Table S1. Scores obtained for the studied analytical procedures for the determination of phthalates in edible oil samples by employing the

 AGREE (a) and AGREE prep (b) evaluation tools

		LLE-						
Principle	Subject	MAE-GPC-SPE	MDPE	LLE-dSPE	QuEChERS-	HS-SPME	PLS-	
Timeipie	Subject	HRGC-MS/MS	LC-DAD	GC-MS	dSPE	GC-FID	SERS	
					GC-MS			
AGREE								
	Direct analytical						PME PLS- FID SERS 48 0.48 55 0.75 00 0.00 00 1.00	
1	techniques should be	0.48	0.48	0.05	0.48	0.48	0.48	
	applied							
	Minimal sample size and							
2	minimal number of	0.75	0.32	0.65	0.65	0.55	0.75	
	samples are goals							
	If possible,							
3	measurements should be	0.00	0.00	0.00	0.00	0.00	0.00	
	performed in situ							
	Integration of analytical							
4	processes and operations	0.00	1.00	1.00	0.00	0.00	1.00	
	saves energy and reduces	0.00	1.00	1.00	0.00	0.00	1.00	
	the use of reagents							

-	5	Automated and miniaturized methods	0.00	0.00	0.75	0.50	0.75	0.75
		should be selected						
	6	Derivatization should be	1.00	1.00	1.00	1.00	1.00	1.00
	0	avoided	1.00	1.00	1.00	1.00	1.00	1.00
		Generation of a large						
		volume of analytical			0.60	0.42	0.36	0.60
	7	waste should be	0.00	0.08				
	1	avoided, proper	0.09	0.08				
		management of waste						
		should be provided						
		Multi-analyte or multi-					0.500.751.001.000.420.360.290.740.000.00	
		parameter methods are			0.62	0.29		
	8	preferred	0.84	0.42				0.94
		versus methods using						
		one analyte at a time						
	0	The use of energy should	0.50	0.50	0.00	0.00	0.00	1.00
	У	be minimized	0.50	0.30	0.00	0.00	0.00	1.00

	Reagents obtained from						
10	renewable sources should	0.00	0.00	0.50	0.00	0.50	0.00
	be preferred						
11	Toxic reagents should be	0.00	0.00	1.00	1.00	1.00	1.00
11	eliminated or replaced	0.00	0.00	1.00	1.00	1.00	1.00
12	Operator's safety should	0.80	0.80	0.80	0.80	1.00	1.00
12	be increased	0.80	0.80	0.80	0.80	1.00	1.00
AGREE	prep						
1	Sample preparation	0.00	0.00	0.00	0.00	0.00	0.33
1	placement	0.00	0.00	0.00	0.00	0.00	0.55
2	Hazardous materials	0.00	0.63	0.00	0.07	0.00	0.13
	Sustainability,						
3	renewability, and	0.00	0.25	0.25	0.75	0.50	0.75
	reusability						
4	Waste	0.00	0.00	0.52	0.32	0.23	0.63
5	Size economy of the	0.77	0.67	0.67	0.67	0.57	0.77
5	sample	0.77	0.07	0.07	0.07	0.57	0.77
6	Sample throughput	0.54	0.71	0.54	0.76	0.87	0.96
7	Integration and	0.00	0.12	0.50	0.25	0.00	0.50
1	automation		0.12	0.50	0.25		0.50

8	Energy consumption	0.00	0.59	0.41	0.41	0.41	1.00
9	Configuration for analysis	0.25	0.25	0.25	0.25	0.25	0.75
10	Operator's safety	0.50	0.50	0.50	0.75	0.75	0.00

MAE-GPC-SPE: microwave-assisted extraction gel permeation chromatography solid phase extraction; HRGC-MS: high-resolution gas chromatography-mass detection; LC-DAD: liquid chromatography diode-array detector; LLE-dSPE: liquid-liquid extraction dispersive solid phase extraction; GC-MS: gas chromatography-mass detection; HS-SPME: headspace solid phase microextraction gas chromatography; GC-FID: gas chromatography flame ionization detection; PLS-SERS: partial least squares- Surface-enhanced Raman spectroscopy; LLE-QuEChERS-dSPE: Liquid-liquid extraction-Quick, Easy, Cheap, Effective, Rugged and Safe extraction gas chromatography flame ionization detection; Colors in the table: colorimetric classification of AGREE tool, from deep green (sustainable) to dark red (non sustainable)

Table S2. Options assigned for the studied analytical procedures for the determination of phthalates in edible oil samples by employing the BAGI evaluation tool

Principle	Subject	MAE-GPC-SPE HRGC-MS/MS	MDPE LC-DAD	LLE-dSPE GC-MS	LLE- QuEChERS- dSPE GC-MS	HS-SPME GC-FID	PLS-SERS
BAGI							
1	Type of analysis	Quantitative	Quantitative	Quantitative	Quantitative	Quantitative/Confirm atory	Quantitative

	Multi or						
2	single	> 15 compounds	6–15 compounds	Single	> 15 compounds	2–5	2–5
	analysis						
3	Analytical	Not commonly	Simple common	Sophisticated	Sophisticated	Simple common	Not
5	Technique	Not commonly	Simple common				commonly
	Simultaneous						
4	sample	2–12	2-12	2–12	13–95	13–95	13–95
	preparation						
5	Sample	Multi sten	Multi sten	Multi sten	Miniaturized	Miniaturized	Simple
5	preparation	Multi stop	Main stop	Wall Step	extraction	extraction	Shipte
6	Samples per h	2–4	≤ 1	2–4	≤ 1	2–4	>10
7	Reagents and	Common	Synthetized	Common	Available not	Synthetized	Synthetized
/	materials				common		
	Preconcentrat	Required	Required	Required	Required		No
8	ion	Legislation	Required.	Legislation	Legislation	Required. Sensitivity	preconcentrat
	1011	Legislation	Sensitivity	Legislation	Legislation		ion
0	Degree of	Manual	Somi outomated	Sami automata 1	Somi outometal	Somi outomoto 1	Semi-
9	automation	Ivianuai	Senn-automated	Semi-automated	Semi-automated	Semi-automated	automated
10	Amount of	< 10 mJ	< 10 mJ	< 10 mL	>100 mL	< 10 mL	< 10 mJ
10	sample	< 10 mL	< 10 mL				< 10 mL

MAE-GPC-SPE: microwave-assisted extraction gel permeation chromatography solid phase extraction; HRGC-MS: high-resolution gas chromatography-mass detection; LC-DAD: liquid chromatography diode-array detector; LLE-dSPE: liquid-liquid extraction dispersive solid phase extraction; GC-MS: gas chromatography-mass detection; HS-SPME: headspace solid phase microextraction gas chromatography; GC-FID: gas chromatography flame ionization detection; PLS-SERS: partial least squares- Surface-enhanced Raman spectroscopy; LLE-QuEChERS-dSPE: Liquid-liquid extraction-Quick, Easy, Cheap, Effective, Rugged and Safe extraction gas chromatography flame ionization detection