The author declares that there are no conflicts of interest.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
RDAA was financially supported through “Investigadoras e Investigadores COMECYT 2024” program CAT2024-0077. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Yucel N, Blau H. Skeletal Muscle stem cells. In: Atala A, Lanza R, Mikos AG, Nerem R, editors. Principles of Regenerative Medicine. 3rd ed. Cham: Elsevier; 2019. pp. 273–93. [DOI]
Zurlo F, Larson K, Bogardus C, Ravussin E. Skeletal muscle metabolism is a major determinant of resting energy expenditure.J Clin Invest. 1990;86:1423–7. [DOI] [PubMed] [PMC]
Schmidt M, Schüler SC, Hüttner SS, von Eyss B, von Maltzahn J. Adult stem cells at work: regenerating skeletal muscle.Cell Mol Life Sci. 2019;76:2559–70. [DOI] [PubMed] [PMC]
León A, Melo M, Ramirez V. Role of the myokines production through the exercise.J Sport Health Res. 2012;4:157–66.
Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro.Development. 2017;144:2104–22. [DOI] [PubMed]
van Velthoven CTJ, Rando TA. Stem Cell Quiescence: Dynamism, Restraint, and Cellular Idling.Cell Stem Cell. 2019;24:213–25. [DOI] [PubMed] [PMC]
Cheung TH, Quach NL, Charville GW, Liu L, Park L, Edalati A, et al. Maintenance of muscle stem-cell quiescence by microRNA-489.Nature. 2012;482:524–8. [DOI] [PubMed] [PMC]
Crist CG, Montarras D, Buckingham M. Muscle satellite cells are primed for myogenesis but maintain quiescence with sequestration of Myf5 mRNA targeted by microRNA-31 in mRNP granules.Cell Stem Cell. 2012;11:118–26. [DOI] [PubMed]
Seale P, Sabourin LA, Girgis-Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells.Cell. 2000;102:777–86. [DOI] [PubMed]
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function.Development. 2015;142:1572–81. [DOI] [PubMed] [PMC]
Wittkopp PJ, Kalay G. Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence.Nat Rev Genet. 2011;13:59–69. [DOI] [PubMed]
Butanda Ochoa A, Guevara Flores A, Guevara Fonseca J, Matuz Mares D, Lara Lemus R, Torres Durán PV. Modificaciones en la cromatina y la herencia epigenética.Mensaje Bioquímico. 2014;XLI:253–88.
Pombo A, Dillon N. Three-dimensional genome architecture: players and mechanisms.Nat Rev Mol Cell Biol. 2015;16:245–57. [DOI] [PubMed]
Eddy SR. Non-coding RNA genes and the modern RNA world.Nat Rev Genet. 2001;2:919–29. [DOI] [PubMed]
Stefani G, Slack FJ. Small non-coding RNAs in animal development.Nat Rev Mol Cell Biol. 2008;9:219–30. [DOI] [PubMed]
Sweetman D, Goljanek K, Rathjen T, Oustanina S, Braun T, Dalmay T, et al. Specific requirements of MRFs for the expression of muscle specific microRNAs, miR-1, miR-206 and miR-133.Dev Biol. 2008;321:491–9. [DOI] [PubMed]
Gonçalves TJM, Armand A. Non-coding RNAs in skeletal muscle regeneration.Noncoding RNA Res. 2017;2:56–67. [DOI] [PubMed] [PMC]
Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals.Nature. 2009;458:223–7. [DOI] [PubMed] [PMC]
Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B, Regev A, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses.Genes Dev. 2011;25:1915–27. [DOI] [PubMed] [PMC]
Lee JT. Epigenetic regulation by long noncoding RNAs.Science. 2012;338:1435–9. [DOI] [PubMed]
