No potential conflict of interest was reported by the authors.
Ethical approval
Not applicable.
Consent to participate
Not applicable.
Consent to publication
Not applicable.
Availability of data and materials
Not applicable.
Funding
This work was supported by the grant from the Natural Science Foundation of Shandong Province, China (No. [ZR2023MC085]). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Alhomaid A, Chauhan S, Katamreddy Y, Sidhu A, Sunkara P, Desai R. Prevalence and association of MASLD in metabolically healthy young Asian Americans with obesity: A nationwide inpatient perspective (2019).Obes Pillars. 2025;13:100168. [DOI] [PubMed] [PMC]
Zheng C, Wang L, Zou T, Lian S, Luo J, Lu Y, et al. Ileitis promotes MASLD progression via bile acid modulation and enhanced TGR5 signaling in ileal CD8+ T cells.J Hepatol. 2024;80:764–77. [DOI] [PubMed]
Babuta M, Morel C, Ribeiro MdC, Calenda C, Ortega-Ribera M, Nagesh PT, et al. Neutrophil extracellular traps activate hepatic stellate cells and monocytes via NLRP3 sensing in alcohol-induced acceleration of MASH fibrosis.Gut. 2024;73:1854–69. [DOI] [PubMed] [PMC]
Zhao M, Wang L, Wang M, Zhou S, Lu Y, Cui H, et al. Targeting fibrosis, mechanisms and cilinical trials.Signal Transduct Target Ther. 2022;7:206. [DOI] [PubMed] [PMC]
Fu S, Chen D, Zhang Z, Shen R. Predictive Value of Spectral Computed Tomography Parameters in Esophageal Variceal Rupture and Bleeding in Cirrhosis.Turk J Gastroenterol. 2023;34:339–45. [DOI] [PubMed] [PMC]
Canillas L, Pelegrina A, León FW, Salis A, Colominas-González E, Caro A, et al. Clinical Ascites and Emergency Procedure as Determinants of Surgical Risk in Patients with Advanced Chronic Liver Disease.J Clin Med. 2025;14:1077. [DOI] [PubMed] [PMC]
Semeya AA, Elgamal R, Othman AAA. Correlation of Serum Zinc Levels with Hepatic Encephalopathy Severity in Patients with Decompensated Liver Cirrhosis: A Prospective Observational Study from Egypt.Biol Trace Elem Res. 2025. [DOI] [PubMed]
Satthawiwat N, Jinato T, Sutheeworapong S, Tanpowpong N, Chuaypen N, Tangkijvanich P. Distinct Gut Microbial Signature and Host Genetic Variants in Association with Liver Fibrosis Severity in Patients with MASLD.Nutrients. 2024;16:1800. [DOI] [PubMed] [PMC]
Mocciaro G, George A, Allison M, Azzu V, Kay V, Vacca M, et al. Oxidised serum peptidome characterises metabolic dysfunction-associated steatotic liver disease.Atherosclerosis. 2024;395:117863. [DOI]
Bilson J, Hydes TJ, McDonnell D, Buchanan RM, Scorletti E, Mantovani A, et al. Impact of Metabolic Syndrome Traits on Kidney Disease Risk in Individuals with MASLD: A UK Biobank Study.Liver Int. 2025;45:e16159. [DOI] [PubMed] [PMC]
Ağagündüz D, Icer MA, Yesildemir O, Koçak T, Kocyigit E, Capasso R. The roles of dietary lipids and lipidomics in gut-brain axis in type 2 diabetes mellitus.J Transl Med. 2023;21:240. [DOI] [PubMed] [PMC]
Arredouani A. GLP-1 receptor agonists, are we witnessing the emergence of a paradigm shift for neuro-cardio-metabolic disorders?Pharmacol Ther. 2025;269:108824. [DOI] [PubMed]
Cho MS, Kim SY, Suk KT, Kim B. Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics.J Microbiol. 2018;56:855–67. [DOI] [PubMed]
Zhang R, Yan Z, Zhong H, Luo R, Liu W, Xiong S, et al. Gut microbial metabolites in MASLD: Implications of mitochondrial dysfunction in the pathogenesis and treatment.Hepatol Commun. 2024;8:e0484. [DOI] [PubMed] [PMC]
Long Q, Luo F, Li B, Li Z, Guo Z, Chen Z, et al. Gut microbiota and metabolic biomarkers in metabolic dysfunction-associated steatotic liver disease.Hepatol Commun. 2024;8:e0310. [DOI] [PubMed] [PMC]
