Table S1. Quality Assessment.

Study	Study Type	Assessment Tool	Score/Confidence	Risk of Bias Summary	Study quality (per tool)
Nakahara et al. [1] 2017	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable - review paper	Not applicable
Budoff et al. [2] 2016	Observational cohort	NOS	7/9	Low risk - well- designed, defined metrics	High
Faulder et al. [3] 2024	Meta-analysis	AMSTAR 2	Not scored	Low risk - rigorous methodology	High
Channon et al. [4] 2022	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Cundari et al. [5] 2024	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Schuijf et al. [6] 2020	Prospective cohort	NOS	7/9	Low risk	High

Lima & Schuijf [7] 2020	Expert commentary	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Williams et al. [8] 2020	Prospective cohort	NOS	8/9	Low risk - robust core-lab methods	High
Yu et al. [18] 2025	Retrospective cohort	NOS	6/9	Moderate risk - single center	Moderate
Klüner et al. [9] 2021	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Rajiah et al. [10] 2022	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Nørgaard et al. [11] 2019	Expert consensus	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Manubolu et al. [12] 2024	Retrospective cohort	NOS	6/9	Moderate risk - moderate size	Moderate
Gallone et al. [13] 2023	Systematic review	AMSTAR 2	Not scored	Low risk - solid meta-analysis	High

Nørgaard et al. [14] 2022	Meta-analysis	AMSTAR 2	Not scored	Low risk	High
Mathew et al. [15] 2018	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Schuijf et al. [16] 2018	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Kimura et al. [17] 2015	Cost-analysis study	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
van der Bijl et al. [19] 2022	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Deseive et al. [20] 2018	Retrospective cohort	NOS	6/9	Moderate risk	Moderate
Yamaura et al. [21] 2022	Cross-sectional study	NOS	5/9	Moderate risk - cross-sectional	Moderate
Antoniades & Shirodaria [22] 2019	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable

Abdulkareem et al. [23] 2022	Retrospective cohort	NOS	6/9	Moderate risk	Moderate
Oikonomou et al. [24] 2019	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Vecsey-Nagy et al. [25] 2024	Retrospective cohort	NOS	6/9	Moderate risk	Moderate
Alyami et al. [26] 2023	Observational cohort	NOS	6/9	Moderate risk	Moderate
Alfakih et al. [27] 2018	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Coerkamp et al. [28] 2025	Prospective cohort	NOS	6/9	Moderate risk - preliminary cohort	Moderate
Cai et al. [29] 2023	Prospective cohort	NOS	7/9	Low risk - prospective design	High
Yu et al. [31] 2020	Prospective cohort	NOS	6/9	Moderate risk	Moderate
Pontone et al. [32] 2021	Editorial/commentary	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable

Imai et al. [33] 2019	Retrospective cohort	NOS	6/9	Moderate risk	Moderate
Min et al. [34] 2022	Cross-sectional study	NOS	5/9	Moderate risk	Moderate
Simantiris et al. [35] 2024	Narrative review	Not applicable (non-original data)	Not applicable (non-original data)	Not applicable	Not applicable
Oikonomou et al. [36] 2018	Post-hoc from cohort	NOS	7/9	Low risk - crisp-ct derived data	High
Khan et al. [37] 2023	Retrospective cohort	NOS	6/9	Moderate risk	Moderate

Notes:

- NOS categories: 0-3 = Low, 4-6 = Moderate, 7-9 = High.
- Inclusion threshold: NOS \geq 5 (moderate or high) was set a priori owing to limited evidence and heterogeneity in CT biomarkers; a sensitivity analysis restricted to NOS \geq 7 was performed to assess robustness.
- Non-original items (narrative reviews, editorials, consensus statements) are contextual and not included in the quantitative synthesis.

Table S2. GRADE Certainty of Evidence.

Outcome	# of Studies	Study Types	Certainty of Evidence	Comments
MACE (LAP, FAI, high-risk plaque)	12	7 prospective/retrospective cohorts, 3 post-hoc RCTs, 2 meta-analyses	Moderate	Downgraded for observational design; upgraded due to consistent HRs (~2–4) across SCOT-HEART, CRISP-CT, etc.
Myocardial Infarction	7	5 cohorts, 2 meta-analyses	Moderate	Adjusted HRs in SCOT-HEART; consistent moderate heterogeneity
Cardiovascular Mortality	5	3 cohorts, 2 systematic/meta- analyses	Low	Mostly secondary outcomes with less precision
Ischemia Detection (FFR-CT, Perfusion)	11	5 RCTs/post-hoc RCTs, 3 cohorts, 3 meta-analyses	High	Multiple RCTs/meta- analyses with robust AUC/accuracy data (AUC 0.86–0.88, sensitivity ~81–83%)

CAD Risk Reclassification (FAI, EAT)	6	4 prospective cohorts, 2 observational studies	Moderate	Consistent ORs (~1.5– 2.3) and AUC (~0.76– 0.88) across analyses
Epicardial / Perivascular Fat Analysis	8	5 retrospective cohorts, 3 systematic reviews	Low	Observational, narrative reviews with inconsistent quantification
Plaque Characterization and Burden	8	6 cohorts, 2 meta-analyses	Moderate	Consistent associations; e.g., adjusted HRs for LAP in multiple cohorts

Table S3. Study Characteristics.

