The Table provides a comprehensive overview of the main clinical trials evaluating bispecific antibodies (bsAbs) in cervical and ECs. Only studies with available clinical data in these tumor types are reported, with a focus on target specificity, study phase, treatment combinations, and preliminary efficacy or safety outcomes, when available. *: Some trials reported treatment-related adverse events (TRAEs), other treatment-emergent adverse events (TEAEs), and immune-related adverse events (irAEs). Only grades ≥ 3 observed in more than 5% of patients are included in this Table; **: adverse events of special interest (AESIs), including cytokine release syndrome (CRS), infusion-related reaction (IRR), and immune effector cell-associated neurotoxicity syndrome (ICANS), are listed in the Table regardless of grade and even if occurring in less than 5% of patients. G: grade; TAA: tumor-associated antigen; HER2: human epidermal growth factor receptor 2; ECD2: extracellular domain 2; ECs: endometrial cancers; ORR: objective response rate; mPFS: median progression-free survival; mths: months; CI: confidence interval; OS: overall survival; mOS: median OS; NR: not reported; ICI: immune checkpoint inhibitor; cht: chemotherapy; bev: bevacizumab; PD-1: programmed cell death protein 1; CTLA-4: cytotoxic T-lymphocyte-associated protein 4; R/M: recurrent/metastatic; CC: cervical cancer; pts: patients; HR: hazard ratio; NA: not available; VEGF: vascular endothelial growth factor; R: recurrent; ALT: alanine aminotransferase; LAG-3: lymphocyte activation gene 3; AST: aspartate aminotransferase.
Declarations
Author contributions
SP: Conceptualization, Investigation, Writing—original draft, Writing—review & editing. IC: Validation, Writing—review & editing, Supervision. Both authors read and approved the submitted version.
Conflicts of interest
IC declares institutional funding for clinical trials as PI from AstraZeneca, Merck Sharp & Dhome, Vivesto, Tolremo, Orion, Bayer, Incyte, Debio; consultancy/advisor role from AstraZeneca, GlaxoSmithKline, Merck Sharp & Dhome, AbbVie, BioNTech, Incyte, BeiGene outside the submitted work. The other author declares that there are no conflicts of interest.
Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025.CA Cancer J Clin. 2025;75:10–45. [DOI] [PubMed] [PMC]
Wilson EM, Eskander RN, Binder PS. Recent Therapeutic Advances in Gynecologic Oncology: A Review.Cancers (Basel). 2024;16:770. [DOI] [PubMed] [PMC]
Amaral MVS, DE Sousa Portilho AJ, DA Silva EL, DE Oliveira Sales L, DA Silva Maués JH, DE Moraes MEA, et al. Establishment of Drug-resistant Cell Lines as a Model in Experimental Oncology: A Review.Anticancer Res. 2019;39:6443–55. [DOI] [PubMed]
Vemula S, Bonala S, Vadde NK, Natu JZ, Basha R, Vadde R, et al. Drug resistance and immunotherapy in gynecologic cancers.Life Sci. 2023;332:122104. [DOI] [PubMed]
Hockings H, Miller RE. The role of PARP inhibitor combination therapy in ovarian cancer.Ther Adv Med Oncol. 2023;15:17588359231173183. [DOI] [PubMed] [PMC]
DiSilvestro P, Banerjee S, Colombo N, Scambia G, Kim BG, Oaknin A, et al.; SOLO1 Investigators. Overall Survival With Maintenance Olaparib at a 7-Year Follow-Up in Patients With Newly Diagnosed Advanced Ovarian Cancer and a BRCA Mutation: The SOLO1/GOG 3004 Trial.J Clin Oncol. 2023;41:609–17. [DOI] [PubMed] [PMC]
Poveda A, Floquet A, Ledermann JA, Asher R, Penson RT, Oza AM, et al.; SOLO2/ENGOT-Ov21 investigators. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial.Lancet Oncol. 2021;22:620–31. [DOI] [PubMed]
Monk BJ, Barretina-Ginesta MP, Pothuri B, Vergote I, Graybill W, Mirza MR, et al. Niraparib first-line maintenance therapy in patients with newly diagnosed advanced ovarian cancer: final overall survival results from the PRIMA/ENGOT-OV26/GOG-3012 trial.Ann Oncol. 2024;35:981–92. [DOI] [PubMed] [PMC]
Wu XH, Zhu JQ, Yin RT, Yang JX, Liu JH, Wang J, et al. Niraparib maintenance therapy in patients with platinum-sensitive recurrent ovarian cancer using an individualized starting dose (NORA): a randomized, double-blind, placebo-controlled phase III trial☆.Ann Oncol. 2021;32:512–21. [DOI] [PubMed]
Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al.; ARIEL3 investigators. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.Lancet. 2017;390:1949–61. [DOI] [PubMed] [PMC]
Tewari KS, Burger RA, Enserro D, Norquist BM, Swisher EM, Brady MF, et al. Final Overall Survival of a Randomized Trial of Bevacizumab for Primary Treatment of Ovarian Cancer.J Clin Oncol. 2019;37:2317–28. [DOI] [PubMed] [PMC]
Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, et al.; ICON7 Investigators. A phase 3 trial of bevacizumab in ovarian cancer.N Engl J Med. 2011;365:2484–96. [DOI] [PubMed]
Mao CL, Seow KM, Chen KH. The Utilization of Bevacizumab in Patients with Advanced Ovarian Cancer: A Systematic Review of the Mechanisms and Effects.Int J Mol Sci. 2022;23:6911. [DOI] [PubMed] [PMC]
Burger RA, Brady MF, Bookman MA, Fleming GF, Monk BJ, Huang H, et al.; Gynecologic Oncology Group. Incorporation of bevacizumab in the primary treatment of ovarian cancer.N Engl J Med. 2011;365:2473–83. [DOI] [PubMed]
Ray-Coquard I, Pautier P, Pignata S, Pérol D, González-Martín A, Berger R, et al.; PAOLA-1 Investigators. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer.N Engl J Med. 2019;381:2416–28. [DOI] [PubMed]
Colombo I, Karakasis K, Suku S, Oza AM. Chasing Immune Checkpoint Inhibitors in Ovarian Cancer: Novel Combinations and Biomarker Discovery.Cancers (Basel). 2023;15:3220. [DOI] [PubMed] [PMC]
Sato S, Shoji T, Jo A, Otsuka H, Abe M, Tatsuki S, et al. Antibody-Drug Conjugates: The New Treatment Approaches for Ovarian Cancer.Cancers (Basel). 2024;16:2545. [DOI] [PubMed] [PMC]
Matulonis UA, Lorusso D, Oaknin A, Pignata S, Dean A, Denys H, et al. Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study.J Clin Oncol. 2023;41:2436–45. [DOI] [PubMed] [PMC]
Moore KN, Angelergues A, Konecny GE, García Y, Banerjee S, Lorusso D, et al.; Gynecologic Oncology Group Partners and the European Network of Gynaecological Oncological Trial Groups. Mirvetuximab Soravtansine in FRα-Positive, Platinum-Resistant Ovarian Cancer.N Engl J Med. 2023;389:2162–74. [DOI] [PubMed]
Meric-Bernstam F, Makker V, Oaknin A, Oh DY, Banerjee S, González-Martín A, et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients With HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial.J Clin Oncol. 2024;42:47–58. [DOI] [PubMed] [PMC]
Espinosa I, D’Angelo E, Prat J. Endometrial carcinoma: 10 years of TCGA (the cancer genome atlas): A critical reappraisal with comments on FIGO 2023 staging.Gynecol Oncol. 2024;186:94–103. [DOI] [PubMed]
Corr B, Cosgrove C, Spinosa D, Guntupalli S. Endometrial cancer: molecular classification and future treatments.BMJ Med. 2022;1:e000152. [DOI] [PubMed] [PMC]
Makker V, Colombo N, Casado Herráez A, Santin AD, Colomba E, Miller DS, et al.; Study 309–KEYNOTE-775 Investigators. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer.N Engl J Med. 2022;386:437–48. [DOI] [PubMed] [PMC]
Mirza MR, Chase DM, Slomovitz BM, dePont Christensen R, Novák Z, Black D, et al.; RUBY Investigators. Dostarlimab for Primary Advanced or Recurrent Endometrial Cancer.N Engl J Med. 2023;388:2145–58. [DOI] [PubMed]
Westin SN, Moore K, Chon HS, Lee JY, Thomes Pepin J, Sundborg M, et al.; DUO-E Investigators. Durvalumab Plus Carboplatin/Paclitaxel Followed by Maintenance Durvalumab With or Without Olaparib as First-Line Treatment for Advanced Endometrial Cancer: The Phase III DUO-E Trial.J Clin Oncol. 2024;42:283–99. [DOI] [PubMed] [PMC]
Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP, et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study.J Clin Oncol. 2020;38:1–10. [DOI] [PubMed] [PMC]
Colombo N, Dubot C, Lorusso D, Caceres MV, Hasegawa K, Shapira-Frommer R, et al.; KEYNOTE-826 Investigators. Pembrolizumab for Persistent, Recurrent, or Metastatic Cervical Cancer.N Engl J Med. 2021;385:1856–67. [DOI] [PubMed]
Lorusso D, Xiang Y, Hasegawa K, Scambia G, Leiva M, Ramos-Elias P, et al.; ENGOT-cx11/GOG-3047/KEYNOTE-A18 investigators. Pembrolizumab or placebo with chemoradiotherapy followed by pembrolizumab or placebo for newly diagnosed, high-risk, locally advanced cervical cancer (ENGOT-cx11/GOG-3047/KEYNOTE-A18): a randomised, double-blind, phase 3 clinical trial.Lancet. 2024;403:1341–50. [DOI] [PubMed]