Neguembor MV, Jothi M, Gabellini D. Long noncoding RNAs, emerging players in muscle differentiation and disease.Skelet Muscle. 2014;4:8. [DOI] [PubMed] [PMC]
Han P, Chang C. Long non-coding RNA and chromatin remodeling.RNA Biol. 2015;12:1094–8. [DOI] [PubMed] [PMC]
Quinodoz S, Guttman M. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization.Trends Cell Biol. 2014;24:651–63. [DOI] [PubMed] [PMC]
Rodríguez-Campos A, Azorín F. RNA is an integral component of chromatin that contributes to its structural organization.PLoS One. 2007;2:e1182. [DOI] [PubMed] [PMC]
Smith ZD, Meissner A. DNA methylation: roles in mammalian development.Nat Rev Genet. 2013;14:204–20. [DOI] [PubMed]
Meng H, Cao Y, Qin J, Song X, Zhang Q, Shi Y, et al. DNA methylation, its mediators and genome integrity.Int J Biol Sci. 2015;11:604–17. [DOI] [PubMed] [PMC]
Palacios D, Summerbell D, Rigby PWJ, Boyes J. Interplay between DNA methylation and transcription factor availability: implications for developmental activation of the mouse Myogenin gene.Mol Cell Biol. 2010;30:3805–15. [DOI] [PubMed] [PMC]
Tsumagari K, Baribault C, Terragni J, Chandra S, Renshaw C, Sun Z, et al. DNA methylation and differentiation: HOX genes in muscle cells.Epigenetics Chromatin. 2013;6:25. [DOI] [PubMed] [PMC]
Margot JB, Ehrenhofer-Murray AE, Leonhardt H. Interactions within the mammalian DNA methyltransferase family.BMC Mol Biol. 2003;4:7. [DOI] [PubMed] [PMC]
Lyko F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation.Nat Rev Genet. 2018;19:81–92. [DOI] [PubMed]
Wang L, Zhao Y, Bao X, Zhu X, Kwok YK, Sun K, et al. LncRNA Dum interacts with Dnmts to regulate Dppa2 expression during myogenic differentiation and muscle regeneration.Cell Res. 2015;25:335–50. [DOI] [PubMed] [PMC]
Lothrop AP, Torres MP, Fuchs SM. Deciphering post-translational modification codes.FEBS Lett. 2013;587:1247–57. [DOI] [PubMed] [PMC]
Thompson LL, Guppy BJ, Sawchuk L, Davie JR, McManus KJ. Regulation of chromatin structure via histone post-translational modification and the link to carcinogenesis.Cancer Metastasis Rev. 2013;32:363–76. [DOI] [PubMed]
Wang S, Zuo H, Jin J, Lv W, Xu Z, Fan Y, et al. Long noncoding RNA Neat1 modulates myogenesis by recruiting Ezh2.Cell Death Dis. 2019;10:505. [DOI] [PubMed] [PMC]
Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation.Nature. 2006;439:871–4. [DOI] [PubMed]
Shen X, Liu Y, Hsu Y, Fujiwara Y, Kim J, Mao X, et al. EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency.Mol Cell. 2008;32:491–502. [DOI] [PubMed] [PMC]
West JA, Davis CP, Sunwoo H, Simon MD, Sadreyev RI, Wang PI, et al. The long noncoding RNAs NEAT1 and MALAT1 bind active chromatin sites.Mol Cell. 2014;55:791–802. [DOI] [PubMed] [PMC]
Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer.J Mol Med (Berl). 2013;91:791–801. [DOI] [PubMed]
Chen X, He L, Zhao Y, Li Y, Zhang S, Sun K, et al. Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity.Cell Discov. 2017;3:17002. [DOI] [PubMed] [PMC]
Jin JJ, Lv W, Xia P, Xu ZY, Zheng AD, Wang XJ, et al. Long noncoding RNA SYISL regulates myogenesis by interacting with polycomb repressive complex 2.Proc Natl Acad Sci U S A. 2018;115:E9802–11. [DOI] [PubMed] [PMC]