Caro CD, Spagnuolo R, Quirino A, Mazza E, Carrabetta F, Maurotti S, et al. Gut Microbiota Profile Changes in Patients with Inflammatory Bowel Disease and Non-Alcoholic Fatty Liver Disease: A Metagenomic Study.Int J Mol Sci. 2024;25:5453. [DOI] [PubMed] [PMC]
Zazueta A, Valenzuela-Pérez L, Ortiz-López N, Pinto-León A, Torres V, Guiñez D, et al. Alteration of Gut Microbiota Composition in the Progression of Liver Damage in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD).Int J Mol Sci. 2024;25:4387. [DOI] [PubMed] [PMC]
Facchin S, Bertin L, Bonazzi E, Lorenzon G, Barba CD, Barberio B, et al. Short-Chain Fatty Acids and Human Health: From Metabolic Pathways to Current Therapeutic Implications.Life (Basel). 2024;14:559. [DOI] [PubMed] [PMC]
Saeed H, Díaz LA, Gil-Gómez A, Burton J, Bajaj JS, Romero-Gomez M, et al. Microbiome-centered therapies for the management of metabolic dysfunction-associated steatotic liver disease.Clin Mol Hepatol. 2025;31:S94–111. [DOI] [PubMed] [PMC]
Min BH, Devi S, Kwon GH, Gupta H, Jeong J, Sharma SP, et al. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation.Gut Microbes. 2024;16:2307568. [DOI] [PubMed] [PMC]
Li Y, Yang P, Ye J, Xu Q, Wu J, Wang Y. Updated mechanisms of MASLD pathogenesis.Lipids Health Dis. 2024;23:117. [DOI] [PubMed] [PMC]
Li F, Ye J, Shao C, Zhong B. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis.Lipids Health Dis. 2021;20:22. [DOI] [PubMed] [PMC]
Effenberger M, Grander C, Hausmann B, Enrich B, Pjevac P, Zoller H, et al. Apelin and the gut microbiome: Potential interaction in human MASLD.Dig Liver Dis. 2024;56:932–40. [DOI] [PubMed]
Carpino G, Ben MD, Pastori D, Carnevale R, Baratta F, Overi D, et al. Increased Liver Localization of Lipopolysaccharides in Human and Experimental NAFLD.Hepatology. 2020;72:470–85. [DOI] [PubMed]
Elshaghabee FMF, Bockelmann W, Meske D, de Vrese M, Walte H, Schrezenmeir J, et al. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions.Front Microbiol. 2016;7:47. [DOI] [PubMed] [PMC]
Zhu L, Baker SS, Gill C, Liu W, Alkhouri R, Baker RD, et al. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: a connection between endogenous alcohol and NASH.Hepatology. 2013;57:601–9. [DOI] [PubMed]
Shen B, Gu T, Shen Z, Zhou C, Guo Y, Wang J, et al. Escherichia coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease Via Its Flagellin.Cell Mol Gastroenterol Hepatol. 2023;16:857–79. [DOI] [PubMed] [PMC]
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, et al. Liver diseases: epidemiology, causes, trends and predictions.Signal Transduct Target Ther. 2025;10:33. [DOI] [PubMed] [PMC]
Iannone V, Vaittinen M, Gómez-Gallego C, Mikkonen S, Lok J, D’Auria G, et al. The effect of aldafermin expressing-Escherichia coli Nissle 1917 along with dietary change on visceral adipose tissue in MASLD mouse model.Int J Obes (Lond). 2025. [DOI] [PubMed]
Nooij S, Plomp N, Sanders IMJG, Schout L, van der Meulen AE, Terveer EM, et al. Metagenomic global survey and in-depth genomic analyses of Ruminococcus gnavus reveal differences across host lifestyle and health status.Nat Commun. 2025;16:1182. [DOI] [PubMed] [PMC]
Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon.ISME J. 2012;6:1535–43. [DOI] [PubMed] [PMC]
Grinberg IR, Yin G, Borovok I, Miller MEB, Yeoman CJ, Dassa B, et al. Functional phylotyping approach for assessing intraspecific diversity of Ruminococcus albus within the rumen microbiome.FEMS Microbiol Lett. 2015;362:1–10. [DOI] [PubMed]