Authors	Year	Study Type	Objective / Purpose	Key Findings
Nakahara et al. [1]	2017	Review	Review of coronary artery calcification and its role in CVD risk prediction.	CAC scoring independently predicts CV risk.
Budoff et al. [2]	2016	Observational	Assess CT angiography in identifying hemodynamic significance in lesions.	CT angiography helps in identifying hemodynamic significance.
Faulder et al. [3]	2024	Meta-analysis	Compare CT-derived FFR vs invasive FFR across studies.	CT-FFR correlates well with invasive FFR.
Channon et al. [4]	2022	Review	Overview of CCTA and related biomarkers including fat and flow.	Fat and flow biomarkers enhance CT utility.
Cundari et al. [5]	2024	Review	Review imaging biomarkers beyond anatomical plaque burden.	Biomarkers improve risk prediction beyond anatomy.
Schuijf et al. [6]	2020	Prospective Multicenter	Analyze INOCA using various modalities including CT perfusion.	CT perfusion and CTA provide complementary info.
Lima & Schuijf [7]	2020	Expert Commentary	Highlight multiparameter phenotyping for CAD risk stratification.	Combining CT perfusion and scar imaging improves prognosis.

Williams et al. [8]	2020	Prospective Cohort	Assess LAP on CCTA for prediction of MI in SCOT-HEART trial.	LAP is strong predictor of MI.
Yu et al. [18]	2025	Retrospective Cohort	Examine FAI in young patients and its link to MACE.	FAI is predictive of MACE in young CAD-suspected patients.
Klüner et al. [9]	2021	Review	Summarize how FAI is used for risk stratification.	FAI quantifies perivascular inflammation.
Rajiah et al. [10]	2022	Review	Practical guide for CT FFR interpretation and utility.	CT FFR feasible and clinically helpful.
Nørgaard et al. [11]	2019	Expert Consensus	Provide recommendations for CT-FFR interpretation.	Recommends how to report CT FFR results.
Manubolu et al. [12]	2024	Retrospective Cohort	Assess the relationship between EAT and coronary plaque burden.	Higher EAT associated with increased plaque burden.
Gallone et al. [13]	2023	Systematic Review	Summarize plaque characteristics associated with MACE.	High-risk plaque traits predict MACE.
Nørgaard et al. [14]	2022	Meta-analysis	Evaluate prognostic value of CT FFR via meta-analysis.	CT-FFR provides strong prognostic value.
Mathew et al. [15]	2018	Review	Discuss how CT FFR guides interventions.	CT-FFR useful for guiding PCI decisions.

Schuijf et al. [16]	2018	Review	Guide clinical application of CT FFR and perfusion.	Describes FFR and perfusion with CT.
Kimura et al. [17]	2015	Cost Analysis	Analyze cost-effectiveness of CT FFR in Japan.	CT FFR shown to be cost-effective.
van der Bijl et al. [19]	2022	Review	Describe PAT attenuation's diagnostic/prognostic roles.	High PAT attenuation predicts CAD events.
Deseive et al. [20]	2018	Retrospective Cohort	Quantify low-attenuation plaque volume and predict events.	LAP predicts future events and reclassifies risk.
Yamaura et al. [21]	2022	Cross-sectional	Identify determinants of LAP burden in asymptomatic patients.	LAP linked to LDL and other metabolic factors.
Antoniades & Shirodaria [22]	2019	Review	Describe perivascular attenuation maps and interpretation.	Perivascular maps reflect inflammation.
Abdulkareem et al. [23]	2022	AI-based Imaging Study	Use deep learning to quantify EAT and attenuation.	AI enables accurate EAT quantification.
Oikonomou et al. [24]	2019	Review	Review coronary inflammation and plaque features.	CT detects inflammation and predicts risk.
Vecsey-Nagy et al. [25]	2024	Retrospective Cohort	Relate low-attenuation burden to troponin in CCS.	Troponin release mediated by LAP.
Alyami et al. [26]	2023	Observational	Assess prevalence of non-calcified plaque on CTA.	Non-calcified plaque present in asymptomatic adults.

