Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Brown JS, Amend SR, Austin RH, Gatenby RA, Hammarlund EU, Pienta KJ. Updating the Definition of Cancer.Mol Cancer Res. 2023;21:1142–7. [DOI] [PubMed] [PMC]
Janani G, Girigoswami A, Deepika B, Udayakumar S, Girigoswami K. Unveiling the Role of Nano-Formulated Red Algae Extract in Cancer Management.Molecules. 2024;29:2077. [DOI] [PubMed] [PMC]
Obafemi FA, Umahi-Ottah G. A review of global Cancer prevalence and therapy.J Cancer Res Treat Prev. 2023;1:128–47. [DOI]
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies.Signal Transduct Target Ther. 2024;9:175. [DOI] [PubMed] [PMC]
Kaviyarasan V, Das A, Deka D, Saha B, Banerjee A, Sharma NR, et al. Advancements in immunotherapy for colorectal cancer treatment: a comprehensive review of strategies, challenges, and future prospective.Int J Colorectal Dis. 2024;40:1. [DOI] [PubMed] [PMC]
Lin MJ, Svensson-Arvelund J, Lubitz GS, Marabelle A, Melero I, Brown BD, et al. Cancer vaccines: the next immunotherapy frontier.Nat Cancer. 2022;3:911–26. [DOI] [PubMed]
Verma C, Pawar VA, Srivastava S, Tyagi A, Kaushik G, Shukla SK, et al. Cancer Vaccines in the Immunotherapy Era: Promise and Potential.Vaccines (Basel). 2023;11:1783. [DOI] [PubMed] [PMC]
Obradovic A. Precision immunotherapy.Science. 2023;379:654–5. [DOI] [PubMed]
Kiyotani K, Toyoshima Y, Nakamura Y. Personalized immunotherapy in cancer precision medicine.Cancer Biol Med. 2021;18:955–65. [DOI] [PubMed] [PMC]
Kaczmarek M, Poznańska J, Fechner F, Michalska N, Paszkowska S, Napierała A, et al. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review.Cells. 2023;12:2159. [DOI] [PubMed] [PMC]
Pail O, Lin MJ, Anagnostou T, Brown BD, Brody JD. Cancer vaccines and the future of immunotherapy.Lancet. 2025;406:189–202. [DOI] [PubMed]
Olawade DB, Teke J, Fapohunda O, Weerasinghe K, Usman SO, Ige AO, et al. Leveraging artificial intelligence in vaccine development: A narrative review.J Microbiol Methods. 2024;224:106998. [DOI] [PubMed]
Satgé D. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept.Front Immunol. 2018;9:1149. [DOI] [PubMed] [PMC]
Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance.Immunol Rev. 2016;272:8–16. [DOI] [PubMed] [PMC]
Champiat S, Raposo RA, Maness NJ, Lehman JL, Purtell SE, Hasenkrug AM, et al. Influence of HAART on alternative reading frame immune responses over the course of HIV-1 infection.PLoS One. 2012;7:e39311. [DOI] [PubMed] [PMC]
Goodenough E, Robinson TM, Zook MB, Flanigan KM, Atkins JF, Howard MT, et al. Cryptic MHC class I-binding peptides are revealed by aminoglycoside-induced stop codon read-through into the 3' UTR.Proc Natl Acad Sci U S A. 2014;111:5670–5. [DOI] [PubMed] [PMC]
Cai Y, Li D, Lv D, Yu J, Ma Y, Jiang T, et al. MHC-I-presented non-canonical antigens expand the cancer immunotherapy targets in acute myeloid leukemia.Sci Data. 2024;11:831. [DOI] [PubMed] [PMC]
Bedran G, Wang T, Pankanin D, Weke K, Laird A, Battail C, et al. The immunopeptidome from a genomic perspective: Establishing immune-relevant regions for cancer vaccine design.bioRxiv [Preprint]. 2022 [cited 2025 Feb 3]. Available from: https://doi.org/10.1101/2022.01.13.475872