Vergote I, González-Martín A, Fujiwara K, Kalbacher E, Bagaméri A, Ghamande S, et al.; innovaTV 301/ENGOT-cx12/GOG-3057 Collaborators. Tisotumab Vedotin as Second- or Third-Line Therapy for Recurrent Cervical Cancer.N Engl J Med. 2024;391:44–55. [DOI] [PubMed]
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells.Cancers (Basel). 2024;16:2478. [DOI] [PubMed] [PMC]
Ortiz M, Wabel E, Mitchell K, Horibata S. Mechanisms of chemotherapy resistance in ovarian cancer.Cancer Drug Resist. 2022;5:304–16. [DOI] [PubMed] [PMC]
Arain A, Muhsen IN, Abudayyeh A, Abdelrahim M. Chapter 11 - Chemoresistance in uterine cancer: Mechanisms of resistance and current therapies. In: Basha R, Ahmad S, editors. Overcoming Drug Resistance in Gynecologic Cancers. Academic Press; 2021. pp. 267–81. [DOI]
Chen Y, Jiang L, Zhang L, Chi H, Wang Q. Immune microenvironment and molecular mechanisms in endometrial cancer: implications for resistance and innovative treatments.Discov Oncol. 2025;16:532. [DOI] [PubMed] [PMC]
George IA, Chauhan R, Dhawale RE, Iyer R, Limaye S, Sankaranarayanan R, et al. Insights into therapy resistance in cervical cancer.Adv Cancer Biol Metastasis. 2022;6:100074. [DOI]
Lizama-Muñoz A, Plaza-Diaz J. Bispecific Antibodies, Nanobodies and Extracellular Vesicles: Present and Future to Cancer Target Therapy.Biomolecules. 2025;15:639. [DOI] [PubMed] [PMC]
Jovčevska I, Muyldermans S. The Therapeutic Potential of Nanobodies.BioDrugs. 2020;34:11–26. [DOI] [PubMed] [PMC]
Urabe F, Kosaka N, Ito K, Kimura T, Egawa S, Ochiya T. Extracellular vesicles as biomarkers and therapeutic targets for cancer.Am J Physiol Cell Physiol. 2020;318:C29–39. [DOI] [PubMed]
Madsen AV, Pedersen LE, Kristensen P, Goletz S. Design and engineering of bispecific antibodies: insights and practical considerations.Front Bioeng Biotechnol. 2024;12:1352014. [DOI] [PubMed] [PMC]
Li H, Zhou Q, Cao N, Hu C, Wang J, He Y, et al. Nanobodies and their derivatives: pioneering the future of cancer immunotherapy.Cell Commun Signal. 2025;23:271. [DOI] [PubMed] [PMC]
Zhang XW, Wu YS, Xu TM, Cui MH. CAR-T Cells in the Treatment of Ovarian Cancer: A Promising Cell Therapy.Biomolecules. 2023;13:465. [DOI] [PubMed] [PMC]
Al Hadidi S, Heslop HE, Brenner MK, Suzuki M. Bispecific antibodies and autologous chimeric antigen receptor T cell therapies for treatment of hematological malignancies.Mol Ther. 2024;32:2444–60. [DOI] [PubMed] [PMC]
Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline.Nat Rev Drug Discov. 2019;18:585–608. [DOI] [PubMed]
Wu Y, Yi M, Zhu S, Wang H, Wu K. Recent advances and challenges of bispecific antibodies in solid tumors.Exp Hematol Oncol. 2021;10:56. [DOI] [PubMed] [PMC]
Zhou C, Tang KJ, Cho BC, Liu B, Paz-Ares L, Cheng S, et al.; PAPILLON Investigators. Amivantamab plus Chemotherapy in NSCLC with EGFR Exon 20 Insertions.N Engl J Med. 2023;389:2039–51. [DOI] [PubMed]
Hassel JC, Piperno-Neumann S, Rutkowski P, Baurain JF, Schlaak M, Butler MO, et al. Three-Year Overall Survival with Tebentafusp in Metastatic Uveal Melanoma.N Engl J Med. 2023;389:2256–66. [DOI] [PubMed] [PMC]
Kantarjian H, Stein A, Gökbuget N, Fielding AK, Schuh AC, Ribera JM, et al. Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia.N Engl J Med. 2017;376:836–47. [DOI] [PubMed] [PMC]
Moreau P, Garfall AL, van de Donk NWCJ, Nahi H, San-Miguel JF, Oriol A, et al. Teclistamab in Relapsed or Refractory Multiple Myeloma.N Engl J Med. 2022;387:495–505. [DOI] [PubMed] [PMC]
Dickinson MJ, Carlo-Stella C, Morschhauser F, Bachy E, Corradini P, Iacoboni G, et al. Glofitamab for Relapsed or Refractory Diffuse Large B-Cell Lymphoma.N Engl J Med. 2022;387:2220–31. [DOI] [PubMed]
Budde LE, Sehn LH, Matasar M, Schuster SJ, Assouline S, Giri P, et al. Safety and efficacy of mosunetuzumab, a bispecific antibody, in patients with relapsed or refractory follicular lymphoma: a single-arm, multicentre, phase 2 study.Lancet Oncol. 2022;23:1055–65. [DOI] [PubMed]
Avanzino BC, Prabhakar K, Dalvi P, Hartstein S, Kehm H, Balasubramani A, et al. A T-cell engaging bispecific antibody with a tumor-selective bivalent folate receptor alpha binding arm for the treatment of ovarian cancer.Oncoimmunology. 2022;11:2113697. [DOI] [PubMed] [PMC]
