Open Exploration maintains a neutral stance on jurisdictional claims in published institutional affiliations and maps. All opinions expressed in this article are the personal views of the author(s) and do not represent the stance of the editorial team or the publisher.
References
Neyisci C, Erdem Y. Battle Against Musculoskeletal Tumors: Descriptive Data of Military Hospital Experience.Front Public Health. 2020;8:97. [DOI] [PubMed] [PMC]
Voltan K, Baptista AM, Etchebehere M. Extremities Soft Tissue Sarcomas, more Common and as Dangerous as Bone Sarcomas.Rev Bras Ortop (Sao Paulo). 2021;56:419–24. [DOI] [PubMed] [PMC]
Xu Y, Shi F, Zhang Y, Yin M, Han X, Feng J, et al. Twenty-year outcome of prevalence, incidence, mortality and survival rate in patients with malignant bone tumors.Int J Cancer. 2024;154:226–40. [DOI] [PubMed]
Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023.CA Cancer J Clin. 2023;73:17–48. [DOI] [PubMed]
Carrle D, Bielack SS. Current strategies of chemotherapy in osteosarcoma.Int Orthop. 2006;30:445–51. [DOI] [PubMed] [PMC]
Chen X, Bahrami A, Pappo A, Easton J, Dalton J, Hedlund E, et al.; St. Jude Children’s Research Hospital–Washington University Pediatric Cancer Genome Project. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma.Cell Rep. 2014;7:104–12. [DOI] [PubMed] [PMC]
Czarnecka AM, Synoradzki K, Firlej W, Bartnik E, Sobczuk P, Fiedorowicz M, et al. Molecular Biology of Osteosarcoma.Cancers (Basel). 2020;12:2130. [DOI] [PubMed] [PMC]
Chen S, Deniz K, Sung YS, Zhang L, Dry S, Antonescu CR. Ewing sarcoma with ERG gene rearrangements: A molecular study focusing on the prevalence of FUS-ERG and common pitfalls in detecting EWSR1-ERG fusions by FISH.Genes Chromosomes Cancer. 2016;55:340–9. [DOI] [PubMed] [PMC]
Cidre-Aranaz F, Alonso J. EWS/FLI1 Target Genes and Therapeutic Opportunities in Ewing Sarcoma.Front Oncol. 2015;5:162. [DOI] [PubMed] [PMC]
Lugowska I, Teterycz P, Mikula M, Kulecka M, Kluska A, Balabas A, et al. IDH1/2 Mutations Predict Shorter Survival in Chondrosarcoma.J Cancer. 2018;9:998–1005. [DOI] [PubMed] [PMC]
Vuong HG, Ngo TNM, Dunn IF. Prognostic importance of IDH mutations in chondrosarcoma: An individual patient data meta-analysis.Cancer Med. 2021;10:4415–23. [DOI] [PubMed] [PMC]
Cassinelli G, Pasquali S, Lanzi C. Beyond targeting amplified MDM2 and CDK4 in well differentiated and dedifferentiated liposarcomas: From promise and clinical applications towards identification of progression drivers.Front Oncol. 2022;12:965261. [DOI] [PubMed] [PMC]
Conyers R, Young S, Thomas DM. Liposarcoma: molecular genetics and therapeutics.Sarcoma. 2011;2011:483154. [DOI] [PubMed] [PMC]
Ladanyi M, Antonescu CR, Leung DH, Woodruff JM, Kawai A, Healey JH, et al. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: a multi-institutional retrospective study of 243 patients.Cancer Res. 2002;62:135–40. [PubMed]
Gleditsch K, Peñas J, Mercer D, Umrigar A, Briscoe J, Stark M, et al. Intratumoral Translocation Positive Heterogeneity in Pediatric Alveolar Rhabdomyosarcoma Tumors Correlates to Patient Survival Prognosis.Front Cell Dev Biol. 2020;8:564136. [DOI] [PubMed] [PMC]
Shern JF, Chen L, Chmielecki J, Wei JS, Patidar R, Rosenberg M, et al. Comprehensive genomic analysis of rhabdomyosarcoma reveals a landscape of alterations affecting a common genetic axis in fusion-positive and fusion-negative tumors.Cancer Discov. 2014;4:216–31. [DOI] [PubMed] [PMC]
Hanahan D. Hallmarks of Cancer: New Dimensions.Cancer Discov. 2022;12:31–46. [DOI] [PubMed]
