Table S1. Representative studies linking hyperferritinemia to MASLD.

Study/year/coun try	Population (n) & setting	MASLD definition/diagnostic modality	Major findings	Refs
Multicentre cohort	n = 1,342; MASLD cohort with available	Biopsy-confirmed MASLD	Baseline HF is associated with a 50% risk of LRE and 27% of all-cause mortality, with a stepwise	[1]
study/2024/Italy, UK, Spain,	baseline ferritin values and at least 6 months of		increase from values of 215.5 μ g/L and 272 μ g/L, respectively. The inclusion of ferritin improves the	
Germany, Sweden, and Australia	follow-up, aged 18 years or above; median follow-up time: 96 months		performance of FIB-4 and NFS for the prediction of LRE and all-cause mortality.	
Cross-sectional analysis of a prospective cohort/2016–2023/USA	n = 523; adults aged 50–80 with T2D and no diagnosis of hemochromatosis	MRI-PDFF \geq 5%; MRE \geq 3.0 kPa	Approximately 80% of people with HF and T2D have MASLD, and more than a third have significant hepatic fibrosis. HF may be a useful biomarker for MASLD and significant fibrosis in people with T2D.	[2]
Two-step Mendelian randomization study/2024/China	Genome-wide association studies of T2D $(n = 933,970)$, glycemic traits $(n = 209,605)$, iron	MRI-PDFF	Genetically elevated ferritin, serum iron, and liver iron were associated with a higher risk of liver steatosis. Ferritin possibly mediates the association of insulin resistance in liver steatosis.	[3]

	biomarkers (n =			
	246,139), MASLD (<i>n</i> =			
	972,707), and related			
	biomarkers (ALT and			
	PDFF)			
Population-based	n = 4,466; analysis of	Hepatic steatosis in the absence of	Elevated serum ferritin, TIBC, and UIBC showed	[4]
study/NHANES	2017–2020 NHANES	significant alcohol consumption or viral	a distinct positive correlation with CAP, while	
(2017–	data to assess the	hepatitis; hepatic steatosis VCTE (CAP ≥	only serum ferritin was positively correlated with	
2020)/China	relationship between	238 dB/m); liver fibrosis (LSM ≥ 7 kPa)	LSM.	
	serum iron status and			
	the prevalence of			
	MASLD and liver			
	fibrosis			
Population-based	n = 1,648; comparison	CAP (> 280 dB/m); advanced fibrosis:	MASLD cases were more likely to be of Mexican	[5]
study/NHANES	of intake of macro- and	transient elastography (> 10 kPa)	American or Hispanic ethnicity ($P = 0.002$), have	
(2017–2018)/US	micro-nutrient intake in		a higher BMI, and have a higher prevalence of	
A	a cohort of individuals		diabetes, hyperlipidemia, and hypertension ($P <$	
	with MASLD versus		0.001 for all). MASLD cases had higher hs-CRP	
	matched controls		(P = 0.02) and ferritin $(P = 0.02)$.	
Five-year post-	n = 61; evaluation of	Various MASLD parameters (hepatic	Serum ferritin baseline levels sustained a	[6]
trial monitoring	the long-term effects of	steatosis, liver-to-spleen attenuation ratio	significant reduction in the 5-year post-trial	

