Contents:

LCMS analyses of peptide hydrazides H-LYRA-Xaa-NHNH2	2
LCMS analyses of oxidants screening	8
LCMS analyses of hydrazide conversion to carboxylic acid using oxone	9
LCMS analyses of BME-mediated conversion of hydrazides to carboxylic acids	16
LCMS analyses of ammonolysis of peptidyl azides derived from hydrazides	22
LCMS analyses of Staudinger reaction after azidation of hydrazides in acidic aqueous so	lution
	31
LCMS analyses of Staudinger reaction after azidation of hydrazides in TFA solution	38
Evaluation of C-terminal epimerization	47
LCMS analyses of modelin-5 derivatives	49

LCMS analyses of peptide hydrazides H-LYRA-Xaa-NHNH₂

LCMS conditions for Figures S1–S18 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min.

Figure S1 (A) UV trace of crude material of 1a. (B) MS spectrum of 1a. Xaa = Gly (1a): Retention time = 10.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₅N₁₀O₆ 593.4, found 593.5.

Figure S2 (A) UV trace of crude material of 1b. (B) MS spectrum of 1b. Xaa = Ala (1b): Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₇N₁₀O₆ 607.4, found 607.6.

Figure S3 (A) UV trace of crude material of **1c**. (B) MS spectrum of **1c**. Xaa = Val (**1c**): Retention time = 12.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₁N₁₀O₆ 635.4, found 635.5.

Figure S4 (A) UV trace of crude material of 1d. (B) MS spectrum of 1d. Xaa = Ile (1d): Retention time = 14.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₃N₁₀O₆ 649.4, found 649.5.

Figure S5 (A) UV trace of crude material of 1e. (B) MS spectrum of 1e. Xaa = Leu (1e): Retention time = 15.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{53}N_{10}O_6$ 649.4, found 649.6.

Figure S6 (A) UV trace of crude material of 1f. (B) MS spectrum of 1f. Xaa = Phe (1f): Retention time = 17.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₅₁N₁₀O₆ 683.4, found 683.6.

Figure S7 (A) UV trace of crude material of 1g. (B) MS spectrum of 1g. Xaa = Pro (1g): Retention time = 11.9 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₁₀O₆ 633.4, found 633.6.

Figure S8 (A) UV trace of crude material of 1h. (B) MS spectrum of 1h. Xaa = Ser (1h): Retention time = 10.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₇N₁₀O₇ 623.4, found 623.5.

Figure S9 (A) UV trace of crude material of 1i. (B) MS spectrum of 1i. Xaa = Thr (1i): Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₉N₁₀O₇ 637.4, found 637.5.

Figure S10 (A) UV trace of crude material of 1j. (B) MS spectrum of 1j. Xaa = Glu (1j): Retention time = 10.9 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₁₀O₈ 665.4, found 665.6.

Figure S11 (A) UV trace of crude material of 1k. (B) MS spectrum of 1k. Xaa = Cys (1k): Retention time = 12.0 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₇N₁₀O₆S 639.3, found 639.5.

Figure S12 (A) UV trace of crude material of 1k'. (B) MS spectrum of 1k'. Xaa = Cys(Acm) (1k'): Retention time = 11.6 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₁₁O₇S 710.4, found 710.6.

Figure S13 (A) UV trace of crude material of 1l. (B) MS spectrum of 1l. Xaa = Met (1l): Retention time = 13.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₁N₁₀O₆S 667.4, found 667.6.

Figure S14 (A) UV trace of crude material of 1m. (B) MS spectrum of 1m. Xaa = Tyr (1m): Retention time = 13.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₅₁N₁₀O₇ 699.4, found 699.5.

Figure S15 (A) UV trace of crude material of 1n. (B) MS spectrum of 1n. Xaa = His (1n): Retention time = 10.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₉N₁₂O₆ 673.4, found 673.5.

Figure S16 (A) UV trace of crude material of 10. (B) MS spectrum of 10. Xaa = Lys (10): Retention time = 10.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₄N₁₁O₆ 664.4, found 664.6.

Figure S17 (A) UV trace of crude material of 1p. (B) MS spectrum of 1p. Xaa = Arg (1p): Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₄N₁₃O₆ 692.4, found 692.5.

Figure S18 (A) UV trace of crude material of 1q. (B) MS spectrum of 1q. Xaa = Trp (1q): Retention time = 18.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₅H₅₂N₁₁O₆ 722.4, found 722.4.

Figure S19 HPLC analyses of oxidants screening for oxidative hydrazide conversion. Analytical HPLC conditions: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min.

LCMS analyses of hydrazide conversion to carboxylic acid using oxone

LCMS conditions for Figures S20–S37 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min.