Llinàs-Arias P, Esteller M. Epigenetic inactivation of tumour suppressor coding and non-coding genes in human cancer: an update.Open Biol. 2017;7:170152. [DOI] [PubMed] [PMC]
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics.Clin Exp Med. 2018;18:1–14. [DOI] [PubMed]
Ramassone A, Pagotto S, Veronese A, Visone R. Epigenetics and MicroRNAs in Cancer.Int J Mol Sci. 2018;19:459. [DOI] [PubMed] [PMC]
Agrawal K, Das V, Vyas P, Hajdúch M. Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic.Pharmacol Ther. 2018;188:45–79. [DOI] [PubMed]
Joyce BT, Gao T, Zheng Y, Liu L, Zhang W, Dai Q, et al. Prospective changes in global DNA methylation and cancer incidence and mortality.Br J Cancer. 2016;115:465–72. [DOI] [PubMed] [PMC]
Tian W, Li Y, Zhang J, Li J, Gao J. Combined analysis of DNA methylation and gene expression profiles of osteosarcoma identified several prognosis signatures.Gene. 2018;650:7–14. [DOI] [PubMed]
Rosenblum JM, Wijetunga NA, Fazzari MJ, Krailo M, Barkauskas DA, Gorlick R, et al. Predictive properties of DNA methylation patterns in primary tumor samples for osteosarcoma relapse status.Epigenetics. 2015;10:31–9. [DOI] [PubMed] [PMC]
Park HR, Jung WW, Kim HS, Park YK. Microarray-based DNA methylation study of Ewing’s sarcoma of the bone.Oncol Lett. 2014;8:1613–7. [DOI] [PubMed] [PMC]
Sheffield NC, Pierron G, Klughammer J, Datlinger P, Schönegger A, Schuster M, et al. DNA methylation heterogeneity defines a disease spectrum in Ewing sarcoma.Nat Med. 2017;23:386–95. [DOI] [PubMed] [PMC]
Richter GH, Plehm S, Fasan A, Rössler S, Unland R, Bennani-Baiti IM, et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation.Proc Natl Acad Sci U S A. 2009;106:5324–9. [DOI] [PubMed] [PMC]
Janke R, Iavarone AT, Rine J. Oncometabolite D-2-Hydroxyglutarate enhances gene silencing through inhibition of specific H3K36 histone demethylases.Elife. 2017;6:e22451. [DOI] [PubMed] [PMC]
Liu L, Hu K, Feng J, Wang H, Fu S, Wang B, et al. The oncometabolite R-2-hydroxyglutarate dysregulates the differentiation of human mesenchymal stromal cells via inducing DNA hypermethylation.BMC Cancer. 2021;21:36. [DOI] [PubMed] [PMC]
Nicolle R, Ayadi M, Gomez-Brouchet A, Armenoult L, Banneau G, Elarouci N, et al. Integrated molecular characterization of chondrosarcoma reveals critical determinants of disease progression.Nat Commun. 2019;10:4622. [DOI] [PubMed] [PMC]
Sun W, Chatterjee B, Wang Y, Stevenson HS, Edelman DC, Meltzer PS, et al. Distinct methylation profiles characterize fusion-positive and fusion-negative rhabdomyosarcoma.Mod Pathol. 2015;28:1214–24. [DOI] [PubMed] [PMC]
Tombolan L, Poli E, Martini P, Zin A, Millino C, Pacchioni B, et al. Global DNA methylation profiling uncovers distinct methylation patterns of protocadherin alpha4 in metastatic and non-metastatic rhabdomyosarcoma.BMC Cancer. 2016;16:886. [DOI] [PubMed] [PMC]
Liu C, Zhang L, Cui W, Du J, Li Z, Pang Y, et al. Epigenetically upregulated GEFT-derived invasion and metastasis of rhabdomyosarcoma via epithelial mesenchymal transition promoted by the Rac1/Cdc42-PAK signalling pathway.EBioMedicine. 2019;50:122–34. [DOI] [PubMed] [PMC]
Kim WY, Sharpless NE. The regulation of INK4/ARF in cancer and aging.Cell. 2006;127:265–75. [DOI] [PubMed]
Oh JH, Kim HS, Kim HH, Kim WH, Lee SH. Aberrant methylation of p14ARF gene correlates with poor survival in osteosarcoma.Clin Orthop Relat Res. 2006;442:216–22. [DOI] [PubMed]
Röpke M, Boltze C, Neumann HW, Roessner A, Schneider-Stock R. Genetic and epigenetic alterations in tumor progression in a dedifferentiated chondrosarcoma.Pathol Res Pract. 2003;199:437–44. [DOI] [PubMed]
Jin Z, Han YX, Han XR. Loss of RUNX3 expression may contribute to poor prognosis in patients with chondrosarcoma.J Mol Histol. 2013;44:645–52. [DOI] [PubMed]