Alfakih et al.	2018	Review	Promote CTA over functional	CTCA preferred over functional
[27]			testing for CAD evaluation.	testing.
Coerkamp et al. [28]	2025	Observational	Assess whether FAI reclassifies CV risk on CCTA.	FAI improves CV risk reclassification.
Cai et al. [29]	2023	Prospective Cohort	Compare CT-FFR at different lesion sites.	Distal site FFRCT more accurate for ischemia.
Yu et al. [31]	2020	Prospective Cohort	Evaluate FAI in predicting ischemia severity.	FAI predicts hemodynamic lesion severity.
Pontone et al. [32]	2021	Editorial	Commentary on dynamic perfusion value in CT.	Dynamic perfusion enhances lesion detection.
Imai et al. [33]	2019	Retrospective Cohort	Link nonobstructive lesions with abnormal CT-FFR.	High-risk features in nonobstructive CAD lesions.
Min et al. [34]	2022	Cross-sectional	Correlate CTA plaque volume with invasive FFR.	CT plaque staging aligns with FFR.
Simantiris et al. [35]	2024	Review	Discuss perivascular fat as CAD risk factor.	FAI linked to subclinical atherosclerosis.
Oikonomou et al. [36]	2018	Post-hoc Analysis	Study inflammation detection via CCTA (CRISP-CT).	CRISP-CT: inflammation detected via CT predicts MACE.
Khan et al. [37]	2023	Retrospective Cohort	Evaluate EAT volume and ischemia in nonobstructive CAD.	High EAT volume linked to plaque and ischemia.

Table S4. Definitions and Cut-offs Used Across Cardiac CT Biomarker Studies.

Biomarker	Core definition / HU window	Measurement region / protocol	Common cut-off(s) reported	Known variants across studies
Low-attenuation plaque (LAP)	Plaque voxels <30 HU (necrotic/low-density component) within coronary plaque volume [1,7]	Lesion- or vessel-level segmentation on CCTA; semi-automated plaque analysis	LAP burden >4% of total plaque volume; continuous per-doubling of LAP burden	Some studies use alternative HU thresholds (e.g., <60 HU); plaque segmentation tools and kernels vary
Positive remodeling index (RI)	Remodeling index = lesion EEM area / reference EEM area [21]	Cross-sectional area measured at minimal lumen and reference segment	RI >1.10 considered positive remodeling	Reference segment selection and EEM estimation methods vary
Napkin-ring sign (NRS)	Central low-attenuation core with a peripheral higher-attenuation rim on CCTA [3,11]	Qualitative visual assessment on thin-slab multiplanar reformats	Presence/absence (no numeric cut-off)	Interobserver criteria and window settings vary
Non-calcified plaque (NCP) / Fibrofatty/Fibrous	NCP typically defined by HU between ~-30 to 130 HU (tool-dependent) excluding calcified (>350 HU) [13,17]	Semi-automated plaque composition analysis; tool-specific bins	Study-specific (often continuous % volume or quartiles)	Attenuation bin edges differ across vendors; smoothing/kernel and kVp affect HU

Perivascular fat attenuation (PCAT) / Fat Attenuation Index (FAI)	Mean attenuation of adipose tissue (-190 to -30 HU) within a perivascular ring around the vessel [22,23]	PCAT sampled around proximal coronary segments (commonly proximal RCA over a fixed length); ring thickness or radial distance varies by protocol	High-risk FAI cut-offs reported near −70 HU (e.g., ≥−70.1 HU associated with higher cardiac risk)	Artery/segment length definitions vary (e.g., 10–50 mm proximal RCA; vessel-diameter–scaled rings); reconstruction and kVp impact HU
Epicardial adipose tissue (EAT) volume/attenuation	Adipose tissue between myocardium and visceral pericardium (-190 to -30 HU) [12,18]	3D segmentation within pericardial sac; non-contrast or contrast CT; attenuation as mean HU	No unified clinical cut-off; often analyzed as continuous or cohort-specific percentiles	Segmentation protocols vary (manual vs automated); contrast phase and tube voltage affect HU
CT-derived fractional flow reserve (FFR-CT)	Computationally derived pressure index along coronary tree from CCTA [16.17]	Per-vessel and per-patient reporting; distal to stenosis or lowest value in vessel	Ischemia typically defined as FFR-CT ≤0.80; 0.76–0.80 often considered borderline	Vessel-level vs patient-level thresholds; site-specific reporting conventions
CT myocardial perfusion (CT-MPI) dynamic	Quantitative myocardial blood flow (MBF) from dynamic stress CT perfusion [7]	Vasodilator stress; model-based deconvolution; per-territory MBF (mL/min/100 g)	Ischemia thresholds vary by vendor and protocol; often referenced to invasive FFR ≤0.80	Acquisition (kVp, rate), reconstruction, and modeling differences; absolute