Kembuan GJ, Kim JY, Maus MV, Jan M. Targeting solid tumor antigens with chimeric receptors: cancer biology meets synthetic immunology.Trends Cancer. 2024;10:312–31. [DOI] [PubMed] [PMC]
Yi X, Zhao H, Hu S, Dong L, Dou Y, Li J, et al. Tumor-associated antigen prediction using a single-sample gene expression state inference algorithm.Cell Rep Methods. 2024;4:100906. [DOI] [PubMed] [PMC]
Criscitiello C. Tumor-associated antigens in breast cancer.Breast Care (Basel). 2012;7:262–6. [DOI] [PubMed] [PMC]
Rus Bakarurraini NAA, Ab Mutalib NS, Jamal R, Abu N. The Landscape of Tumor-Specific Antigens in Colorectal Cancer.Vaccines (Basel). 2020;8:371. [DOI] [PubMed] [PMC]
Apavaloaei A, Hardy MP, Thibault P, Perreault C. The Origin and Immune Recognition of Tumor-Specific Antigens.Cancers (Basel). 2020;12:2607. [DOI] [PubMed] [PMC]
Hodge JW. Carcinoembryonic antigen as a target for cancer vaccines.Cancer Immunol Immunother. 1996;43:127–34. [DOI] [PubMed]
Stauss HJ, Thomas S, Cesco-Gaspere M, Hart DP, Xue SA, Holler A, et al. WT1-specific T cell receptor gene therapy: improving TCR function in transduced T cells.Blood Cells Mol Dis. 2008;40:113–6. [DOI] [PubMed]
Schumacher TN, Scheper W, Kvistborg P. Cancer Neoantigens.Annu Rev Immunol. 2019;37:173–200. [DOI] [PubMed]
Newkirk KM, Brannick EM, Kusewitt DF. Chapter 6 - Neoplasia and Tumor Biology. In: Zachary JF, editor. Pathologic Basis of Veterinary Disease (Sixth Edition). Mosby; 2017. pp. 286–321.e1. [DOI]
Armstrong TD, Clements VK, Martin BK, Ting JP, Ostrand-Rosenberg S. Major histocompatibility complex class II-transfected tumor cells present endogenous antigen and are potent inducers of tumor-specific immunity.Proc Natl Acad Sci USA. 1997;94:6886–91. [DOI]
von Witzleben A, Wang C, Laban S, Savelyeva N, Ottensmeier CH. HNSCC: Tumour Antigens and Their Targeting by Immunotherapy.Cells. 2020;9:2103. [DOI] [PubMed] [PMC]
Wu X, Li T, Jiang R, Yang X, Guo H, Yang R. Targeting MHC-I molecules for cancer: function, mechanism, and therapeutic prospects.Mol Cancer. 2023;22:194. [DOI] [PubMed] [PMC]
Saffern M, Samstein R. MHCing the tumour’s dark genome.Nat Rev Immunol. 2023;23:140. [DOI] [PubMed] [PMC]
Yang H, Li Q, Stroup EK, Wang S, Ji Z. Widespread stable noncanonical peptides identified by integrated analyses of ribosome profiling and ORF features.Nat Commun. 2024;15:1932. [DOI] [PubMed] [PMC]
Ferreira HJ, Stevenson BJ, Pak H, Yu F, Almeida Oliveira J, Huber F, et al. Immunopeptidomics-based identification of naturally presented non-canonical circRNA-derived peptides.Nat Commun. 2024;15:2357. [DOI] [PubMed] [PMC]
Chong C, Müller M, Pak H, Harnett D, Huber F, Grun D, et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes.Nat Commun. 2020;11:1293. [DOI] [PubMed] [PMC]
Lodha M, Erhard F, Dölken L, Prusty BK. The Hidden Enemy Within: Non-canonical Peptides in Virus-Induced Autoimmunity.Front Microbiol. 2022;13:840911. [DOI] [PubMed] [PMC]
Ely ZA, Kulstad ZJ, Gunaydin G, Addepalli S, Verzani EK, Casarrubios M, et al. Pancreatic cancer-restricted cryptic antigens are targets for T cell recognition.Science. 2025;388:eadk3487. [DOI] [PubMed] [PMC]
Ruiz Cuevas MV, Hardy MP, Hollý J, Bonneil É, Durette C, Courcelles M, et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome.Cell Rep. 2021;34:108815. [DOI] [PubMed] [PMC]