Yeku OO, Rao TD, Laster I, Kononenko A, Purdon TJ, Wang P, et al. Bispecific T-Cell Engaging Antibodies Against MUC16 Demonstrate Efficacy Against Ovarian Cancer in Monotherapy and in Combination With PD-1 and VEGF Inhibition.Front Immunol. 2021;12:663379. [DOI] [PubMed] [PMC]
O’Brien E, Mayer CM, Arend RC. Exploring T-cell bispecific antibodies in gynecologic malignancy.Gynecol Oncol Rep. 2025;59:101772. [DOI] [PubMed] [PMC]
Bielski P, Barczyński J, Mikitiuk M, Myrcha M, Rykała K, Boon L, et al. The bispecific antibody targeting VISTA and PD-L1 shows enhanced tumor inhibitory activity in pancreatic, endometrial and breast cancers compared to mono- and combination immune checkpoint blockade.Front Immunol. 2025;16:1486799. [DOI] [PubMed] [PMC]
Lumish M, Chui MH, Zhou Q, Iasonos A, Sarasohn D, Cohen S, et al. A phase 2 trial of zanidatamab in HER2-overexpressed advanced endometrial carcinoma and carcinosarcoma (ZW25-IST-2).Gynecol Oncol. 2024;182:75–81. [DOI] [PubMed] [PMC]
Birrer M, Li G, Yunokawa M, Lee JY, Kim BG, Oppermann CP, et al. Bintrafusp Alfa for Recurrent or Metastatic Cervical Cancer After Platinum Failure: A Nonrandomized Controlled Trial.JAMA Oncol. 2024;10:1204–11. [DOI] [PubMed] [PMC]
Zhang X, Yang Y, Fan D, Xiong D. The development of bispecific antibodies and their applications in tumor immune escape.Exp Hematol Oncol. 2017;6:12. [DOI] [PubMed] [PMC]
Antonarelli G, Giugliano F, Corti C, Repetto M, Tarantino P, Curigliano G. Research and Clinical Landscape of Bispecific Antibodies for the Treatment of Solid Malignancies.Pharmaceuticals (Basel). 2021;14:884. [DOI] [PubMed] [PMC]
Kellner C, Derer S, Valerius T, Peipp M. Boosting ADCC and CDC activity by Fc engineering and evaluation of antibody effector functions.Methods. 2014;65:105–13. [DOI] [PubMed]
Gogesch P, Dudek S, van Zandbergen G, Waibler Z, Anzaghe M. The Role of Fc Receptors on the Effectiveness of Therapeutic Monoclonal Antibodies.Int J Mol Sci. 2021;22:8947. [DOI] [PubMed] [PMC]
Shah D, Soper B, Shopland L. Cytokine release syndrome and cancer immunotherapies – historical challenges and promising futures.Front Immunol. 2023;14:1190379. [DOI] [PubMed] [PMC]
Li H, Er Saw P, Song E. Challenges and strategies for next-generation bispecific antibody-based antitumor therapeutics.Cell Mol Immunol. 2020;17:451–61. [DOI] [PubMed] [PMC]
Brinkmann U, Kontermann RE. Bispecific antibodies.Science. 2021;372:916–7. [DOI] [PubMed]
Fernandez-Martinez D, Tully MD, Leonard G, Mathieu M, Kandiah E. Structural insights into the bi-specific cross-over dual variable antibody architecture by cryo-EM.Sci Rep. 2023;13:8694. [DOI] [PubMed] [PMC]
Harwardt J, Bogen JP, Carrara SC, Ulitzka M, Grzeschik J, Hock B, et al. A Generic Strategy to Generate Bifunctional Two-in-One Antibodies by Chicken Immunization.Front Immunol. 2022;13:888838. [DOI] [PubMed] [PMC]
Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, et al. Design and Production of Bispecific Antibodies.Antibodies (Basel). 2019;8:43. [DOI] [PubMed] [PMC]
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Excellent removal of knob-into-hole bispecific antibody byproducts and impurities in a single-capture chromatography.Bioresour Bioprocess. 2022;9:72. [DOI] [PubMed] [PMC]
Klein C, Schaefer W, Regula JT, Dumontet C, Brinkmann U, Bacac M, et al. Engineering therapeutic bispecific antibodies using CrossMab technology.Methods. 2019;154:21–31. [DOI] [PubMed]
Debie P, Lafont C, Defrise M, Hansen I, van Willigen DM, van Leeuwen FWB, et al. Size and affinity kinetics of nanobodies influence targeting and penetration of solid tumours.J Control Release. 2020;317:34–42. [DOI] [PubMed]
Ahamadi-Fesharaki R, Fateh A, Vaziri F, Solgi G, Siadat SD, Mahboudi F, et al. Single-Chain Variable Fragment-Based Bispecific Antibodies: Hitting Two Targets with One Sophisticated Arrow.Mol Ther Oncolytics. 2019;14:38–56. [DOI] [PubMed] [PMC]
Kwon NY, Kim Y, Lee JO. Structural diversity and flexibility of diabodies.Methods. 2019;154:136–42. [DOI] [PubMed]
Allen C, Zeidan AM, Bewersdorf JP. BiTEs, DARTS, BiKEs and TriKEs—Are Antibody Based Therapies Changing the Future Treatment of AML?Life (Basel). 2021;11:465. [DOI] [PubMed] [PMC]
Zhou S, Liu M, Ren F, Meng X, Yu J. The landscape of bispecific T cell engager in cancer treatment.Biomark Res. 2021;9:38. [DOI] [PubMed] [PMC]