study/2015-	ipragliflozin and	on computed tomography, reductions in	monitoring period (Pioglitazone: -58.4 ±
2021/Japan	pioglitazone on	serum aminotransferase levels, glycemic	81.7 ng/mL; Ipragliflozin: -83.3 ± 79.2 ng/mL).
	MASLD in patients	parameters)	
	with T2D		
Population-based	n = 5,927 (average age	CAP (>248 dB/m); LSM (≥ 8.2 kPa)	High serum ferritin concentrations were associated [7]
study NHANES	of 46.78 years);		with CAP and LSM. Serum ferritin and LSM had
(2017–	analysis of		linear covariates in people under 40 years old and
2020)/China	epidemiological and		in female participants, as evidenced by the
	transcriptome data in		likelihood ratio test (LR) with a $P > 0.05$.
	MASLD and hepatic		
	fibrosis		
Historical	SLD $(n = 17,560);$	SLD was diagnosed based on the presence	All SLD subtypes showed an increased risk of [8]
longitudinal	categorized as MASLD	of hepatic steatosis on ultrasonography.	LRE with high serum ferritin levels ($\geq 300~\mu g/L$
cohort	(n = 15,744), MetALD		for males, $\geq 200~\mu\text{g/L}$ for females) compared to
study/2001-	(n = 1,103), cryptogenic		those with normal to low serum ferritin levels (<
2016/South	without liver-related		300 μ g/L for males, < 200 μ g/L for females).
Korea	events at baseline $(n =$		Baseline ferritin level is a significant factor for
	713); aged 20 years and		LRE incident.
	above		
Prospective,	n = 3,393 (aged 20-74	Ultrasound	Individuals with serum iron and transferrin [9]
observational	years)		saturation in the third or fourth quartile intervals

study/NHANES

III (1988 -

1994)/China

2022/China

Prospective cohort health examinations at least (Dalian times management three cohort)/2015developed MASLD

(1) BMI \geq 23 kg/m² or waist circumference independent risk factor for MASLD. > 90/80 cm in men and women; (2) FPG >5.6 mmol/L, or HbA1c \geq 5.7%, or T2D or treatment for T2D; (3) blood pressure ≥ 130/85 mmHg or specific drug treatment; (4) $TG \ge 1.70 \text{ mmol/L}$ or lipid-lowering treatment; (5) HDL-C < 1.0 mmol/L for men and < 1.3 mmol/L for women or lipidlowering treatment

had a 20-40% reduction in long-term mortality. High ferritin concentration was significantly associated with elevated all-cause mortality in patients with MASLD. However, this association disappeared in models adjusted for age, sex, and other covariates.

n = 492; participants Ultrasound with at least one of the Multivariate Cox proportional regression showed [10] study who attended health following five cardiometabolic risk factors: that higher baseline ferritin levels are an

Multi-center. cross-sectional median study/2025/UK, years); Italy, Spain, included and patients with CHB in 19 France,

consecutive the CHB sub-group

(with a Ultrasound, CAP score (≥ 275 dB/m), or High ferritin levels were significantly associated [11] of 53 histology; fibrosis: LSM \geq 8 kPa in the with MASLD incidence. Patients with CHB with Study CHB-MASLD population and ≥ 9 kPa in MASLD have almost 3 times higher risk for advanced fibrosis compared with patients with

Greece	centers from five		CHB without MASLD.
	European countries		
Prospective	n = 24; patients with	Ultrasound	Dapagliflozin treatment for 24 weeks showed a [12]
randomized	MASLD and comorbid		beneficial effect on MASLD parameters and a
controlled	T2D; $n = 13$ received		significant reduction in serum ferritin.
trial/2019–	dapagliflozin; $n = 11$		
2021/Japan	controls received		
	Vitamin E		
Two-sample	8,434 NAFLD and	Histological, electronic health records, or	Increased ferritin was associated with an increased [17]
bidirectional MR,	770,180 controls	radiological	risk of MASLD by multivariable Mendelian
multivariable	(dataset 1 [13]), 4,761		randomization. By two-step MR analysis, we
MR, and	NAFLD and 373,227		found that genetic liability to ferritin mediated
mediation/NA/Ch	controls [14]); ferritin:		3.34% (95% CI: 0.17–8.08%) of the waist
ina	n = 23,986 genome-		circumference effects on MASLD risk and
	wide association study		18.84% (95% CI: 3.01-40.51%) of its effects on
	(GWAS) meta-analysis		PLC risk.
	iron homeostasis		
	dataset 1 [15]; $n =$		
	246,139 [16]; Analyses		
	to investigate the causal		
	associations among		
	obesity-related traits,		