Cani PD, Bibiloni R, Knauf C, Waget A, Neyrinck AM, Delzenne NM, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice.Diabetes. 2008;57:1470–81. [DOI] [PubMed]
Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease.Sci Rep. 2015;5:8096. [DOI] [PubMed] [PMC]
Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes.Science. 2018;359:1151–6. [DOI] [PubMed]
Meadows V, Antonio JM, Ferraris RP, Gao N. Ruminococcus gnavus in the gut: driver, contributor, or innocent bystander in steatotic liver disease?FEBS J. 2025;292:1252–64. [DOI] [PubMed] [PMC]
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, et al. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota.Hepatology. 2016;63:764–75. [DOI] [PubMed] [PMC]
Yuan H, Wu X, Wang X, Zhou J, Park S. Microbial Dysbiosis Linked to Metabolic Dysfunction-Associated Fatty Liver Disease in Asians: Prevotella copri Promotes Lipopolysaccharide Biosynthesis and Network Instability in the Prevotella Enterotype.Int J Mol Sci. 2024;25:2183. [DOI] [PubMed] [PMC]
Silva JSC, Seguro CS, Naves MMV. Gut microbiota and physical exercise in obesity and diabetes - A systematic review.Nutr Metab Cardiovasc Dis. 2022;32:863–77. [DOI] [PubMed]
Xu Q, Ren T, Zhou Y, Xu J, Du L, Hong D, et al. Prevotella copri-produced 5-aminopentanoic acid promotes pediatric metabolic dysfunction-associated steatotic liver disease.Hepatobiliary Pancreat Dis Int. 2025;24:303–15. [DOI] [PubMed]
Chen P, Liu Q, Shi H, Liu Z, Yang X. Choline metabolism disorder induced by Prevotella is a risk factor for endometrial cancer in women with polycystic ovary syndrome.Mol Biol Rep. 2025;52:285. [DOI] [PubMed]
Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease.Immunology. 2017;151:363–74. [DOI] [PubMed] [PMC]
Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri.Gut Microbes. 2023;15:2249152. [DOI] [PubMed] [PMC]
Michail S, Lin M, Frey MR, Fanter R, Paliy O, Hilbush B, et al. Altered gut microbial energy and metabolism in children with non-alcoholic fatty liver disease.FEMS Microbiol Ecol. 2015;91:1–9. [DOI] [PubMed] [PMC]
Pecani M, Andreozzi P, Cangemi R, Corica B, Miglionico M, Romiti GF, et al. Metabolic Syndrome and Liver Disease: Re-Appraisal of Screening, Diagnosis, and Treatment Through the Paradigm Shift from NAFLD to MASLD.J Clin Med. 2025;14:2750. [DOI] [PubMed] [PMC]
Cani PD, Possemiers S, Wiele TVd, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability.Gut. 2009;58:1091–103. [DOI] [PubMed] [PMC]
Zhou D, Chen Y, Zhao Z, Yang R, Xin F, Liu X, et al. Sodium butyrate reduces high-fat diet-induced non-alcoholic steatohepatitis through upregulation of hepatic GLP-1R expression.Exp Mol Med. 2018;50:1–12. [DOI] [PubMed] [PMC]
Chen Y, Mai Q, Chen Z, Lin T, Cai Y, Han J, et al. Dietary palmitoleic acid reprograms gut microbiota and improves biological therapy against colitis.Gut Microbes. 2023;15:2211501. [DOI] [PubMed] [PMC]
Wang Y, Li L, Chen S, Yu Z, Gao X, Peng X, et al. Faecalibacterium prausnitzii-derived extracellular vesicles alleviate chronic colitis-related intestinal fibrosis by macrophage metabolic reprogramming.Pharmacol Res. 2024;206:107277. [DOI] [PubMed]
Ganesan K, Chung SK, Vanamala J, Xu B. Causal Relationship between Diet-Induced Gut Microbiota Changes and Diabetes: A Novel Strategy to Transplant Faecalibacterium prausnitzii in Preventing Diabetes.Int J Mol Sci. 2018;19:3720. [DOI] [PubMed] [PMC]
Maioli TU, Borras-Nogues E, Torres L, Barbosa SC, Martins VD, Langella P, et al. Possible Benefits of Faecalibacterium prausnitzii for Obesity-Associated Gut Disorders.Front Pharmacol. 2021;12:740636. [DOI] [PubMed] [PMC]