Gong S, Wu C. Generation of Fabs-in-tandem immunoglobulin molecules for dual-specific targeting.Methods. 2019;154:87–92. [DOI] [PubMed]
Schmohl JU, Gleason MK, Dougherty PR, Miller JS, Vallera DA. Heterodimeric Bispecific Single Chain Variable Fragments (scFv) Killer Engagers (BiKEs) Enhance NK-cell Activity Against CD133+ Colorectal Cancer Cells.Target Oncol. 2016;11:353–61. [DOI] [PubMed] [PMC]
Cheng Y, Zheng X, Wang X, Chen Y, Wei H, Sun R, et al. Trispecific killer engager 161519 enhances natural killer cell function and provides anti-tumor activity against CD19-positive cancers.Cancer Biol Med. 2020;17:1026–38. [DOI] [PubMed] [PMC]
Betts A, van der Graaf PH. Mechanistic Quantitative Pharmacology Strategies for the Early Clinical Development of Bispecific Antibodies in Oncology.Clin Pharmacol Ther. 2020;108:528–41. [DOI] [PubMed] [PMC]
Huang S, van Duijnhoven SMJ, Sijts AJAM, van Elsas A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy.J Cancer Res Clin Oncol. 2020;146:3111–22. [DOI] [PubMed] [PMC]
Yuraszeck T, Kasichayanula S, Benjamin JE. Translation and Clinical Development of Bispecific T-cell Engaging Antibodies for Cancer Treatment.Clin Pharmacol Ther. 2017;101:634–45. [DOI] [PubMed] [PMC]
Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy.Immunol Cell Biol. 2015;93:290–6. [DOI] [PubMed] [PMC]
Zhao Y, Chen G, Chen J, Zhuang L, Du Y, Yu Q, et al. AK112, a novel PD-1/VEGF bispecific antibody, in combination with chemotherapy in patients with advanced non-small cell lung cancer (NSCLC): an open-label, multicenter, phase II trial.EClinicalMedicine. 2023;62:102106. [DOI] [PubMed] [PMC]
Mollavelioglu B, Cetin Aktas E, Cabioglu N, Abbasov A, Onder S, Emiroglu S, et al. High co-expression of immune checkpoint receptors PD-1, CTLA-4, LAG-3, TIM-3, and TIGIT on tumor-infiltrating lymphocytes in early-stage breast cancer.World J Surg Oncol. 2022;20:349. [DOI] [PubMed] [PMC]
Burton EM, Tawbi HA. Bispecific Antibodies to PD-1 and CTLA4: Doubling Down on T Cells to Decouple Efficacy from Toxicity.Cancer Discov. 2021;11:1008–10. [DOI] [PubMed]
Zhao P, Zhang Y, Li W, Jeanty C, Xiang G, Dong Y. Recent advances of antibody drug conjugates for clinical applications.Acta Pharm Sin B. 2020;10:1589–600. [DOI] [PubMed] [PMC]
Gu Y, Wang Z, Wang Y. Bispecific antibody drug conjugates: Making 1+1>2.Acta Pharm Sin B. 2024;14:1965–86. [DOI] [PubMed] [PMC]
Moore KN, O’Malley D, Van Nieuwenhuysen E, Hamilton E, O’Cearbhaill RE, Yeku O, et al. 41P Phase I analysis of ubamatamab (MUC16xCD3 bispecific antibody) in patients with recurrent ovarian cancer.ESMO Open. 2023;8:100821. [DOI]
O’Cearbhaill RE, Moore KN, Yeku O, Liu JF, Bouberhan S, Hamilton EP, et al. 754P Ubamatamab (MUC16xCD3 bispecific antibody) with cemiplimab (anti-PD-1 antibody) in recurrent ovarian cancer: Phase I dose-escalation study.Ann Oncol. 2023;34:S516–7. [DOI]
Winer IS, O’Cearbhaill RE, Bouberhan S, Hays JL, Wenham RM, Roque DR, et al. 127P REGN5668 (MUC16xCD28 bispecific antibody) with cemiplimab (anti-PD-1 antibody) in recurrent ovarian cancer: Phase I dose-escalation study.Immuno-Oncol Technol. 2023;20:100599. [DOI]
Berek JS, Edwards RP, Parker LP, DeMars LR, Herzog TJ, Lentz SS, et al. Catumaxomab for the treatment of malignant ascites in patients with chemotherapy-refractory ovarian cancer: a phase II study.Int J Gynecol Cancer. 2014;24:1583–9. [DOI] [PubMed]
Luke JJ, Barlesi F, Chung K, Tolcher AW, Kelly K, Hollebecque A, et al. Phase I study of ABBV-428, a mesothelin-CD40 bispecific, in patients with advanced solid tumors.J Immunother Cancer. 2021;9:e002015. [DOI] [PubMed] [PMC]
Geva R, Vieito M, Ramon J, Perets R, Pedregal M, Corral E, et al. Safety and clinical activity of JNJ-78306358, a human leukocyte antigen-G (HLA-G) x CD3 bispecific antibody, for the treatment of advanced stage solid tumors.Cancer Immunol Immunother. 2024;73:205. [DOI] [PubMed] [PMC]
Friedman C, De Burgh Williams A, Lopez JS, Ouali K, Middleton MR, Thistlethwaite F, et al. 750P Phase I safety and efficacy of brenetafusp, a PRAME × CD3 ImmTAC T cell engager, in platinum resistant ovarian cancer (PROC).Ann Oncol. 2024;35:S569–70. [DOI]