Sun W, Chatterjee B, Shern JF, Patidar R, Song Y, Wang Y, et al. Relationship of DNA methylation to mutational changes and transcriptional organization in fusion-positive and fusion-negative rhabdomyosarcoma.Int J Cancer. 2019;144:2707–17. [DOI] [PubMed] [PMC]
Hou P, Ji M, Yang B, Chen Z, Qiu J, Shi X, et al. Quantitative analysis of promoter hypermethylation in multiple genes in osteosarcoma.Cancer. 2006;106:1602–9. [DOI] [PubMed]
Wu SP, Cooper BT, Bu F, Bowman CJ, Killian JK, Serrano J, et al. DNA Methylation–Based Classifier for Accurate Molecular Diagnosis of Bone Sarcomas.JCO Precis Oncol. 2017;1:1–11. [DOI] [PubMed] [PMC]
Koelsche C, Hartmann W, Schrimpf D, Stichel D, Jabar S, Ranft A, et al. Array-based DNA-methylation profiling in sarcomas with small blue round cell histology provides valuable diagnostic information.Mod Pathol. 2018;31:1246–56. [DOI] [PubMed] [PMC]
Lyskjær I, De Noon S, Tirabosco R, Rocha AM, Lindsay D, Amary F, et al. DNA methylation-based profiling of bone and soft tissue tumours: a validation study of the ‘DKFZ Sarcoma Classifier’.J Pathol Clin Res. 2021;7:350–60. [DOI] [PubMed] [PMC]
Roohani S, Ehret F, Perez E, Capper D, Jarosch A, Flörcken A, et al. Sarcoma classification by DNA methylation profiling in clinical everyday life: the Charité experience.Clin Epigenetics. 2022;14:149. [DOI] [PubMed] [PMC]
Barenboim M, Kovac M, Ameline B, Jones DTW, Witt O, Bielack S, et al. DNA methylation-based classifier and gene expression signatures detect BRCAness in osteosarcoma.PLoS Comput Biol. 2021;17:e1009562. [DOI] [PubMed] [PMC]
Lietz CE, Newman ET, Kelly AD, Xiang DH, Zhang Z, Luscko CA, et al. Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma.Commun Biol. 2022;5:213. [DOI] [PubMed] [PMC]
Starzer AM, Berghoff AS, Hamacher R, Tomasich E, Feldmann K, Hatziioannou T, et al. Tumor DNA methylation profiles correlate with response to anti-PD-1 immune checkpoint inhibitor monotherapy in sarcoma patients.J Immunother Cancer. 2021;9:e001458. [DOI] [PubMed] [PMC]
Yu W, Zhang L, Wei Q, Shao A. O6-Methylguanine-DNA Methyltransferase (MGMT): Challenges and New Opportunities in Glioma Chemotherapy.Front Oncol. 2020;9:1547. [DOI] [PubMed] [PMC]
Salah S, Naser W, Jaber O, Saleh Y, Mustafa R, Abuhijlih R, et al. The O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status and clinical outcomes of Ewing sarcoma patients treated with irinotecan and temozolomide.Rep Pract Oncol Radiother. 2022;27:759–67. [DOI] [PubMed] [PMC]
Cui Q, Jiang W, Guo J, Liu C, Li D, Wang X, et al. Relationship between hypermethylated MGMT gene and osteosarcoma necrosis rate after chemotherapy.Pathol Oncol Res. 2011;17:587–91. [DOI] [PubMed]
Alix-Panabières C, Pantel K. Liquid Biopsy: From Discovery to Clinical Application.Cancer Discov. 2021;11:858–73. [DOI] [PubMed]
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management.Biomol Detect Quantif. 2019;17:100087. [DOI] [PubMed] [PMC]
Shi J, Zhang R, Li J, Zhang R. Size profile of cell-free DNA: A beacon guiding the practice and innovation of clinical testing.Theranostics. 2020;10:4737–48. [DOI] [PubMed] [PMC]
Udomruk S, Phanphaisarn A, Kanthawang T, Sangphukieo A, Sutthitthasakul S, Tongjai S, et al. Characterization of Cell-Free DNA Size Distribution in Osteosarcoma Patients.Clin Cancer Res. 2023;29:2085–94. [DOI] [PubMed]
Peneder P, Stütz AM, Surdez D, Krumbholz M, Semper S, Chicard M, et al. Multimodal analysis of cell-free DNA whole-genome sequencing for pediatric cancers with low mutational burden.Nat Commun. 2021;12:3230. [DOI] [PubMed] [PMC]