Saha S, Schnabl B. Modulating the microbiome in chronic liver diseases - current evidence on the role of fecal microbiota transplantation.Expert Rev Gastroenterol Hepatol. 2025;19:53–64. [DOI] [PubMed] [PMC]
Yang J, Cheng D, Hofer I, Nguyen-Buckley C, Disque A, Wray C, et al. Intraoperative High Tidal Volume Ventilation and Postoperative Acute Respiratory Distress Syndrome in Liver Transplant.Transplant Proc. 2022;54:719–25. [DOI] [PubMed] [PMC]
Ha S, Wong VW, Zhang X, Yu J. Interplay between gut microbiome, host genetic and epigenetic modifications in MASLD and MASLD-related hepatocellular carcinoma.Gut. 2024;74:141–52. [DOI] [PubMed] [PMC]
Liu S, Kang W, Mao X, Ge L, Du H, Li J, et al. Melatonin mitigates aflatoxin B1-induced liver injury via modulation of gut microbiota/intestinal FXR/liver TLR4 signaling axis in mice.J Pineal Res. 2022;73:e12812. [DOI] [PubMed]
Yan C, Bao J, Jin J. Exploring the interplay of gut microbiota, inflammation, and LDL-cholesterol: a multiomics Mendelian randomization analysis of their causal relationship in acute pancreatitis and non-alcoholic fatty liver disease.J Transl Med. 2024;22:179. [DOI] [PubMed] [PMC]
Ahmed B, Sultana R, Greene MW. Adipose tissue and insulin resistance in obese.Biomed Pharmacother. 2021;137:111315. [DOI] [PubMed]
Li H, Wang M, Chen P, Zhu M, Chen L. A high-dose of ursodeoxycholic acid treatment alleviates liver inflammation by remodeling gut microbiota and bile acid profile in a mouse model of non-alcoholic steatohepatitis.Biomed Pharmacother. 2024;174:116617. [DOI] [PubMed]
Di Vito R, Conte C, Traina G. A Multi-Strain Probiotic Formulation Improves Intestinal Barrier Function by the Modulation of Tight and Adherent Junction Proteins.Cells. 2022;11:2617. [DOI] [PubMed] [PMC]
Nakajima M, Arimatsu K, Kato T, Matsuda Y, Minagawa T, Takahashi N, et al. Oral Administration of P. gingivalis Induces Dysbiosis of Gut Microbiota and Impaired Barrier Function Leading to Dissemination of Enterobacteria to the Liver.PLoS One. 2015;10:e0134234. [DOI] [PubMed] [PMC]
Gray SM, Moss AD, Herzog JW, Kashiwagi S, Liu B, Young JB, et al. Mouse adaptation of human inflammatory bowel diseases microbiota enhances colonization efficiency and alters microbiome aggressiveness depending on the recipient colonic inflammatory environment.Microbiome. 2024;12:147. [DOI] [PubMed] [PMC]
Lin M, Piao L, Zhao Z, Liao L, Wang D, Zhang H, et al. Therapeutic Potential of Cajanus cajan (L.) Millsp. Leaf Extract in Modulating Gut Microbiota and Immune Response for the Treatment of Inflammatory Bowel Disease.Pharmaceuticals (Basel). 2025;18:67. [DOI] [PubMed] [PMC]
Nakamoto N, Sasaki N, Aoki R, Miyamoto K, Suda W, Teratani T, et al. Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis.Nat Microbiol. 2019;4:492–503. [DOI] [PubMed]
Muñoz L, Borrero M, Úbeda M, Conde E, Campo RD, Rodríguez-Serrano M, et al. Intestinal Immune Dysregulation Driven by Dysbiosis Promotes Barrier Disruption and Bacterial Translocation in Rats With Cirrhosis.Hepatology. 2019;70:925–38. [DOI] [PubMed]
Schincaglia GP, Hong BY, Rosania A, Barasz J, Thompson A, Sobue T, et al. Clinical, Immune, and Microbiome Traits of Gingivitis and Peri-implant Mucositis.J Dent Res. 2017;96:47–55. [DOI] [PubMed]
Dapito DH, Mencin A, Gwak G, Pradere J, Jang M, Mederacke I, et al. Promotion of hepatocellular carcinoma by the intestinal microbiota and TLR4.Cancer Cell. 2012;21:504–16. [DOI] [PubMed] [PMC]