Shum E, Reilley M, Najjar Y, Daud A, Thompson J, Baranda J, et al. 523 Preliminary clinical experience with XmAb20717, a PD-1 x CTLA-4 bispecific antibody, in patients with advanced solid tumors.J ImmunoTher Cancer. 2021;9:A553. [DOI]
Tang J, Tian W, Huang S, Yang J, Yang H. 760P Cadonilimab with neoadjuvant chemotherapy in advanced ovarian cancer patients (AK104-IIT-003): An open, prospective, single arm, phase II trial.Ann Oncol. 2024;35:S576. [DOI]
Luke JJ, Patel MR, Blumenschein GR, Hamilton E, Chmielowski B, Ulahannan SV, et al. The PD-1- and LAG-3-targeting bispecific molecule tebotelimab in solid tumors and hematologic cancers: a phase 1 trial.Nat Med. 2023;29:2814–24. [DOI] [PubMed] [PMC]
Frentzas S, Austria Mislang AR, Lemech C, Nagrial A, Underhill C, Wang W, et al. Phase 1a dose escalation study of ivonescimab (AK112/SMT112), an anti-PD-1/VEGF-A bispecific antibody, in patients with advanced solid tumors.J Immunother Cancer. 2024;12:e008037. [DOI] [PubMed] [PMC]
Yang N, Zhou X, Gong Y, Deng Z. The role of MUC16 in tumor biology and tumor immunology in ovarian cancer.BMC Cancer. 2025;25:294. [DOI] [PubMed] [PMC]
Van Nieuwenhuysen E, Bouberhan S, Papadimitriou K, Arend RC, Lee JY, O’Cearbhaill RE, et al. A phase 1/2 study of ubamatamab (REGN4018), a MUC16×CD3 bispecific antibody, administered alone or in combination with cemiplimab (anti–PD-1) in patients with recurrent ovarian cancer or MUC16+ endometrial cancer.J Clin Oncol. 2024;42:TPS5632. [DOI]
Makafui Dogbey D, Andong-Koung-Edzidzi UC, Atlegang Molope G, Singh J, Lovemore Bvudzijena T, Naran K, et al. EpCAM-targeting cancer immunotherapies: Evidence from clinical studies and the way forward.Tumor Discovery. 2025;4:1–13. [DOI]
Heiss MM, Murawa P, Koralewski P, Kutarska E, Kolesnik OO, Ivanchenko VV, et al. The trifunctional antibody catumaxomab for the treatment of malignant ascites due to epithelial cancer: Results of a prospective randomized phase II/III trial.Int J Cancer. 2010;127:2209–21. [DOI] [PubMed] [PMC]
Burges A, Wimberger P, Kümper C, Gorbounova V, Sommer H, Schmalfeldt B, et al. Effective relief of malignant ascites in patients with advanced ovarian cancer by a trifunctional anti-EpCAM × anti-CD3 antibody: a phase I/II study.Clin Cancer Res. 2007;13:3899–905. [DOI] [PubMed]
Romero I, Oaknin A, Arranz JA, García-Martínez E, Herrero A, Casado A, et al.; GEICO. Phase II trial of intraperitoneal (IP) administration of catumaxomab (C) as consolidation therapy for patients (pts) with relapsed epithelial ovarian cancer (OC) in second or third complete remission: GEICO 1001 study.J Clin Oncol. 2014;32:5528. [DOI]
Syed YY. Catumaxomab: First Approval.Drugs. 2025;85:957–63. [DOI] [PubMed]
Giordano G, Ferioli E, Tafuni A. The Role of Mesothelin Expression in Serous Ovarian Carcinoma: Impacts on Diagnosis, Prognosis, and Therapeutic Targets.Cancers (Basel). 2022;14:2283. [DOI] [PubMed] [PMC]
Ma S, Chen P, Guo S, Wang L, Hu J, Shao J. The CD40/CD40L Pathway Regulates the Aggressiveness of Ovarian Cancer Cells via the Activation of Regulatory B Cells.Biochem Genet. 2024;[Epub ahead of print]. [DOI] [PubMed]
Du H, Yang X, Fan J, Du X. Claudin 6: Therapeutic prospects for tumours, and mechanisms of expression and regulation (Review).Mol Med Rep. 2021;24:677. [DOI] [PubMed] [PMC]
Mathias-Machado MC, de Jesus VHF, Jácome A, Donadio MD, Aruquipa MPS, Fogacci J, et al. Claudin 18.2 as a New Biomarker in Gastric Cancer—What Should We Know?Cancers (Basel). 2024;16:679. [DOI] [PubMed] [PMC]
Lin A, Yan WH. Human Leukocyte Antigen-G (HLA-G) Expression in Cancers: Roles in Immune Evasion, Metastasis and Target for Therapy.Mol Med. 2015;21:782–91. [DOI] [PubMed] [PMC]
Wu X, Sun Y, Yang H, Wang J, Lou H, Li D, et al. Cadonilimab plus platinum-based chemotherapy with or without bevacizumab as first-line treatment for persistent, recurrent, or metastatic cervical cancer (COMPASSION-16): a randomised, double-blind, placebo-controlled phase 3 trial in China.Lancet. 2024;404:1668–76. [DOI] [PubMed]
Wu L, Li G, Xia B, Li R, Wang J, An R, et al. 430 A phase 1b/II clinical study of AK112, a PD-1/VEGF bispecific antibody, in combination with olaparib in BRCA germline wild-type platinum sensitive recurrent ovarian cancer.J Immunother Cancer. 2021;9:A460. [DOI]