Raja R, Mangalaparthi KK, Madugundu AK, Jessen E, Pathangey L, Magtibay P, et al. Immunogenic cryptic peptides dominate the antigenic landscape of ovarian cancer.Sci Adv. 2025;11:eads7405. [DOI] [PubMed] [PMC]
Rajinikanth N, Chauhan R, Prabakaran S. Harnessing Noncanonical Proteins for Next-Generation Drug Discovery and Diagnosis.WIREs Mech Dis. 2025;17:e70001. [DOI] [PubMed] [PMC]
van Heesch S, Witte F, Schneider-Lunitz V, Schulz JF, Adami E, Faber AB, et al. The Translational Landscape of the Human Heart.Cell. 2019;178:242–60.e29. [DOI] [PubMed]
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, et al. Pervasive functional translation of noncanonical human open reading frames.Science. 2020;367:1140–6. [DOI] [PubMed] [PMC]
Rospo G, Chilà R, Matafora V, Basso V, Lamba S, Bartolini A, et al. Non-canonical antigens are the largest fraction of peptides presented by MHC class I in mismatch repair deficient murine colorectal cancer.Genome Med. 2024;16:15. [DOI] [PubMed] [PMC]
Wilkinson ME, Charenton C, Nagai K. RNA Splicing by the Spliceosome.Annu Rev Biochem. 2020;89:359–88. [DOI] [PubMed]
Baralle D, Buratti E. RNA splicing in human disease and in the clinic.Clin Sci (Lond). 2017;131:355–68. [DOI] [PubMed]
Wang E, Aifantis I. RNA Splicing and Cancer.Trends Cancer. 2020;6:631–44. [DOI] [PubMed]
Douglas AG, Wood MJ. RNA splicing: disease and therapy.Brief Funct Genomics. 2011;10:151–64. [DOI] [PubMed]
Wang BD, Lee NH. Aberrant RNA Splicing in Cancer and Drug Resistance.Cancers (Basel). 2018;10:458. [DOI] [PubMed] [PMC]
Kim YJ, Kim HS. Alternative splicing and its impact as a cancer diagnostic marker.Genomics Inform. 2012;10:74–80. [DOI] [PubMed] [PMC]
Zhang Y, Qian J, Gu C, Yang Y. Alternative splicing and cancer: a systematic review.Signal Transduct Target Ther. 2021;6:78. [DOI] [PubMed] [PMC]
Ramazi S, Zahiri J. Posttranslational modifications in proteins: resources, tools and prediction methods.Database (Oxford). 2021;2021:baab012. [DOI] [PubMed] [PMC]
Petersen J, Purcell AW, Rossjohn J. Post-translationally modified T cell epitopes: immune recognition and immunotherapy.J Mol Med (Berl). 2009;87:1045–51. [DOI] [PubMed]
Engelhard VH, Altrich-Vanlith M, Ostankovitch M, Zarling AL. Post-translational modifications of naturally processed MHC-binding epitopes.Curr Opin Immunol. 2006;18:92–7. [DOI] [PubMed]
Srivastava AK, Guadagnin G, Cappello P, Novelli F. Post-Translational Modifications in Tumor-Associated Antigens as a Platform for Novel Immuno-Oncology Therapies.Cancers (Basel). 2022;15:138. [DOI] [PubMed] [PMC]
Dutta H, Jain N. Post-translational modifications and their implications in cancer.Front Oncol. 2023;13:1240115. [DOI] [PubMed] [PMC]
Vigneron N, Stroobant V, Ferrari V, Abi Habib J, Van den Eynde BJ. Production of spliced peptides by the proteasome.Mol Immunol. 2019;113:93–102. [DOI] [PubMed]
Paes W, Leonov G, Partridge T, Nicastri A, Ternette N, Borrow P. Elucidation of the Signatures of Proteasome-Catalyzed Peptide Splicing.Front Immunol. 2020;11:563800. [DOI] [PubMed] [PMC]
Chang Q, Zhang Y, Liu X, Miao P, Pu W, Liu S, et al. Oxidative Stress in Antigen Processing and Presentation.MedComm – Oncol. 2025;4:e70020. [DOI]