Lyskjær I, Kara N, De Noon S, Davies C, Rocha AM, Strobl AC, et al. Osteosarcoma: Novel prognostic biomarkers using circulating and cell-free tumour DNA.Eur J Cancer. 2022;168:1–11. [DOI] [PubMed]
Christman JK. 5-Azacytidine and 5-aza-2'-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy.Oncogene. 2002;21:5483–95. [DOI] [PubMed]
Krishnadas DK, Bao L, Bai F, Chencheri SC, Lucas K. Decitabine facilitates immune recognition of sarcoma cells by upregulating CT antigens, MHC molecules, and ICAM-1.Tumour Biol. 2014;35:5753–62. [DOI] [PubMed]
Numoto K, Yoshida A, Sugihara S, Kunisada T, Morimoto Y, Yoneda Y, et al. Frequent methylation of RASSF1A in synovial sarcoma and the anti-tumor effects of 5-aza-2'-deoxycytidine against synovial sarcoma cell lines.J Cancer Res Clin Oncol. 2010;136:17–25. [DOI] [PubMed]
Gutierrez WR, Scherer A, Rytlewski JD, Laverty EA, Sheehan AP, McGivney GR, et al. Augmenting chemotherapy with low-dose decitabine through an immune-independent mechanism.JCI Insight. 2022;7:e159419. [DOI] [PubMed] [PMC]
Higuchi T, Han Q, Miyake K, Oshiro H, Sugisawa N, Tan Y, et al. Combination of oral recombinant methioninase and decitabine arrests a chemotherapy-resistant undifferentiated soft-tissue sarcoma patient-derived orthotopic xenograft mouse model.Biochem Biophys Res Commun. 2020;523:135–9. [DOI] [PubMed]
Monga V, Dodd R, Scherer A, Gutierrez WR, Tanas M, Mott SL, et al. Phase Ib study of decitabine in combination with gemcitabine in treatment of advanced soft tissue and bone sarcomas.J Clin Oncol. 2020;38:11550. [DOI]
Krishnadas DK, Shusterman S, Bai F, Diller L, Sullivan JE, Cheerva AC, et al. A phase I trial combining decitabine/dendritic cell vaccine targeting MAGE-A1, MAGE-A3 and NY-ESO-1 for children with relapsed or therapy-refractory neuroblastoma and sarcoma.Cancer Immunol Immunother. 2015;64:1251–60. [DOI] [PubMed] [PMC]
Oza J, Lee SM, Weiss MC, Siontis BL, Powers BC, Chow WA, et al. A phase 2 study of belinostat and SGI-110 (guadecitabine) for the treatment of unresectable and metastatic conventional chondrosarcoma.J Clin Oncol. 2021;39:TPS11578. [DOI]
Kim D, Kim KI, Baek SH. Roles of lysine-specific demethylase 1 (LSD1) in homeostasis and diseases.J Biomed Sci. 2021;28:41. [DOI] [PubMed] [PMC]
Reed DR, Mascarenhas L, Meyers PA, Chawla SP, Harrison DJ, Setty B, et al. A phase I/II clinical trial of the reversible LSD1 inhibitor, seclidemstat, in patients with relapsed/refractory Ewing sarcoma.J Clin Oncol. 2020;38:TPS11567. [DOI]
Sobczuk P, Zhang T, Dermawan J, Koche RP, Hamard PJ, Jagodzinska-Mucha P, et al. 47MO Activating EZH2 mutations define a new subset of aggressive Ewing sarcomas.ESMO Open. 2023;8:101084. [DOI]
Chi SN, Yi JS, Williams PM, Roy-Chowdhuri S, Patton DR, Coffey B, et al. Tazemetostat in patients with tumors with alterations in EZH2 or the SWI/SNF complex: Results from NCI-COG Pediatric MATCH trial Arm C (APEC1621C).J Clin Oncol. 2022;40:10009. [DOI]
Sweet-Cordero EA, Biegel JA. The genomic landscape of pediatric cancers: Implications for diagnosis and treatment.Science. 2019;363:1170–5. [DOI] [PubMed] [PMC]
Ghantous A, Nusslé SG, Nassar FJ, Spitz N, Novoloaca A, Krali O, et al. Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth.Mol Cancer. 2024;23:238. [DOI] [PubMed] [PMC]
Cheng MW, Mitra M, Coller HA. Pan-cancer landscape of epigenetic factor expression predicts tumor outcome.Commun Biol. 2023;6:1138. [DOI] [PubMed] [PMC]
Saghafinia S, Mina M, Riggi N, Hanahan D, Ciriello G. Pan-Cancer Landscape of Aberrant DNA Methylation across Human Tumors.Cell Rep. 2018;25:1066–80.e8. [DOI] [PubMed]