Zhao Y, Fang W, Yang Y, Chen J, Zhuang L, Du Y, et al. A phase II study of AK112 (PD-1/VEGF bispecific) in combination with chemotherapy in patients with advanced non-small cell lung cancer.J Clin Oncol. 2022;40:9019. [DOI]
Sun Y, Yang H, Lou H, Wang J, Wu X, Li D, et al. Cadonilimab plus platinum-based chemotherapy ± bevacizumab for persistent, recurrent, or metastatic cervical cancer: Subgroup analyses of COMPASSION-16.J Clin Oncol. 2025;43:5509. [DOI]
Fleming GF, Sill MW, Darcy KM, McMeekin DS, Thigpen JT, Adler LM, et al. Phase II trial of trastuzumab in women with advanced or recurrent, HER2-positive endometrial carcinoma: a Gynecologic Oncology Group study.Gynecol Oncol. 2010;116:15–20. [DOI] [PubMed] [PMC]
Ku G, Elimova E, Denlinger CS, Mehta R, Lee KW, Iqbal S, et al. 1380P Phase (Ph) II study of zanidatamab + chemotherapy (chemo) in first-line (1L) HER2 expressing gastroesophageal adenocarcinoma (GEA).Ann Oncol. 2021;32:S1044–5. [DOI]
Tabernero J, Shen L, Elimova E, Ku G, Liu T, Shitara K, et al. HERIZON-GEA-01: Zanidatamab + chemo ± tislelizumab for 1L treatment of HER2-positive gastroesophageal adenocarcinoma.Future Oncol. 2022;18:3255–66. [DOI] [PubMed]
Lee Y, Kim HS. Clinicopathological Significance of Claudin-6 Immunoreactivity in Low-grade, Early-stage Endometrioid Endometrial Carcinoma.In Vivo. 2025;39:367–74. [DOI] [PubMed] [PMC]
Cao X, He GZ. Knockdown of CLDN6 inhibits cell proliferation and migration via PI3K/AKT/mTOR signaling pathway in endometrial carcinoma cell line HEC-1-B.Onco Targets Ther. 2018;11:6351–60. [DOI] [PubMed] [PMC]
Jeon H, Vigdorovich V, Garrett-Thomson SC, Janakiram M, Ramagopal UA, Abadi YM, et al. Structure and cancer immunotherapy of the B7 family member B7x.Cell Rep. 2014;9:1089–98. [DOI] [PubMed] [PMC]
Dawidowicz M, Kot A, Mielcarska S, Psykała K, Kula A, Waniczek D, et al. B7H4 Role in Solid Cancers: A Review of the Literature.Cancers (Basel). 2024;16:2519. [DOI] [PubMed] [PMC]
Zong L, Yu S, Mo S, Sun Z, Lu Z, Chen J, et al. B7-H4 Further Stratifies Patients With Endometrial Cancer Exhibiting a Nonspecific Molecular Profile.Arch Pathol Lab Med. 2023;147:1288–97. [DOI] [PubMed]
Niu N, Shen W, Zhong Y, Bast RC Jr, Jazaeri A, Sood AK, et al. Expression of B7-H4 and IDO1 is associated with drug resistance and poor prognosis in high-grade serous ovarian carcinomas.Hum Pathol. 2021;113:20–7. [DOI] [PubMed] [PMC]
Gorzelnik K, Wasaznik-Jedras A, Wicherek L, Szubert S. Expression of B7-H4 in endometrial cancer and its impact on patients’ prognosis.Ginekol Pol. 2024;95:252–8. [DOI] [PubMed]
Yin S, Cui H, Qin S, Yu S. Manipulating TGF-β signaling to optimize immunotherapy for cervical cancer.Biomed Pharmacother. 2023;166:115355. [DOI] [PubMed]
Miller KM, Friedman CF. Bifunctional Blockade: A Novel Immunotherapy Approach for Cervical Cancer.Clin Cancer Res. 2022;28:5238–40. [DOI] [PubMed] [PMC]
Li J, Ma Y, Wu Q, Ping P, Li J, Xu X. The potential role of HPV oncoproteins in the PD-L1/PD-1 pathway in cervical cancer: new perspectives on cervical cancer immunotherapy.Front Oncol. 2024;14:1488730. [DOI] [PubMed] [PMC]
Yi M, Zhang J, Li A, Niu M, Yan Y, Jiao Y, et al. The construction, expression, and enhanced anti-tumor activity of YM101: a bispecific antibody simultaneously targeting TGF-β and PD-L1.J Hematol Oncol. 2021;14:27. [DOI] [PubMed] [PMC]
Zhang H, Chen J, Bai J, Zhang J, Huang S, Zeng L, et al. Single dual-specific anti-PD-L1/TGF-β antibody synergizes with chemotherapy as neoadjuvant treatment for pancreatic ductal adenocarcinoma: a preclinical experimental study.Int J Surg. 2024;110:2679–91. [DOI] [PubMed] [PMC]
Bayly-McCredie E, Treisman M, Fiorenza S. Safety and Efficacy of Bispecific Antibodies in Adults with Large B-Cell Lymphomas: A Systematic Review of Clinical Trial Data.Int J Mol Sci. 2024;25:9736. [DOI] [PubMed] [PMC]
Brahmer JR, Abu-Sbeih H, Ascierto PA, Brufsky J, Cappelli LC, Cortazar FB, et al. Society for Immunotherapy of Cancer (SITC) clinical practice guideline on immune checkpoint inhibitor-related adverse events.J Immunother Cancer. 2021;9:e002435. [DOI] [PubMed] [PMC]
Chennapragada SS, Ramadas P. Bispecific Antibody Toxicity. Treasure Island (FL): StatPearls Publishing; 2025.