Figure S20 (A) UV trace of oxidation (Xaa = Gly; t = 30 min). (B) MS spectrum of **2a**. **2a**: Retention time = 11.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₃N₈O₇ 579.3, found 579.6.

Figure S21 (A) UV trace of oxidation (Xaa = Ala; t = 30 min). (B) MS spectrum of **2b**. **2b**: Retention time = 12.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇ 593.3, found 593.6.

Figure S22 (A) UV trace of oxidation (Xaa = Val; t = 30 min). (B) MS spectrum of **2c. 2c**: Retention time = 15.9 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇ 621.4, found 621.6.

Figure S23 (A) UV trace of oxidation (Xaa = Ile; t = 30 min). (B) MS spectrum of **2d**. **2d**: Retention time = 18.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₈O₇ 635.4, found 635.6.

Figure S24 (A) UV trace of oxidation (Xaa = Leu; t = 30 min). (B) MS spectrum of **2e**. **2e**: Retention time = 19.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₈O₇ 635.4, found 635.6.

Figure S25 (A) UV trace of oxidation (Xaa = Phe; t = 30 min). (B) MS spectrum of 2f. 2f: Retention time = 21.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₄₉N₈O₇ 669.4, found 669.6.

Figure S26 (A) UV trace of oxidation (Xaa = Pro; t = 30 min). (B) MS spectrum of **2g. 2g**: Retention time = 14.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₇ 619.4, found 619.6.

Figure S27 (A) UV trace of oxidation (Xaa = Ser; t = 30 min). (B) MS spectrum of **2h**. **2h**: Retention time = 11.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₈ 609.3, found 609.6.

Figure S28 (A) UV trace of oxidation (Xaa = Thr; t = 30 min). (B) MS spectrum of **2i**. **2i**: Retention time = 11.9 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₇N₈O₈ 623.4, found 623.6.

Figure S29 (A) UV trace of oxidation (Xaa = Glu; t = 30 min). (B) MS spectrum of **2j**. **2j**: Retention time = 12.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₉ 651.3, found 651.6.

Figure S30 (A) UV trace of oxidation (Xaa = Cys; t = 30 min). (B) MS spectrum of **S1**. **S1**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₁₀S 673.3, found 673.5.

Figure S31 (A) UV trace of oxidation (Xaa = Cys(Acm); t = 30 min). (B) MS spectrum of S1. (C) MS spectrum of S2. S1: Retention time = 10.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₅N₈O₁₀S 673.3, found 673.6. S2: Retention time = 12.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₀N₉O₁₀S 728.3, found 728.6.

Figure S32 (A) UV trace of oxidation (Xaa = Met; t = 30 min). (B) MS spectrum of **S3**. **S3**: Retention time = 12.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₉S 685.3, found 685.6.

Figure S33 (A) UV trace of oxidation (Xaa = Tyr; t = 30 min). (B) MS spectrum of 2m. 2m: Retention time = 16.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₄₉N₈O₈ 685.4, found 685.6.

Figure S34 (A) UV trace of oxidation (Xaa = His; t = 30 min). (B) MS spectrum of **2n**. **2n**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₇N₁₀O₇ 659.4, found 659.6.

Figure S35 (A) UV trace of oxidation (Xaa = Lys; t = 30 min). (B) MS spectrum of **20. 20**: Retention time = 10.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₉O₇ 650.4, found 650.7.

Figure S36 (A) UV trace of oxidation (Xaa = Arg; t = 30 min). (B) MS spectrum of **2p**. **2p**: Retention time = 11.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₁₁O₇ 678.4, found 678.6.

Figure S37 UV trace of oxidation (Xaa = Trp; t = 30 min). No desired product was observed.

LCMS analyses of BME-mediated conversion of hydrazides to carboxylic acids

LCMS conditions for Figures S38–S54 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min, 7 to 17% for Glu and Thr. Asterisks indicate non-peptidic compounds derived from additives.

Figure S38 (A) UV trace of BME-mediated conversion (Xaa = Gly; t = 30 min). (B) MS spectrum of **2a**. **2a**: Retention time = 11.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₃N₈O₇ 579.3, found 579.6.

Figure S39 (A) UV trace of BME-mediated conversion (Xaa = Ala; t = 30 min). (B) MS spectrum of **2b**. **2b**: Retention time = 12.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇ 593.3, found 593.6.

Figure S40 (A) UV trace of BME-mediated conversion (Xaa = Val; t = 30 min). (B) MS spectrum of 2c. 2c: Retention time = 16.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇ 621.4, found 621.6.

Figure S41 (A) UV trace of BME-mediated conversion (Xaa = Ile; t = 30 min). (B) UV trace of BME-mediated conversion (t = 20 h). (C) MS spectrum of **2d**. (D) MS spectrum of **5d**. **2d**: Retention time = 18.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₈O₇ 635.4, found 635.6. **5d**: Retention time = 21.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₂H₅₅N₈O₇S 695.4, found 695.6.