Berkers CR, de Jong A, Schuurman KG, Linnemann C, Meiring HD, Janssen L, et al. Definition of Proteasomal Peptide Splicing Rules for High-Efficiency Spliced Peptide Presentation by MHC Class I Molecules.J Immunol. 2015;195:4085–95. [DOI] [PubMed] [PMC]
Platteel ACM, Liepe J, van Eden W, Mishto M, Sijts AJAM. An Unexpected Major Role for Proteasome-Catalyzed Peptide Splicing in Generation of T Cell Epitopes: Is There Relevance for Vaccine Development?Front Immunol. 2017;8:1441. [DOI] [PubMed] [PMC]
Fierro-Monti I. Tiny proteins, great impacts: non canonical ORFs in cancer.Acad Mol Biol Genom. 2025;2:1–8. [DOI]
Zhang T, Li Z, Li J, Peng Y. Small open reading frame-encoded microproteins in cancer: identification, biological functions and clinical significance.Mol Cancer. 2025;24:105. [DOI] [PubMed] [PMC]
Della Bella E, Koch J, Baerenfaller K. Translation and emerging functions of non-coding RNAs in inflammation and immunity.Allergy. 2022;77:2025–37. [DOI] [PubMed] [PMC]
Prensner JR, Abelin JG, Kok LW, Clauser KR, Mudge JM, Ruiz-Orera J, et al. What Can Ribo-Seq, Immunopeptidomics, and Proteomics Tell Us About the Noncanonical Proteome?Mol Cell Proteomics. 2023;22:100631. [DOI] [PubMed] [PMC]
Sharma VK, Sharma I, Glick J. The expanding role of mass spectrometry in the field of vaccine development.Mass Spectrom Rev. 2020;39:83–104. [DOI] [PubMed] [PMC]
Laumont CM, Daouda T, Laverdure JP, Bonneil É, Caron-Lizotte O, Hardy MP, et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames.Nat Commun. 2016;7:10238. [DOI] [PubMed] [PMC]
Hofman DA, Prensner JR, van Heesch S. Microproteins in cancer: identification, biological functions, and clinical implications.Trends Genet. 2025;41:146–61. [DOI] [PubMed] [PMC]
Dhatchinamoorthy K, Colbert JD, Rock KL. Cancer Immune Evasion Through Loss of MHC Class I Antigen Presentation.Front Immunol. 2021;12:636568. [DOI] [PubMed] [PMC]
Ahn R, Cui Y, White FM. Antigen discovery for the development of cancer immunotherapy.Semin Immunol. 2023;66:101733. [DOI] [PubMed]
Mapara MY, Sykes M. Tolerance and cancer: mechanisms of tumor evasion and strategies for breaking tolerance.J Clin Oncol. 2004;22:1136–51. [DOI] [PubMed]
Malonis RJ, Lai JR, Vergnolle O. Peptide-Based Vaccines: Current Progress and Future Challenges.Chem Rev. 2020;120:3210–29. [DOI] [PubMed] [PMC]
Abd-Aziz N, Poh CL. Development of Peptide-Based Vaccines for Cancer.J Oncol. 2022;2022:9749363. [DOI] [PubMed] [PMC]
Buonaguro L, Tagliamonte M. Peptide-based vaccine for cancer therapies.Front Immunol. 2023;14:1210044. [DOI] [PubMed] [PMC]
Tokita S, Kanaseki T, Torigoe T. Therapeutic Potential of Cancer Vaccine Based on MHC Class I Cryptic Peptides Derived from Non-Coding Regions.Immuno. 2021;1:424–31. [DOI]
Peng K, Zhao X, Fu YX, Liang Y. Eliciting antitumor immunity via therapeutic cancer vaccines.Cell Mol Immunol. 2025;22:840–68. [DOI] [PubMed] [PMC]
Vishweshwaraiah YL, Dokholyan NV. mRNA vaccines for cancer immunotherapy.Front Immunol. 2022;13:1029069. [DOI] [PubMed] [PMC]
Heine A, Juranek S, Brossart P. Clinical and immunological effects of mRNA vaccines in malignant diseases.Mol Cancer. 2021;20:52. [DOI] [PubMed] [PMC]
Gote V, Bolla PK, Kommineni N, Butreddy A, Nukala PK, Palakurthi SS, et al. A Comprehensive Review of mRNA Vaccines.Int J Mol Sci. 2023;24:2700. [DOI] [PubMed] [PMC]