Wyss J, Raselli T, Wyss A, Telzerow A, Rogler G, Krupka N, et al. Development of non-alcoholic steatohepatitis is associated with gut microbiota but not with oxysterol enzymes CH25H, EBI2, or CYP7B1 in mice.BMC Microbiol. 2024;24:69. [DOI] [PubMed] [PMC]
Ahmad MI, Ijaz MU, Hussain M, Haq IU, Zhao D, Li C. High-Fat Proteins Drive Dynamic Changes in Gut Microbiota, Hepatic Metabolome, and Endotoxemia-TLR-4-NFκB-Mediated Inflammation in Mice.J Agric Food Chem. 2020;68:11710–25. [DOI] [PubMed]
Shu YY, Hu LL, Ye J, Yang L, Jin Y. Rifaximin alleviates MCD diet-induced NASH in mice by restoring the gut microbiota and intestinal barrier.Life Sci. 2024;357:123095. [DOI] [PubMed]
Liu J, Sun J, Yu J, Chen H, Zhang D, Zhang T, et al. Gut microbiome determines therapeutic effects of OCA on NAFLD by modulating bile acid metabolism.NPJ Biofilms Microbiomes. 2023;9:29. [DOI] [PubMed] [PMC]
Nie Q, Luo X, Wang K, Ding Y, Jia S, Zhao Q, et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway.Cell. 2024;187:2717–34.e33. [DOI] [PubMed]
Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, Vadder FD, Arora T, et al. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella.Cell Metab. 2015;22:971–82. [DOI] [PubMed]
Besten Gd, Bleeker A, Gerding A, Eunen Kv, Havinga R, Dijk THv, et al. Short-Chain Fatty Acids Protect Against High-Fat Diet-Induced Obesity via a PPARγ-Dependent Switch From Lipogenesis to Fat Oxidation.Diabetes. 2015;64:2398–408. [DOI] [PubMed]
Xiong J, Chen X, Zhao Z, Liao Y, Zhou T, Xiang Q. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: A retrospective study.Exp Ther Med. 2022;24:598. [DOI] [PubMed] [PMC]
Yang T, Yang H, Heng C, Wang H, Chen S, Hu Y, et al. Amelioration of non-alcoholic fatty liver disease by sodium butyrate is linked to the modulation of intestinal tight junctions in db/db mice.Food Funct. 2020;11:10675–89. [DOI] [PubMed]
Qin D, Han C, Gao Y, Li H, Zhu L. Lactucin reverses liver fibrosis by inhibiting TGF-β1/STAT3 signaling pathway and regulating short-chain fatty acids metabolism.Sci Rep. 2024;14:19323. [DOI] [PubMed] [PMC]
Zuo K, Fang C, Liu Z, Fu Y, Liu Y, Liu L, et al. Commensal microbe-derived SCFA alleviates atrial fibrillation via GPR43/NLRP3 signaling.Int J Biol Sci. 2022;18:4219–32. [DOI] [PubMed] [PMC]
Burger K, Jung F, Staufer K, Ladurner R, Trauner M, Baumann A, et al. MASLD is related to impaired alcohol dehydrogenase (ADH) activity and elevated blood ethanol levels: Role of TNFα and JNK.Redox Biol. 2024;71:103121. [DOI] [PubMed] [PMC]
Meijnikman AS, Davids M, Herrema H, Aydin O, Tremaroli V, Rios-Morales M, et al. Microbiome-derived ethanol in nonalcoholic fatty liver disease.Nat Med. 2022;28:2100–6. [DOI] [PubMed]
Li C, Wang F, Mao Y, Ma Y, Guo Y. Multi-omics reveals the mechanism of Trimethylamine N-oxide derived from gut microbiota inducing liver fatty of dairy cows.BMC Genomics. 2025;26:10. [DOI] [PubMed] [PMC]
Ke Z, Huang Y, Xu J, Liu Y, Zhang Y, Wang Y, et al. Escherichia coli NF73-1 disrupts the gut-vascular barrier and aggravates high-fat diet-induced fatty liver disease via inhibiting Wnt/β-catenin signalling pathway.Liver Int. 2024;44:776–90. [DOI] [PubMed]
Nian F, Chen Y, Xia Q, Zhu C, Wu L, Lu X. Gut microbiota metabolite trimethylamine N-oxide promoted NAFLD progression by exacerbating intestinal barrier disruption and intrahepatic cellular imbalance.Int Immunopharmacol. 2024;142:113173. [DOI] [PubMed]
Vu V, Mee YK, Cho M. Effects of SCFAs and TMAO on non-alcoholic fatty liver disease indicating the therapeutic benefits of plant-based diet, and supplemental prebiotics, probiotics and synbiotics.Appl Biol Chem. 2023;66:11. [DOI]