Figure S42 (A) UV trace of BME-mediated conversion (Xaa = Leu; t = 30 min). (B) MS spectrum of **2e**. **2e**: Retention time = 19.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₈O₇ 635.4, found 635.6.

Figure S43 (A) UV trace of BME-mediated conversion (Xaa = Phe; t = 30 min). (B) MS spectrum of **2f. 2f**: Retention time = 21.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₄₉N₈O₇ 669.4, found 669.6.

Figure S44 (A) UV trace of BME-mediated conversion (Xaa = Pro; t = 30 min). (B) UV trace of BME-mediated conversion (t = 20 h). (C) MS spectrum of **2g**. (D) MS spectrum of **5g**. **2g**: Retention time = 14.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₇ 619.4, found 619.6. **5g**: Retention time = 17.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₁H₅₁N₈O₇S 679.4, found 679.6.

Figure S45 (A) UV trace of BME-mediated conversion (Xaa = Ser; t = 30 min). (B) MS spectrum of 2h. 2h: Retention time = 11.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C_{27H45}N₈O₈ 609.3, found 609.6.

Figure S46 (A) UV trace of BME-mediated conversion (Xaa = Thr; t = 30 min). (B) MS spectrum of **2i**. **2i**: Retention time = 14.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₇N₈O₈ 623.4, found 623.6.

Figure S47 (A) UV trace of BME-mediated conversion (Xaa = Glu; t = 30 min). (B) MS spectrum of **2j**. **2j**: Retention time = 14.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₉ 651.3, found 651.5.

Figure S48 (A) UV trace of BME-mediated conversion (Xaa = Cys; t = 30 min). (B) MS spectrum of **2k**. **2k**: Retention time = 14.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇S 625.3, found 625.6.

Figure S49 (A) UV trace of BME-mediated conversion (Xaa = Met; t = 30 min). (B) MS spectrum of **21**. **21**: Retention time = 16.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇S 653.3, found 653.6.

Figure S50 (A) UV trace of BME-mediated conversion (Xaa = Tyr; t = 30 min). (B) MS spectrum of **2m**. **2m**: Retention time = 16.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₄₉N₈O₈ 685.4, found 685.6.

Figure S51 (A) UV trace of BME-mediated conversion (Xaa = His; t = 30 min). (B) MS spectrum of 2n. 2n: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₇N₁₀O₇ 659.4, found 659.6.

Figure S52 (A) UV trace of BME-mediated conversion (Xaa = Lys; t = 30 min). (B) MS spectrum of **20**. **20**: Retention time = 10.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₉O₇ 650.4, found 650.7.

Figure S53 (A) UV trace of BME-mediated conversion (Xaa = Arg; t = 30 min). (B) MS spectrum of **2p**. **2p**: Retention time = 11.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{52}N_{11}O_7$ 678.4, found 678.7.

Figure S54 (A) UV trace of BME-mediated conversion (Xaa = Trp; t = 30 min). (B) MS spectrum of 2q. 2q: Retention time = 22.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₅H₅₀N₉O₇ 708.4, found 708.6.

LCMS analyses of ammonolysis of peptidyl azides derived from hydrazides LCMS conditions for Figures S55–S72 were as follows: a Cosmosil 5C₁₈-AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min.

Figure S55 (A) UV trace of amidation through ammonolysis (Xaa = Gly; t = 30 min). (B) MS spectrum of **4a**. (C) MS spectrum of **2a**. (D) MS spectrum of **8a**. **4a**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₄N₉O₆ 578.3, found 578.6. **2a**: Retention time = 11.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₃N₈O₇ 579.3, found 579.6. **8a**: Retention time = 21.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₆H₄₁N₈O₆ 561.3, found 561.6.

Figure S56 (A) UV trace of amidation through ammonolysis (Xaa = Ala; t = 30 min). (B) MS spectrum of **4b**. (C) MS spectrum of **2b**. (D) MS spectrum of **8b**. **4b**: Retention time = 11.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₆ 592.4, found 592.6. **2b**: Retention time = 12.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇ 593.3, found 593.6. **8b**: Retention time = 22.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇ 593.3, found 593.6, **8b**: Retention time = 22.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₃N₈O₆ 575.3, found 575.6.

Figure S57 (A) UV trace of amidation through ammonolysis (Xaa = Val; t = 30 min). (B) MS spectrum of 4c. (C) MS spectrum of 2c. (D) MS spectrum of 8c. 4c: Retention time = 14.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₀N₉O₆ 620.4, found 620.7. 2c: Retention time = 16.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇ 621.4, found 621.6. 8c: Retention time = 25.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₆ 603.4, found 603.6.

