-year clinical results.Clin Orthop Relat Res. 2005:96–105. [DOI] [PubMed]
Ochi M, Adachi N, Nobuto H, Yanada S, Ito Y, Agung M. Articular cartilage repair using tissue engineering technique--novel approach with minimally invasive procedure.Artif Organs. 2004;28:28–32. [DOI] [PubMed]
Yanada S, Ochi M, Adachi N, Nobuto H, Agung M, Kawamata S. Effects of CD44 antibody-- or RGDS peptide--immobilized magnetic beads on cell proliferation and chondrogenesis of mesenchymal stem cells.J Biomed Mater Res A. 2006;77:773–84. [DOI] [PubMed]
Sugioka T, Ochi M, Yasunaga Y, Adachi N, Yanada S. Accumulation of magnetically labeled rat mesenchymal stem cells using an external magnetic force, and their potential for bone regeneration.J Biomed Mater Res A. 2008;85:597–604. [DOI] [PubMed]
Motoyama M, Deie M, Kanaya A, Nishimori M, Miyamoto A, Yanada S, et al. In vitro cartilage formation using TGF-beta-immobilized magnetic beads and mesenchymal stem cell-magnetic bead complexes under magnetic field conditions.J Biomed Mater Res A. 2010;92:196–204. [DOI] [PubMed]
Hamasaki T, Tanaka N, Ishida O, Yanada S, Kamei N, Fujiwara Y, et al. Characterization of labeled neural progenitor cells for magnetic targeting.Neuroreport. 2005;16:1641–5. [PubMed]
Hamasaki T, Tanaka N, Kamei N, Ishida O, Yanada S, Nakanishi K, et al. Magnetically labeled neural progenitor cells, which are localized by magnetic force, promote axon growth in organotypic cocultures.Spine (Phila Pa 1976). 2007;32:2300–5. [DOI] [PubMed]
Nishida K, Tanaka N, Nakanishi K, Kamei N, Hamasaki T, Yanada S, et al. Magnetic targeting of bone marrow stromal cells into spinal cord: through cerebrospinal fluid.Neuroreport. 2006;17:1269–72. [DOI] [PubMed]
Nakashima Y, Deie M, Yanada S, Sharman P, Ochi M. Magnetically labeled human natural killer cells, accumulated in vitro by an external magnetic force, are effective against HOS osteosarcoma cells.Int J Oncol. 2005;27:965–71. [PubMed]
Jasmin, Torres AL, Nunes HM, Passipieri JA, Jelicks LA, Gasparetto EL, et al. Optimized labeling of bone marrow mesenchymal cells with superparamagnetic iron oxide nanoparticles and in vivo visualization by magnetic resonance imaging.J Nanobiotechnology. 2011;9:4. [DOI] [PubMed] [PMC]
Lu S, Liu Z, Qi M, Zhen H, Luo J, Wang Y, et al. MRI monitoring of USPIO-labeled BMSCs combined with alginate scaffold for cartilage defect repair.Front Bioeng Biotechnol. 2025;13:1554292. [DOI] [PubMed] [PMC]
Chen J, Wang F, Zhang Y, Jin X, Zhang L, Feng Y, et al. In Vivo MRI Tracking of Polyethylenimine-Wrapped Superparamagnetic Iron Oxide Nanoparticle-Labeled BMSCs for Cartilage Repair: A Minipig Model.Cartilage. 2013;4:75–82. [DOI] [PubMed] [PMC]
Oshima S, Kamei N, Nakasa T, Yasunaga Y, Ochi M. Enhancement of muscle repair using human mesenchymal stem cells with a magnetic targeting system in a subchronic muscle injury model.J Orthop Sci. 2014;19:478–88. [DOI] [PubMed]
Zhang C, Jin JL, Zhou CH, Ruan CX, Lei PF, Cai YZ. Magnetic Seeding of SPIO-BMSCs Into a Biphasic Scaffold Can Promote Tendon-Bone Healing After Rotator Cuff Repair.Am J Sports Med. 2024;52:1707–18. [DOI] [PubMed]
Zhang RP, Xu C, Liu Y, Li JD, Xie J. Visual bone marrow mesenchymal stem cell transplantation in the repair of spinal cord injury.Neural Regen Res. 2015;10:404–11. [DOI] [PubMed] [PMC]
Cao AH, Shi HJ, Zhang Y, Teng GJ. In vivo tracking of dual-labeled mesenchymal stem cells homing into the injured common carotid artery.Anat Rec (Hoboken). 2009;292:1677–83. [DOI] [PubMed]
Chen Z, Yan C, Yan S, Liu Q, Hou M, Xu Y, et al. Non-invasive monitoring of in vivo hydrogel degradation and cartilage regeneration by multiparametric MR imaging.Theranostics. 2018;8:1146–58. [DOI] [PubMed] [PMC]
Wakitani S, Goto T, Pineda SJ, Young RG, Mansour JM, Caplan AI, et al. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage.J Bone Joint Surg Am. 1994;76:579–92. [DOI] [PubMed]
Henning TD, Wendland MF, Golovko D, Sutton EJ, Sennino B, Malek F, et al. Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells.Magn Reson Med. 2009;62:325–32. [DOI] [PubMed] [PMC]
Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, et al. A novel cell delivery system using magnetically labeled mesenchymal stem cells and an external magnetic device for clinical cartilage repair.Arthroscopy. 2008;24:69–76. [DOI] [PubMed]
Kobayashi T, Ochi M, Yanada S, Ishikawa M, Adachi N, Deie M, et al. Augmentation of degenerated human cartilage in vitro using magnetically labeled mesenchymal stem cells and an external magnetic device.Arthroscopy. 2009;25:1435–41. [DOI] [PubMed]
Negi H, Takeuchi S, Kamei N, Yanada S, Adachi N, Ochi M. In Vitro Safety and Quality of Magnetically Labeled Human Mesenchymal Stem Cells Preparation for Cartilage Repair.Tissue Eng Part C Methods. 2019;25:324–33. [DOI] [PubMed]
Kamei N, Ochi M, Adachi N, Ishikawa M, Yanada S, Levin LS, et al. The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair.Knee Surg Sports Traumatol Arthrosc. 2018;26:3626–35. [DOI] [PubMed]
Yanada S, Ochi M, Kojima K, Sharman P, Yasunaga Y, Hiyama E. Possibility of selection of chondrogenic progenitor cells by telomere length in FGF-2-expanded mesenchymal stromal cells.Cell Prolif. 2006;39:575–84. [DOI] [PubMed] [PMC]
Shiraishi K, Kamei N, Takeuchi S, Yanada S, Mera H, Wakitani S, et al. Quality Evaluation of Human Bone Marrow Mesenchymal Stem Cells for Cartilage Repair.Stem Cells Int. 2017;2017:8740294. [DOI] [PubMed] [PMC]
Fiévet L, Espagnolle N, Gerovska D, Bernard D, Syrykh C, Laurent C, et al. Single-cell RNA sequencing of human non-hematopoietic bone marrow cells reveals a unique set of inter-species conserved biomarkers for native mesenchymal stromal cells.Stem Cell Res Ther. 2023;14:229. [DOI] [PubMed] [PMC]
Uchio Y, Kuroda R, Niki Y, Sugawara K, Ishibashi Y. Effectiveness and Safety of Matrix-Associated Autologous Chondrocyte Implantation for the Treatment of Articular Cartilage Defects: A Real-World Data Analysis in Japan.Am J Sports Med. 2024;52:3232–43. [DOI] [PubMed]