Vu V, Muthuramalingam K, Singh V, Hyun C, Kim YM, Unno T, et al. Effects of β-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice.Eur J Nutr. 2022;61:793–807. [DOI] [PubMed]
Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics.Nat Rev Gastroenterol Hepatol. 2017;14:491–502. [DOI] [PubMed]
Rastall RA, Gibson GR. Recent developments in prebiotics to selectively impact beneficial microbes and promote intestinal health.Curr Opin Biotechnol. 2015;32:42–6. [DOI] [PubMed]
Yuan M, Zhang Z, Liu T, Feng H, Liu Y, Chen K. The Role of Nondigestible Oligosaccharides in Alleviating Human Chronic Diseases by Regulating the Gut Microbiota: A Review.Foods. 2024;13:2157. [DOI] [PubMed] [PMC]
Kei N, Lauw S, Wong SWV, Cheung PCK. A mini-review on prebiotic inulin to prevent and treat non-alcoholic fatty liver disease.Food Bioscience. 2024;61:104679. [DOI]
Sun Y, Zhou W, Zhu M. Serum Metabolomics Uncovers the Mechanisms of Inulin in Preventing Non-Alcoholic Fatty Liver Disease.Pharmaceuticals (Basel). 2024;17:895. [DOI] [PubMed] [PMC]
Huang S, Dong S, Lin L, Ma Q, Xu M, Ni L, et al. Inulin ameliorates metabolic syndrome in high-fat diet-fed mice by regulating gut microbiota and bile acid excretion.Front Pharmacol. 2023;14:1226448. [DOI] [PubMed] [PMC]
Krepkova LV, Babenko AN, Lemyaseva SV, Saybel OL, Sherwin CM, Enioutina EY. Modulation of Hepatic Functions by Chicory (Cichorium intybus L.) Extract: Preclinical Study in Rats.Pharmaceuticals (Basel). 2023;16:1471. [DOI] [PubMed] [PMC]
Wang Z, Zhang X, Zhu L, Yang X, He F, Wang T, et al. Inulin alleviates inflammation of alcoholic liver disease via SCFAs-inducing suppression of M1 and facilitation of M2 macrophages in mice.Int Immunopharmacol. 2020;78:106062. [DOI] [PubMed]
Bubnov RV, Spivak MY, Lazarenko LM, Bomba A, Boyko NV. Probiotics and immunity: provisional role for personalized diets and disease prevention.EPMA J. 2015;6:14. [DOI] [PubMed] [PMC]
Costa GT, Vasconcelos QDJS, Aragão GF. Fructooligosaccharides on inflammation, immunomodulation, oxidative stress, and gut immune response: a systematic review.Nutr Rev. 2022;80:709–22. [DOI] [PubMed]
Huang X, Chen Q, Fan Y, Yang R, Gong G, Yan C, et al. Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism.Biomed Pharmacother. 2023;159:114300. [DOI] [PubMed]
Harasawa A, Ishiyama S, Mochizuki K. Fructo-oligosaccharide-mediated alteration in claudin expression in small intestinal absorptive Caco-2 cells is positively associated with the induction of inflammatory genes and the glucan receptor gene CLEC7A.Nutrition. 2023;115:112140. [DOI] [PubMed]
Patanè GT, Putaggio S, Tellone E, Barreca D, Ficarra S, Maffei C, et al. Catechins and Proanthocyanidins Involvement in Metabolic Syndrome.Int J Mol Sci. 2023;24:9228. [DOI] [PubMed] [PMC]
Rodríguez RM, de Assis LVM, Calvo E, Colom-Pellicer M, Quesada-Vázquez S, Cruz-Carrión Á, et al. Grape-Seed Proanthocyanidin Extract (GSPE) Modulates Diurnal Rhythms of Hepatic Metabolic Genes and Metabolites, and Reduces Lipid Deposition in Cafeteria-Fed Rats in a Time-of-Day-Dependent Manner.Mol Nutr Food Res. 2024;68:e2400554. [DOI] [PubMed] [PMC]
James A, Wang K, Wang Y. Therapeutic Activity of Green Tea Epigallocatechin-3-Gallate on Metabolic Diseases and Non-Alcoholic Fatty Liver Diseases: The Current Updates.Nutrients. 2023;15:3022. [DOI] [PubMed] [PMC]
Sarita B, Samadhan D, Hassan MZ, Kovaleva EG. A comprehensive review of probiotics and human health-current prospective and applications.Front Microbiol. 2025;15:1487641. [DOI] [PubMed] [PMC]