Figure S58 (A) UV trace of amidation through ammonolysis (Xaa = Ile; t = 30 min). (B) MS spectrum of **4d**. **4d**: Retention time = 16.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₉O₆ 634.4, found 634.7.

Figure S59 (A) UV trace of amidation through ammonolysis (Xaa = Leu; t = 30 min). (B) MS spectrum of **4e**. (C) MS spectrum of **2e**. (D) MS spectrum of **8e**. **4e**: Retention time = 17.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{52}N_9O_6$ 634.4, found 634.7. **2e**: Retention time = 19.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{51}N_8O_7$ 635.4, found 635.7. **8e**: Retention time = 28.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{49}N_8O_6$ 617.4, found 617.6.

Figure S60 (A) UV trace of amidation through ammonolysis (Xaa = Phe; t = 30 min). (B) MS spectrum of **4f**. (C) MS spectrum of **2f**. **4f**: Retention time = 19.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₃H₅₀N₉O₆ 668.4, found 668.6. **2f**: Retention time = 21.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₃H₄₉N₈O₇ 669.4, found 669.6.

Figure S61 (A) UV trace of amidation through ammonolysis (Xaa = Pro; t = 30 min). (B) MS spectrum of **4g**. (C) MS spectrum of **2g**. (D) MS spectrum of **8g**. **4g**: Retention time = 12.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₈N₉O₆ 618.4, found 618.6. **2g**: Retention time = 19.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₇ 619.4, found 619.6. **8g**: Retention time = 22.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₇ 619.4, found 619.6, **8g**: Retention time = 22.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₅N₈O₆ 601.3, found 601.6.

Figure S62 (A) UV trace of amidation through ammonolysis (Xaa = Ser; t = 30 min). (B) MS spectrum of **4h**. (C) MS spectrum of **2h**. (D) MS spectrum of **8h**. **4h**: Retention time = 10.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₇ 608.4, found 608.6. **2h**: Retention time = 11.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₈ 609.3, found 609.6. **8h**: Retention time = 21.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₈ 609.3, found 609.6. **8h**: Retention time = 21.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₃N₈O₇ 591.3, found 591.6.

Figure S63 (A) UV trace of amidation through ammonolysis (Xaa = Thr; t = 30 min). (B) MS spectrum of **4i**. (C) MS spectrum of **2i**. (D) MS spectrum of **8i**. **4i**: Retention time = 11.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₈N₉O₇ 622.4, found 622.6. **2i**: Retention time = 12.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₇N₈O₈ 623.4, found 623.6. **8i**: Retention time = 22.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₅N₈O₇ 605.3, found 605.6.

Figure S64 (A) UV trace of amidation through ammonolysis (Xaa = Glu; t = 30 min). (B) MS spectrum of **2j**. **2j**: Retention time = 12.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₇N₈O₉ 651.3, found 651.6.

Figure S65 (A) UV trace of amidation through ammonolysis (Xaa = Cys; t = 30 min). (B) MS spectrum of **4k** dimer. **4k** dimer: Retention time = 15.6 min, MS (ESI-SQ) m/z: $[M + 2H]^{2+}$ calcd for C₅₄H₉₀N₁₈O₁₂S₂ 623.3, found 623.8.

Figure S66 (A) UV trace of amidation through ammonolysis (Xaa = Cys(Acm); t = 30 min). (B) MS spectrum of **4k'**. (C) MS spectrum of **2k'**. (D) MS spectrum of **8k'**. **4k'**: Retention time = 12.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₁₀O₇S 695.4, found 695.6. **2k'**: Retention time = 13.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₀N₉O₈S 696.3, found 696.6. **8k'**: Retention time = 22.9 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₈N₉O₇S 678.3, found 678.6.

Figure S67 (A) UV trace of amidation through ammonolysis (Xaa = Met; t = 30 min). (B) MS spectrum of **4**I. (C) MS spectrum of **2**I. (D) MS spectrum of **8**I. **4**I: Retention time = 15.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₀N₉O₆S 652.4, found 652.6. **2k'**: Retention time = 16.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇S 653.3, found 653.6. **8k'**: Retention time = 26.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₆S 635.3, found 635.6.

Figure S68 (A) UV trace of amidation through ammonolysis (Xaa = Tyr; t = 30 min). (B) MS spectrum of **4m**. (C) MS spectrum of **2m**. (D) MS spectrum of **8m**. **4m**: Retention time = 14.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{33}H_{50}N_9O_7$ 684.4, found 684.6. **2m**: Retention time = 16.6 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{33}H_{49}N_8O_8$ 685.4, found 685.6. **8m**: Retention time = 25.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{33}H_{49}N_8O_8$ 685.4, found 685.6. **8m**: 667.6.