				MBF cut-offs not standardized
Radiomics / Texture features	High-dimensional features extracted from plaque/arterial wall CT voxels [13,21]	Segmentation of lesion/ROI; feature extraction with predefined radiomic pipeline	Study-specific thresholds; models reported via AUC/accuracy rather than fixed cut-offs	Pipelines, feature sets, and harmonization approaches differ widely

This table summarizes commonly used definitions, measurement protocols, and cut-offs reported across the included literature to illustrate variability and support standardization.

Notes:

- 1) HU-based thresholds are sensitive to tube voltage (kVp), reconstruction kernel, contrast timing, and vendor software; report acquisition/reconstruction parameters alongside any cut-offs.
- 2) For FAI/PCAT, segment length (e.g., proximal 10–50 mm RCA), radial sampling distance, and ring definitions vary by protocol; specify artery/length and method.
- 3) For FFR-CT, most studies define ischemia as \leq 0.80; values 0.76–0.80 are frequently considered borderline. Report whether values are per-vessel (distal to lesion) or lowest per-patient.
- 4) For Dynamic CT-MPI, absolute MBF cut-offs are not standardized across vendors; report stressor, model, calibration, and any reference standard used (e.g., invasive FFR).

Abbreviations: HU = Hounsfield units; CCTA = coronary computed tomography angiography; EEM = external elastic membrane; RCA = right coronary artery; FAI = fat attenuation index; PCAT = pericoronary adipose tissue; EAT = epicardial adipose tissue; FFR-CT = CT-derived fractional flow reserve; CT-MPI = CT myocardial perfusion; MBF = myocardial blood flow.

Table~S5.~Summary~of~Findings~by~Biomarker~(Diagnostic~&~Prognostic~Performance).

Biomarker/Modality	Key Outcomes	Summary effect (range/anchor estimates)	Comments on consistency/applicability
Low-attenuation plaque (LAP)	Myocardial infarction (MI), MACE	HR \approx 2.3–4.7 for higher LAP burden; LAP >4% \rightarrow HR \sim 4.65; per-doubling LAP \rightarrow HR \sim 1.60	Consistent independent predictor across cohorts; strongest for MI; measured as % of total plaque volume
Perivascular fat attenuation (FAI/PCAT)	Cardiac mortality, MI, reclassification	Mortality HR ~2.06–2.15 (derivation/validation); MI: RCA PCAT ~-70 HU \rightarrow HR ~2.45; \triangle AUC \approx 0.05	Risk additive with high-risk plaque; thresholds and segment sampling vary; standardization ongoing
High-risk plaque (HRP) features	MACE, MI	OR ~1.6–2.5; AUC up to ~0.83	Includes LAP, positive remodeling, napkin-ring sign; effect sizes heterogeneous by feature
Quantitative plaque burden/volume	Ischemia, MACE	Higher burden in ischemic vs non-ischemic lesions; directionally consistent	Absolute thresholds vary by software/HU bins; standardized bins needed
Epicardial adipose tissue (EAT)	Plaque composition, ischemia	+~7% fibrofatty plaque per +1 HU EAT attenuation; volume-based links to ischemia mixed	Attenuation shows stronger link to composition than volume; acquisition phase impacts HU

FFR-CT (vs invasive	Ischemia (reference FFR	Accuracy ~81%; Sens ~86%;	Improves specificity vs CTA alone;
FFR)	≤0.80)	Spec ~79; ≥90% accuracy	site-specific correlation r ~0.80–
		when >0.90 or <0.49; weakest	0.82; context-dependent utility
		around 0.74–0.82	
Dynamic CT myocardial	Ischemia (invasive reference)	Sensitivity ~90%+; Specificity	Performance varies with vendor
perfusion (CT-MPI)		~80% (representative	and protocol; absolute MBF
		meta-analytic anchors)	cut-offs not standardized
Radiomics / texture	Diagnosis, prognosis	Reported as AUC/accuracy	Pipelines and harmonization differ;
features		(study-specific); no unified	promising but investigational
		thresholds	

This table synthesizes effect measures by biomarker and outcome. Abbreviations: HR = hazard ratio; OR = odds ratio; AUC = area under the ROC curve; MACE = major adverse cardiovascular events; HU = Hounsfield units; FFR-CT = CT-derived fractional flow reserve; MBF = myocardial blood flow; CTA = coronary CT angiography; PCAT = pericoronary adipose tissue.