Tamang JP, Lama S. Probiotic properties of yeasts in traditional fermented foods and beverages.J Appl Microbiol. 2022;132:3533–42. [DOI] [PubMed]
Thilakarathna WPDW, Rupasinghe HPV, Ridgway ND. Mechanisms by Which Probiotic Bacteria Attenuate the Risk of Hepatocellular Carcinoma.Int J Mol Sci. 2021;22:2606. [DOI] [PubMed] [PMC]
Zhao C, Xie L, Shen J, He H, Zhang T, Hao L, et al. Lactobacillus acidophilus YL01 and its exopolysaccharides ameliorate obesity and insulin resistance in obese mice via modulating intestinal specific bacterial groups and AMPK/ACC signaling pathway.Int J Biol Macromol. 2025;300:140287. [DOI] [PubMed]
Cao K, Zhang K, Ma M, Ma J, Tian J, Jin Y. Lactobacillus mediates the expression of NPC1L1, CYP7A1, and ABCG5 genes to regulate cholesterol.Food Sci Nutr. 2021;9:6882–91. [DOI] [PubMed] [PMC]
Park J, Choi JW, Jhun J, Kwon JY, Lee B, Yang CW, et al. Lactobacillus acidophilus Improves Intestinal Inflammation in an Acute Colitis Mouse Model by Regulation of Th17 and Treg Cell Balance and Fibrosis Development.J Med Food. 2018;21:215–24. [DOI] [PubMed]
Lau HC, Zhang X, Ji F, Lin Y, Liang W, Li Q, et al. Lactobacillus acidophilus suppresses non-alcoholic fatty liver disease-associated hepatocellular carcinoma through producing valeric acid.EBioMedicine. 2024;100:104952. [DOI] [PubMed] [PMC]
Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms.Nat Rev Gastroenterol Hepatol. 2022;19:625–37. [DOI] [PubMed]
Muralitharan RR, Zheng T, Dinakis E, Xie L, Barbaro-Wahl A, Jama HA, et al. Gut Microbiota Metabolites Sensed by Host GPR41/43 Protect Against Hypertension.Circ Res. 2025;136:e20–33. [DOI] [PubMed]
Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim J, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice.Nat Microbiol. 2021;6:563–73. [DOI] [PubMed]
Bae M, Cassilly CD, Liu X, Park S, Tusi BK, Chen X, et al. Akkermansia muciniphila phospholipid induces homeostatic immune responses.Nature. 2022;608:168–73. [DOI] [PubMed] [PMC]
Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity.Proc Natl Acad Sci U S A. 2013;110:9066–71. [DOI] [PubMed] [PMC]
Meroni M, Longo M, Dongiovanni P. The Role of Probiotics in Nonalcoholic Fatty Liver Disease: A New Insight into Therapeutic Strategies.Nutrients. 2019;11:2642. [DOI] [PubMed] [PMC]
Ren T, Li X, Fan J. Probiotics for treatment of nonalcoholic fatty liver disease: It is worth a try.Clin Mol Hepatol. 2021;27:83–6. [DOI] [PubMed] [PMC]
Liu J, Ding M, Bai J, Luo R, Liu R, Qu J, et al. Decoding the role of immune T cells: A new territory for improvement of metabolic-associated fatty liver disease.Imeta. 2023;2:e76. [DOI] [PubMed] [PMC]
Gupta M, Krishan P, Kaur A, Arora S, Trehanpati N, Singh TG, et al. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD.Inflamm Res. 2021;70:765–76. [DOI] [PubMed]
Qiu X, Cheng S, Liu Y, Li Y, Zhang R, Li N, et al. Fecal microbiota transplantation for treatment of non-alcoholic fatty liver disease: Mechanism, clinical evidence, and prospect.World J Gastroenterol. 2024;30:833–42. [DOI] [PubMed] [PMC]
Zhou D, Pan Q, Shen F, Cao H, Ding W, Chen Y, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota.Sci Rep. 2017;7:1529. [DOI] [PubMed] [PMC]
Stols-Gonçalves D, Mak AL, Madsen MS, van der Vossen EWJ, Bruinstroop E, Henneman P, et al. Faecal Microbiota transplantation affects liver DNA methylation in Non-alcoholic fatty liver disease: a multi-omics approach.Gut Microbes. 2023;15:2223330. [DOI] [PubMed] [PMC]