Figure S69 (A) UV trace of amidation through ammonolysis (Xaa = His; t = 30 min). (B) MS spectrum of **4n**. (C) MS spectrum of **2n**. (D) MS spectrum of **8n**. **4n**: Retention time = 10.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₈N₁₁O₆ 658.4, found 658.6. **2n**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₇N₁₀O₇ 659.4, found 659.6. **8n**: Retention time = 20.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₇N₁₀O₇ 659.4, found 659.6. **8n**: Retention time = 20.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₅N₁₀O₆ 641.4, found 641.6.

Figure S70 (A) UV trace of amidation through ammonolysis (Xaa = Lys; t = 30 min). (B) MS spectrum of **40**. (C) MS spectrum of **20**. (D) MS spectrum of **80**. **40**: Retention time = 10.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{53}N_{10}O_6$ 649.4, found 649.7. **20**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{52}N_9O_7$ 650.4, found 650.7. **80**: Retention time = 14.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{52}N_9O_7$ 650.4, found 650.7. **80**: Retention time = 14.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for $C_{30}H_{50}N_9O_6$ 632.4, found 632.7.

Figure S71 (A) UV trace of amidation through ammonolysis (Xaa = Arg; t = 30 min). (B) MS spectrum of **4p**. (C) MS spectrum of **2p**. **4p**: Retention time = 10.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₃N₁₂O₆ 677.4, found 677.7. **2p**: Retention time = 11.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₁₁O₇ 678.4, found 678.7.

Figure S72 (A) UV trace of amidation through ammonolysis (Xaa = Trp; t = 30 min). (B) MS spectrum of 4q. (C) MS spectrum of 2q. 4q: Retention time = 20.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₅H₅₁N₁₀O₆ 707.4, found 707.7. 2q: Retention time = 22.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₅H₅₀N₉O₇ 708.4, found 708.6.

LCMS analyses of Staudinger reaction after azidation of hydrazides in acidic aqueous solution LCMS conditions for Figures S73–S90 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min.

Figure S73 (A) UV trace of amidation through Staudinger reaction (Xaa = Gly; t = 30 min). (B) MS spectrum of 4a. (C) MS spectrum of 2a. 4a: Retention time = 10.8 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₆H₄₄N₉O₆ 578.3, found 578.6. 2a: Retention time = 11.8 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₆H₄₃N₈O₇ 579.3, found 579.7.

Figure S74 (A) UV trace of amidation through Staudinger reaction (Xaa = Ala; t = 30 min). (B) MS spectrum of **4b**. (C) MS spectrum of **2b**. **4b**: Retention time = 11.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₆ 592.4, found 592.6. **2b**: Retention time = 12.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₅N₈O₇ 593.3, found 593.7.

Figure S75 (A) UV trace of amidation through Staudinger reaction (Xaa = Val; t = 30 min). (B) MS spectrum of **4c**. (C) MS spectrum of **2c**. **4c**: Retention time = 14.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₅₀N₉O₆ 620.4, found 620.7. **2c**: Retention time = 16.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₉N₈O₇ 621.4, found 621.7.

Figure S76 (A) UV trace of amidation through Staudinger reaction (Xaa = Ile; t = 30 min). (B) MS spectrum of **4d**. (C) MS spectrum of **6d**. **4d**: Retention time = 16.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₉O₆ 634.4, found 634.7. **6d**: Retention time = 13.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₅₂N₉O₅ 606.4, found 606.7.

Figure S77 (A) UV trace of amidation through Staudinger reaction (Xaa = Leu; t = 30 min). (B) MS spectrum of **4e**. (C) MS spectrum of **2e**. **4e**: Retention time = 17.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₉O₆ 634.4, found 634.7. **2e**: Retention time = 19.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₁N₈O₇ 635.4, found 635.7.

Figure S78 (A) UV trace of amidation through Staudinger reaction (Xaa = Phe; t = 30 min). (B) MS spectrum of **4f**. (C) MS spectrum of **2f**. **4f**: Retention time = 19.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₃H₅₀N₉O₆ 668.4, found 668.7. **2f**: Retention time = 21.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₃H₄₉N₈O₇ 669.4, found 669.6.

Figure S79 (A) UV trace of amidation through Staudinger reaction (Xaa = Pro; t = 30 min). (B) MS spectrum of **4g**. (C) MS spectrum of **2g**. **4g**: Retention time = 12.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₈N₉O₆ 618.4, found 618.7. **2g**: Retention time = 15.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₇N₈O₇ 619.4, found 619.7.

Figure S80 (A) UV trace of amidation through Staudinger reaction (Xaa = Ser; t = 30 min). (B) MS spectrum of **4h**. (C) MS spectrum of **2h**. **4h**: Retention time = 10.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₇ 608.4, found 608.7. **2h**: Retention time = 11.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₅N₈O₈ 609.3, found 609.5.