Hitachi K, Nakatani M, Takasaki A, Ouchi Y, Uezumi A, Ageta H, et al. Myogenin promoter-associated lncRNA Myoparr is essential for myogenic differentiation.EMBO Rep. 2019;20:e47468. [DOI] [PubMed] [PMC]
Hitachi K, Tsuchida K. Data describing the effects of depletion of Myoparr, myogenin, Ddx17, and hnRNPK in differentiating C2C12 cells.Data Brief. 2019;25:104172. [DOI] [PubMed] [PMC]
Zhou L, Sun K, Zhao Y, Zhang S, Wang X, Li Y, et al. Linc-YY1 promotes myogenic differentiation and muscle regeneration through an interaction with the transcription factor YY1.Nat Commun. 2015;6:10026. [DOI] [PubMed]
Sun K, Zhou L, Zhao Y, Wang H, Sun H. Genome-wide RNA-seq and ChIP-seq reveal Linc-YY1 function in regulating YY1/PRC2 activity during skeletal myogenesis.Genom Data. 2016;7:247–9. [DOI] [PubMed] [PMC]
Chujo T, Yamazaki T, Hirose T. Architectural RNAs (arcRNAs): A class of long noncoding RNAs that function as the scaffold of nuclear bodies.Biochim Biophys Acta. 2016;1859:139–46. [DOI] [PubMed]
Yu X, Zhang Y, Li T, Ma Z, Jia H, Chen Q, et al. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD.Nat Commun. 2017;8:14016. [DOI] [PubMed] [PMC]
Hagan M, Zhou M, Ashraf M, Kim I, Su H, Weintraub NL, et al. Long noncoding RNAs and their roles in skeletal muscle fate determination.Noncoding RNA Investig. 2017;1:24. [DOI] [PubMed] [PMC]
Caretti G, Schiltz RL, Dilworth FJ, Padova MD, Zhao P, Ogryzko V, et al. The RNA helicases p68/p72 and the noncoding RNA SRA are coregulators of MyoD and skeletal muscle differentiation.Dev Cell. 2006;11:547–60. [DOI] [PubMed]
Hubé F, Velasco G, Rollin J, Furling D, Francastel C. Steroid receptor RNA activator protein binds to and counteracts SRA RNA-mediated activation of MyoD and muscle differentiation.Nucleic Acids Res. 2011;39:513–25. [DOI] [PubMed] [PMC]
Sui Y, Han Y, Zhao X, Li D, Li G. Long non-coding RNA Irm enhances myogenic differentiation by interacting with MEF2D.Cell Death Dis. 2019;10:181. [DOI] [PubMed] [PMC]
Militello G, Hosen MR, Ponomareva Y, Gellert P, Weirick T, John D, et al. A novel long non-coding RNA Myolinc regulates myogenesis through TDP-43 and Filip1.J Mol Cell Biol. 2018;10:102–17. [DOI] [PubMed] [PMC]
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control.Nat Rev Genet. 2012;13:613–26. [DOI] [PubMed]
Spicuglia S, Vanhille L. Chromatin signatures of active enhancers.Nucleus. 2012;3:126–31. [DOI] [PubMed] [PMC]
Calo E, Wysocka J. Modification of Enhancer Chromatin: What, How, and Why?Mol Cell. 2013;49:825–37. [DOI] [PubMed] [PMC]
Cheng J, Pan DZ, Tsai ZT, Tsai H. Genome-wide analysis of enhancer RNA in gene regulation across 12 mouse tissues.Sci Rep. 2015;5:12648. [DOI] [PubMed] [PMC]
Mousavi K, Zare H, Koulnis M, Sartorelli V. The emerging roles of eRNAs in transcriptional regulatory networks.RNA Biol. 2014;11:106–10. [DOI] [PubMed] [PMC]
Scionti I, Hayashi S, Mouradian S, Girard E, Esteves de Lima J, Morel V, et al. LSD1 Controls Timely MyoD Expression via MyoD Core Enhancer Transcription.Cell Rep. 2017;18:1996–2006. [DOI] [PubMed]
Tsai P, Dell’Orso S, Rodriguez J, Vivanco KO, Ko K, Jiang K, et al. A Muscle-Specific Enhancer RNA Mediates Cohesin Recruitment and Regulates Transcription In trans.Mol Cell. 2018;71:129–41.e8. [DOI] [PubMed] [PMC]