To KKW, Cho WCS. An overview of rational design of mRNA-based therapeutics and vaccines.Expert Opin Drug Discov. 2021;16:1307–17. [DOI] [PubMed]
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, et al. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases.Signal Transduct Target Ther. 2023;8:149. [DOI] [PubMed] [PMC]
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development.NPJ Vaccines. 2022;7:75. [DOI] [PubMed] [PMC]
Lu B, Lim JM, Yu B, Song S, Neeli P, Sobhani N, et al. The next-generation DNA vaccine platforms and delivery systems: advances, challenges and prospects.Front Immunol. 2024;15:1332939. [DOI] [PubMed] [PMC]
Yang B, Jeang J, Yang A, Wu TC, Hung CF. DNA vaccine for cancer immunotherapy.Hum Vaccin Immunother. 2014;10:3153–64. [DOI] [PubMed] [PMC]
Shariati A, Khezrpour A, Shariati F, Afkhami H, Yarahmadi A, Alavimanesh S, et al. DNA vaccines as promising immuno-therapeutics against cancer: a new insight.Front Immunol. 2025;15:1498431. [DOI] [PubMed] [PMC]
Saxena M, Balan S, Roudko V, Bhardwaj N. Towards superior dendritic-cell vaccines for cancer therapy.Nat Biomed Eng. 2018;2:341–6. [DOI] [PubMed] [PMC]
Lee KW, Yam JWP, Mao X. Dendritic Cell Vaccines: A Shift from Conventional Approach to New Generations.Cells. 2023;12:2147. [DOI] [PubMed] [PMC]
Garg AD, Coulie PG, Van den Eynde BJ, Agostinis P. Integrating Next-Generation Dendritic Cell Vaccines into the Current Cancer Immunotherapy Landscape.Trends Immunol. 2017;38:577–93. [DOI] [PubMed]
Wu W, Liu Y, Zeng S, Han Y, Shen H. Intratumor heterogeneity: the hidden barrier to immunotherapy against MSI tumors from the perspective of IFN-γ signaling and tumor-infiltrating lymphocytes.J Hematol Oncol. 2021;14:160. [DOI] [PubMed] [PMC]
Blass E, Ott PA. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines.Nat Rev Clin Oncol. 2021;18:215–29. [DOI] [PubMed] [PMC]
Aljabali AAA, Hamzat Y, Alqudah A, Alzoubi L. Neoantigen vaccines: advancing personalized cancer immunotherapy.Explor Immunol. 2025;5:1003190. [DOI]
Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy.Mol Cancer. 2019;18:128. [DOI] [PubMed] [PMC]
Wilke AC, Gökbuget N. Clinical applications and safety evaluation of the new CD19 specific T-cell engager antibody construct blinatumomab.Expert Opin Drug Saf. 2017;16:1191–202. [DOI] [PubMed]
Choi S, Paek E. pXg: Comprehensive Identification of Noncanonical MHC-I-Associated Peptides From De Novo Peptide Sequencing Using RNA-Seq Reads.Mol Cell Proteomics. 2024;23:100743. [DOI] [PubMed] [PMC]
Kim SK, Cho SW. The Evasion Mechanisms of Cancer Immunity and Drug Intervention in the Tumor Microenvironment.Front Pharmacol. 2022;13:868695. [DOI] [PubMed] [PMC]
Emens LA, Romero PJ, Anderson AC, Bruno TC, Capitini CM, Collyar D, et al. Challenges and opportunities in cancer immunotherapy: a Society for Immunotherapy of Cancer (SITC) strategic vision.J Immunother Cancer. 2024;12:e009063. [DOI] [PubMed] [PMC]
Kumar A, Ahmad F, Sah BK, Aljabali AA, Mishra Y, Mishra V. Advancements in viral vaccine development: from traditional to modern approaches.Explor Immunol. 2025;5:1003203. [DOI]
Li BT, Daly B, Gospodarowicz M, Bertagnolli MM, Brawley OW, Chabner BA, et al. Reimagining patient-centric cancer clinical trials: a multi-stakeholder international coalition.Nat Med. 2022;28:620–6. [DOI] [PubMed]