Figure S81 (A) UV trace of amidation through Staudinger reaction (Xaa = Thr; t = 30 min). (B) MS spectrum of **4i**. (C) MS spectrum of **2i**. **4i**: Retention time = 11.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₈N₉O₇ 622.4, found 622.7. **2i**: Retention time = 12.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₈H₄₇N₈O₈ 623.4, found 623.5.

Figure S82 (A) UV trace of amidation through Staudinger reaction (Xaa = Glu; t = 30 min). (B) MS spectrum of **4j**. (C) MS spectrum of **2j**. **4j**: Retention time = 11.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₈N₉O₈ 650.4, found 650.7. **2j**: Retention time = 12.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₇N₈O₉ 651.3, found 651.6.

Figure S83 (A) UV trace of amidation through Staudinger reaction (Xaa = Cys; t = 30 min). (B) MS spectrum of **4k**. (C) MS spectrum of **2k**. (D) MS spectrum of **S4**. **4k**: Retention time = 13.2 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₆S 624.3, found 624.6. **2k**: Retention time = 14.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₅N₈O₇S 625.3, found 625.6. **S4**: Retention time = 10.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₈S 656.3, found 656.6.

Figure S84 (A) UV trace of amidation through Staudinger reaction (Xaa = Cys(Acm); t = 30 min). (B) MS spectrum of **4k'**. **4k'**: Retention time = 12.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₁N₁₀O₇S 695.4, found 695.4.

Figure S85 (A) UV trace of amidation through Staudinger reaction (Xaa = Met; t = 30 min). (B) MS spectrum of **4l**. (C) MS spectrum of **2l**. **4l**: Retention time = 15.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₀N₉O₆S 652.4, found 652.6. **2l**: Retention time = 16.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₄₉N₈O₇S 653.3, found 653.6.

Figure S86 (A) UV trace of amidation through Staudinger reaction (Xaa = Tyr; t = 30 min). (B) MS spectrum of **4m**. (C) MS spectrum of **2m**. **4m**: Retention time = 15.0 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₅₀N₉O₇ 684.4, found 684.6. **2m**: Retention time = 16.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₄₉N₈O₈ 685.4, found 685.6.

Figure S87 (A) UV trace of amidation through Staudinger reaction (Xaa = His; t = 30 min). (B) MS spectrum of **4n**. (C) MS spectrum of **2n**. **4n**: Retention time = 10.4 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₄₈N₁₁O₆ 658.4, found 658.7. **2n**: Retention time = 10.9 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₄₇N₁₀O₇ 659.4, found 659.7.

Figure S88 (A) UV trace of amidation through Staudinger reaction (Xaa = Lys; t = 30 min). (B) MS spectrum of **40**. (C) MS spectrum of **20**. **40**: Retention time = 10.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₃N₁₀O₆ 649.4, found 649.7. **20**: Retention time = 10.8 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₉O₇ 650.4, found 650.7.

Figure S89 (A) UV trace of amidation through Staudinger reaction (Xaa = Arg; t = 30 min). (B) MS spectrum of **4p**. (C) MS spectrum of **2p**. **4p**: Retention time = 10.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₃N₁₂O₆ 677.4, found 677.7. **2p**: Retention time = 11.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₁₁O₇ 678.4, found 678.7.

Figure S90 (A) UV trace of amidation through Staudinger reaction (Xaa = Trp; t = 30 min). (B) MS spectrum of **4q**. (C) MS spectrum of **2q**. **4q**: Retention time = 20.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₅H₅₁N₁₀O₆ 707.4, found 707.6. **2q**: Retention time = 22.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₅H₅₀N₉O₇ 708.4, found 708.7.

Figure S91. Conversion of hydrazides to amides

entry	Xaa	product	HPLC purity (%) ^a		
			4	2	6 or 7
1	Gly	2a	91	3	3
2	Ala	2b	90	2	6
3	Val	2c	62	<1	35
4	Ile	2d	53	<1	45
5	Leu	2e	85	<1	13
6	Phe	2f	84	1	11
7	Pro	2g	96	<1	<1
8	Ser	2h	87	<1	10
9	Thr	2i	84	<1	15
10	Glu	2j	74	11	<1
11	Cys	2k	48	<1	7
12	Cys(Acm)	2k'	81	<1	11
13	Met	21	87	<1	9
14	Tyr	2m	79	<1	17
15	His	2n	83	<1	<1
16	Lys	20	80	<1	15
17	Arg	2p	81	<1	15
18	Trp	2q	70	<1	22

Table S1. Scope of the C-terminal amino acids in conversion to amides

a: detected at 220 nm.

LCMS conditions for Figures S92–109 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 5% to 35% over 30 min. Asterisks indicate non-peptidic compounds derived from additives for global deprotection.