Alghamdi W, Mosli M, Alqahtani SA. Gut microbiota in MAFLD: therapeutic and diagnostic implications.Ther Adv Endocrinol Metab. 2024;15:20420188241242937. [DOI] [PubMed] [PMC]
Dai X, Feng J, Chen Y, Huang S, Shi X, Liu X, et al. Traditional Chinese Medicine in nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives.Chin Med. 2021;16:68. [DOI] [PubMed] [PMC]
Cao Y, Pan Q, Cai W, Shen F, Chen G, Xu L, et al. Modulation of Gut Microbiota by Berberine Improves Steatohepatitis in High-Fat Diet-Fed BALB/C Mice.Arch Iran Med. 2016;19:197–203. [PubMed]
Zheng S, Xue C, Li S, Zao X, Li X, Liu Q, et al. Chinese medicine in the treatment of non-alcoholic fatty liver disease based on network pharmacology: a review.Front Pharmacol. 2024;15:1381712. [DOI] [PubMed] [PMC]
Yin G, Liang H, Sun W, Zhang S, Feng Y, Liang P, et al. Shuangyu Tiaozhi decoction alleviates non-alcoholic fatty liver disease by improving lipid deposition, insulin resistance, and inflammation in vitro and in vivo.Front Pharmacol. 2022;13:1016745. [DOI] [PubMed] [PMC]
Hopkins AL. Network pharmacology: the next paradigm in drug discovery.Nat Chem Biol. 2008;4:682–90. [DOI] [PubMed]
Wilmanski T, Kornilov SA, Diener C, Conomos MP, Lovejoy JC, Sebastiani P, et al. Heterogeneity in statin responses explained by variation in the human gut microbiome.Med. 2022;3:388–405.e6. [DOI] [PubMed] [PMC]
Khan TJ, Ahmed YM, Zamzami MA, Siddiqui AM, Khan I, Baothman OAS, et al. Atorvastatin Treatment Modulates the Gut Microbiota of the Hypercholesterolemic Patients.OMICS. 2018;22:154–63. [DOI] [PubMed]
Dias AM, Cordeiro G, Estevinho MM, Veiga R, Figueira L, Reina-Couto M, et al. Gut bacterial microbiome composition and statin intake-A systematic review.Pharmacol Res Perspect. 2020;8:e00601. [DOI] [PubMed] [PMC]
Sun C, Wang Z, Hu L, Zhang X, Chen J, Yu Z, et al. Targets of statins intervention in LDL-C metabolism: Gut microbiota.Front Cardiovasc Med. 2022;9:972603. [DOI] [PubMed] [PMC]
Mo C, Lou X, Xue J, Shi Z, Zhao Y, Wang F, et al. The influence of Akkermansia muciniphila on intestinal barrier function.Gut Pathog. 2024;16:41. [DOI] [PubMed] [PMC]
Gan L, Feng Y, Du B, Fu H, Tian Z, Xue G, et al. Bacteriophage targeting microbiota alleviates non-alcoholic fatty liver disease induced by high alcohol-producing Klebsiella pneumoniae.Nat Commun. 2023;14:3215. [DOI] [PubMed] [PMC]
Liu C, Wang Y, Yang Y, Zhang N, Niu C, Shen X, et al. Novel approaches to intervene gut microbiota in the treatment of chronic liver diseases.FASEB J. 2021;35:e21871. [DOI] [PubMed]
Tabbaa OM, Aboelsoud MM, Mattar MC. Long-Term Safety and Efficacy of Fecal Microbiota Transplantation in the Treatment of Clostridium difficile Infection in Patients With and Without Inflammatory Bowel Disease: A Tertiary Care Center’s Experience.Gastroenterology Res. 2018;11:397–403. [DOI] [PubMed] [PMC]
Bartlett AM, Boone AM, Bays JA, Kim Y, Palle SK, Short KR. Oxidized high-density lipoprotein and low-density lipoprotein in adolescents with obesity and metabolic dysfunction-associated steatotic liver disease.Pediatr Obes. 2025;20:e13194. [DOI] [PubMed]
Cao R, Gao T, Yue J, Sun G, Yang X. Disordered Gut Microbiome and Alterations in Metabolic Patterns Are Associated With Hypertensive Left Ventricular Hypertrophy.J Am Heart Assoc. 2024;13:e034230. [DOI] [PubMed] [PMC]
Kipp ZA, Badmus OO, Stec DE, Hall B, Hinds TD Jr. Bilirubin bioconversion to urobilin in the gut-liver-kidney axis: A biomarker for insulin resistance in the Cardiovascular-Kidney-Metabolic (CKM) Syndrome.Metabolism. 2025;163:156081. [DOI] [PubMed]