Leclercq-Cohen G, Steinhoff N, Albertí Servera L, Nassiri S, Danilin S, Piccione E, et al. Dissecting the Mechanisms Underlying the Cytokine Release Syndrome (CRS) Mediated by T-Cell Bispecific Antibodies.Clin Cancer Res. 2023;29:4449–63. [DOI] [PubMed] [PMC]
Crombie JL, Graff T, Falchi L, Karimi YH, Bannerji R, Nastoupil L, et al. Consensus recommendations on the management of toxicity associated with CD3×CD20 bispecific antibody therapy.Blood. 2024;143:1565–75. [DOI] [PubMed]
Herrera M, Pretelli G, Desai J, Garralda E, Siu LL, Steiner TM, et al. Bispecific antibodies: advancing precision oncology.Trends Cancer. 2024;10:893–919. [DOI] [PubMed]
Shan KS, Musleh Ud Din S, Dalal S, Gonzalez T, Dalal M, Ferraro P, et al. Bispecific Antibodies in Solid Tumors: Advances and Challenges.Int J Mol Sci. 2025;26:5838. [DOI] [PubMed] [PMC]
Middleton MR, McAlpine C, Woodcock VK, Corrie P, Infante JR, Steven NM, et al. Tebentafusp, A TCR/Anti-CD3 Bispecific Fusion Protein Targeting gp100, Potently Activated Antitumor Immune Responses in Patients with Metastatic Melanoma.Clin Cancer Res. 2020;26:5869–78. [DOI] [PubMed] [PMC]
Grigg S, Minson A, Prins E, Dickinson MJ. Relapse after glofitamab has a poor prognosis and rates of CD20 loss are high.Br J Haematol. 2024;205:122–6. [DOI] [PubMed]
Martínez-Sabadell A, Morancho B, Rius Ruiz I, Román Alonso M, Ovejero Romero P, Escorihuela M, et al. The target antigen determines the mechanism of acquired resistance to T cell-based therapies.Cell Rep. 2022;41:111430. [DOI] [PubMed]
Arenas EJ, Martínez-Sabadell A, Rius Ruiz I, Román Alonso M, Escorihuela M, Luque A, et al. Acquired cancer cell resistance to T cell bispecific antibodies and CAR T targeting HER2 through JAK2 down-modulation.Nat Commun. 2021;12:1237. [DOI] [PubMed] [PMC]
Laszlo GS, Gudgeon CJ, Harrington KH, Walter RB. T-cell ligands modulate the cytolytic activity of the CD33/CD3 BiTE antibody construct, AMG 330.Blood Cancer J. 2015;5:e340. [DOI] [PubMed] [PMC]
Krishna M, Nadler SG. Immunogenicity to Biotherapeutics – The Role of Anti-drug Immune Complexes.Front Immunol. 2016;7:21. [DOI] [PubMed] [PMC]
Margul D, Yu C, AlHilli MM. Tumor Immune Microenvironment in Gynecologic Cancers.Cancers (Basel). 2023;15:3849. [DOI] [PubMed] [PMC]
Hamilton EP, Zhu J, Zhuang W, Cheng Y, Shi J, Amin H, et al. Abstract 648: Activity of BNT327/PM8002 (PD-L1 x VEGF-A bispecific antibody) in combination with BNT325/DB-1305 (TROP2 ADC) in solid tumors: Early preclinical and clinical evidence to support BNT327 + ADC combinations.Cancer Res. 2025;85:648. [DOI]
Foà R, Bassan R, Vitale A, Elia L, Piciocchi A, Puzzolo MC, et al.; GIMEMA Investigators. Dasatinib-Blinatumomab for Ph-Positive Acute Lymphoblastic Leukemia in Adults.N Engl J Med. 2020;383:1613–23. [DOI] [PubMed]
Wu L, Seung E, Xu L, Rao E, Lord DM, Wei RR, et al. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation.Nat Cancer. 2020;1:86–98. [DOI] [PubMed]
Geiger M, Stubenrauch KG, Sam J, Richter WF, Jordan G, Eckmann J, et al. Protease-activation using anti-idiotypic masks enables tumor specificity of a folate receptor 1-T cell bispecific antibody.Nat Commun. 2020;11:3196. [DOI] [PubMed] [PMC]
Huang C, Duan X, Wang J, Tian Q, Ren Y, Chen K, et al. Lipid Nanoparticle Delivery System for mRNA Encoding B7H3-redirected Bispecific Antibody Displays Potent Antitumor Effects on Malignant Tumors.Adv Sci (Weinh). 2023;10:2205532. [DOI] [PubMed] [PMC]
Pance K, Gramespacher JA, Byrnes JR, Salangsang F, Serrano JC, Cotton AD, et al. Modular cytokine receptor-targeting chimeras for targeted degradation of cell surface and extracellular proteins.Nat Biotechnol. 2023;41:273–81. [DOI] [PubMed] [PMC]
Marei H, Tsai WK, Kee YS, Ruiz K, He J, Cox C, et al. Antibody targeting of E3 ubiquitin ligases for receptor degradation.Nature. 2022;610:182–9. [DOI] [PubMed] [PMC]
Harris KE, Lorentsen KJ, Malik-Chaudhry HK, Loughlin K, Basappa HM, Hartstein S, et al. A bispecific antibody agonist of the IL-2 heterodimeric receptor preferentially promotes in vivo expansion of CD8 and NK cells.Sci Rep. 2021;11:10592. [DOI] [PubMed] [PMC]
Zhou X, Kortuem KM, Rasche L, Einsele H. Bispecific antibody and chimeric antigen receptor (CAR) modified T-cell in the treatment of multiple myeloma: Where do we stand today?Presse Med. 2025;54:104265. [DOI] [PubMed]