Figure S92 (A) UV trace of amidation through Staudinger reaction (Xaa = Gly; t = 30 min). (B) MS spectrum of **4a**. (C) MS spectrum of **6a**. **4a**: Retention time = 10.6 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₆H₄₄N₉O₆ 578.3, found 578.6. **6a**: Retention time = 9.8 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₅H₄₄N₉O₅ 550.3, found 530.6.

Figure S93 (A) UV trace of amidation through Staudinger reaction (Xaa = Ala; t = 30 min). (B) MS spectrum of **4b**. (C) MS spectrum of **6b**. **4b**: Retention time = 11.0 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₆ 592.4, found 592.6. **6b**: Retention time = 9.8 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₆H₄₆N₆O₅ 564.4, found 564.6.

Figure S94 (A) UV trace of amidation through Staudinger reaction (Xaa = Val; t = 30 min). (B) MS spectrum of **4c**. (C) MS spectrum of **6c**. **4c**: Retention time = 14.0 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₅₀N₉O₆ 620.4, found 620.6. **6c**: Retention time = 11.6 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₈H₅₀N₉O₅ 592.4, found 592.7.

Figure S95 (A) UV trace of amidation through Staudinger reaction (Xaa = Ile; t = 30 min). (B) MS spectrum of **4d**. (C) MS spectrum of **6d**. **4d**: Retention time = 16.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₂N₉O₆ 634.4, found 634.7. **6d**: Retention time = 13.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₂N₉O₅ 606.4, found 606.7.

Figure S96 (A) UV trace of amidation through Staudinger reaction (Xaa = Leu; t = 30 min). (B) MS spectrum of **4e**. (C) MS spectrum of **6e**. **4e**: Retention time = 17.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₂N₉O₆ 634.4, found 634.7. **6e**: Retention time = 14.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₅₂N₉O₅ 606.4, found 606.5.

Figure S97 (A) UV trace of amidation through Staudinger reaction (Xaa = Phe; t = 30 min). (B) MS spectrum of **4f**. (C) MS spectrum of **6f**. **4f**: Retention time = 19.3 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₃H₅₀N₉O₆ 668.4, found 668.7. **6f**: Retention time = 16.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₂H₅₀N₉O₅ 640.4, found 640.7.

Figure S98 (A) UV trace of amidation through Staudinger reaction (Xaa = Pro; t = 30 min). (B) MS spectrum of **4g**. (C) MS spectrum of **6g**. **4g**: Retention time = 12.3 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₈N₉O₆ 618.4, found 618.6. **6g**: Retention time = 10.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₈H₄₈N₉O₅ 590.4, found 590.6.

Figure S99 (A) UV trace of amidation through Staudinger reaction (Xaa = Ser; t = 30 min). (B) MS spectrum of **4h**. (C) MS spectrum of **7h**. **4h**: Retention time = 10.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₇ 608.4, found 608.6. **7h**: Retention time = 11.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₄N₉O₇ 606.3, found 606.6.

Figure S100 (A) UV trace of amidation through Staudinger reaction (Xaa = Thr; t = 30 min). (B) MS spectrum of **4i**. (C) MS spectrum of **7i**. **4i**: Retention time = 11.0 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₈H₄₈N₉O₇ 622.4, found 622.7. **7i**: Retention time = 12.9 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₈H₄₆N₉O₇ 620.4, found 620.6.

Figure S101 (A) UV trace of amidation through Staudinger reaction (Xaa = Glu; t = 30 min). (B) MS spectrum of **4j**. (C) MS spectrum of **2j**. **4j**: Retention time = 11.2 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₈N₉O₈ 650.4, found 650.6. **2j**: Retention time = 12.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₄₇N₈O₉ 651.3, found 651.6.

Figure S102 (A) UV trace of amidation through Staudinger reaction (Xaa = Cys; t = 30 min). (B) MS spectrum of **4k**. (C) MS spectrum of **7k**. (D) MS spectrum of **S4**. **4k**: Retention time = 12.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₆S 624.3, found 624.6. **7k**: Retention time = 13.3 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₆S 622.3, found 622.5. **S4**: Retention time = 9.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₇H₄₆N₉O₈S 656.3, found 656.6.

Figure S103 (A) UV trace of amidation through Staudinger reaction (Xaa = Cys(Acm); t = 30 min). (B) MS spectrum of **4k**'. (C) MS spectrum of **4k**. (D) MS spectrum of **7k**. **4k**': Retention time = 12.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₃₀H₅₁N₁₀O₇S 695.4, found 695.7. **4k**: Retention time = 13.1 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₆S 624.3, found 624.7. **7k**: Retention time = 13.5 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₇H₄₆N₉O₆S 624.3, found 622.3, found 622.7.

Figure S104 (A) UV trace of amidation through Staudinger reaction (Xaa = Met; t = 30 min). (B) MS spectrum of **4l**. (C) MS spectrum of **6l**. **4l**: Retention time = 14.9 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₉H₅₀N₉O₆S 652.4, found 652.6. **6l**: Retention time = 12.7 min, MS (ESI-SQ) m/z: [M + H]⁺ calcd for C₂₈H₅₀N₉O₅S 624.4, found 624.6.

Figure S105 (A) UV trace of amidation through Staudinger reaction (Xaa = Tyr; t = 30 min). (B) MS spectrum of 4m. (C) MS spectrum of 6m. 4m: Retention time = 14.8 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₃H₅₀N₉O₇ 684.4, found 684.6. 6m: Retention time = 12.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₂H₅₀N₉O₆ 656.4, found 656.6.

Figure S106 (A) UV trace of amidation through Staudinger reaction (Xaa = His; t = 30 min). (B) MS spectrum of **4n**. **4n**: Retention time = 10.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₄₈N₁₁O₆ 658.4, found 658.6.

Figure S107 (A) UV trace of amidation through Staudinger reaction (Xaa = Lys; t = 30 min). (B) MS spectrum of **40**. (C) MS spectrum of **60**. **40**: Retention time = 9.7 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₃N₁₀O₆ 649.4, found 649.7. **60**: Retention time = 9.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₃N₁₀O₅ 621.4, found 621.7.

Figure S108 (A) UV trace of amidation through Staudinger reaction (Xaa = Arg; t = 30 min). (B) MS spectrum of **4p**. (C) MS spectrum of **6p**. **4p**: Retention time = 10.4 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₀H₅₃N₁₂O₆ 677.4, found 677.7. **6p**: Retention time = 10.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₂₉H₅₃N₁₂O₅ 649.4, found 649.7.

Figure S109 (A) UV trace of amidation through Staudinger reaction (Xaa = Trp; t = 30 min). (B) MS spectrum of **4q**. (C) MS spectrum of **6q**. **4q**: Retention time = 20.1 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₅H₅₁N₁₀O₆ 707.4, found 707.6. **6p**: Retention time = 17.5 min, MS (ESI-SQ) m/z: $[M + H]^+$ calcd for C₃₄H₅₁N₁₀O₅ 679.4, found 679.7.

Figure S110. UV trace of C-terminal epimerization during conversion of H-LYRA-Ala-NHNH₂ to carboxylic acids. (A) Co-injection of peptides containing L- or D-Ala. (B) Reaction mixture of Oxone oxidation. (C) Reaction mixture of BME-mediated hydrolysis. Only a critical retention time region of the HPLC charts was enlarged. The asterisk indicates a peak derived from BME. Analytical HPLC conditions: Cosmosil 5C₁₈-AR-II analytical column with a linear gradient of solvent in solvent A, 5% to 35% over 30 min.

Figure S111. UV trace of C-terminal epimerization during conversion of H-LYRA-Ala-NHNH₂ to amide. (A) Co-injection of peptides containing L- or D-Ala. (B) Reaction mixture of ammonolysis. (C) Reaction mixture of azidation in aqueous solution followed by the Staudinger reaction. (D) Reaction mixture of azidation in TFA followed by the Staudinger reaction. Only a critical retention time region of the HPLC charts was enlarged. Analytical HPLC conditions: Cosmosil $5C_{18}$ -AR-II analytical column with a linear gradient of solvent in solvent A, 5% to 35% over 30 min.

LCMS analyses of modelin-5 derivatives

LCMS conditions for Figures S112–114 were as follows: a Cosmosil $5C_{18}$ -AR-II analytical column with the linear gradient of solvent B in solvent A, 10% to 60% over 30 min.

Figure S112 (A) UV trace of crude material of **9**. (B) UV trace of purified **9**. (C) MS spectrum of **9**. Retention time = 14.5 min, MS (ESI-SQ) m/z: $[M + 2H]^{2+}$ calcd for C₈₁H₁₅₈N₂₄O₁₆ 861.6, found 862.1.

Figure S113 (A) UV trace of crude material of 10. (B) UV trace of purified 10. (C) MS spectrum of 10. Retention time = 15.1 min, MS (ESI-SQ) m/z: $[M + 2H]^{2+}$ calcd for C₈₁H₁₅₆N₂₂O₁₇ 854.6, found 855.0.

Figure S114 (A) UV trace of crude material of 11. (B) UV trace of purified 11. (C) MS spectrum of 11. Retention time = 15.4 min, MS (ESI-SQ) m/z: $[M + 2H]^{2+}$ calcd for $C_{81}H_{157}N_{23}O_{16}$ 854.1, found 854.5.