	iron homeostasis		
	biomarkers, MASLD,		
	and liver cancer		
Retrospective study/2023/USA	with MASLD; analysis	vibration-controlled transient elastography, plus metabolic/genetic risk factors in the	Of 7,333 patients with MASLD, 1,468 (20%) had [18] elevated ferritin. In multivariate analysis, MHF was associated with increased mortality and incident liver-related events. MHF was associated with cirrhosis-promoting alleles, including <i>PNPLA3</i> -rs738409-G allele and <i>TM6SF2</i> -rs58542926-T allele, but not with common iron overload-promoting <i>HFE</i> mutations.
	metabolism and liver fibrosis		
Single-center cross-sectional study (SAKKOPI)/202 3/Austria and Switzerland	adults aged 45–80 participating in opportunistic screening for colorectal cancer.	steatosis accompanied by one of the following criteria of metabolic dysfunction: (1) overweight (BMI \geq 25 kg/m ²) or waist circumference \geq 94/80 cm	While the mean ferritin level was 118 ng/mL in [19] the overall cohort ($n = 4,286$), it was 153 ng/mL in the hepatic steatosis cohort ($n = 1,903$) and 95 ng/mL in the no hepatic steatosis cohort ($n = 2,383$).
Switzerland	diagnosed with hepatic	in Caucasian men and women, (2) blood pressure ≥ 130/85 mmHg or specific drug treatment, (3) triglycerides ≥ 150 mg/dL or	

	analysed the relevance	specific drug treatment, (4) plasma HDL-		
	of metabolic	cholesterol $<$ 40 mg/dL for men and $<$ 50		
	dysfunction according	mg/dL for women or specific drug		
	to MAFLD, MASLD,	treatment, (5) T2D or prediabetes (i.e.,		
	and metabolic	fasting blood glucose 100 mg/dL to		
	syndrome criteria (i.e.,	125 mg/dL, or 2 h post-load glucose levels		
	the population of	140 mg/dL to 199 mg/dL or HbA1c 5.7-		
	interest regarding SLD)	6.4%)		
	and steatosis for			
	cardiovascular health			
Population-based	10,044 participants	Not provided	Of all subjects with MASLD $(n = 2,669)$ in our	[20]
observational	randomized and		cohort, 24% ($n = 636$) had HF, supporting	
cohort	selected from the local		estimates of increased HF prevalence in MASLD.	
study/2013-	population surrounding		HF and, in particular, MHF are associated with	
2020/Austria and	the region of Salzburg,		metabolic alterations. In addition, a higher	
Italy	Austria, aged 40-77		prevalence of MASLD of 57% in subjects with	
	years		HF and a further increase in MASLD prevalence	
			along with the severity of HF was observed.	
0.1	271 T2D .: .		M.I. did di Tab. I MAGIDI III	[21]
Cohort	•	•	Male patients with T2D and MASLD had lower	[21]
study/2022-	with MASLD with a	absence of other secondary causes of liver	platelet count and PTC and larger PDW. Higher	
2023/Romania	mean age of 65.0 ± 8.4	disease and patient history	insulin resistance was associated with lower	
	years and a mean		platelet count and PTC and higher PDW.	

	duration of diabetes of	Moreover, patients with a higher HOMA-IR had
	9.7 ± 5.0 years	higher platelet counts and increased
		concentrations of ferritin.
Cross-sectional	n = 2,145; investigation Ultrasound and several non-invasive	Elevated serum ferritin levels are associated with a [22]
study/NHANES	of the association markers	higher prevalence of MAFLD and advanced liver
(2017–	between serum ferritin	fibrosis. Elevated serum ferritin levels combined
2018)/China	and MAFLD	with diabetes are important risk factors for liver
		fibrosis.

ALT: alanine aminotransferase; AST: aspartate aminotransferase; BMI: body mass index; CAP: controlled attenuation parameter; CHB: chronic hepatitis B; FIB-4: fibrosis-4 score; HbA1c: glycated haemoglobin; HCC: hepatocellular carcinoma; HF: hyperferritinemia; HOMA-IR: homeostatic model assessment for insulin resistance; LRE: liver-related event; LSM: liver stiffness measurement; MAFLD: metabolic-associated fatty liver disease; MASLD: metabolic dysfunction-associated steatotic liver disease; MetALD: metabolic dysfunction and alcohol-related liver disease; ASLD with moderate-to-high alcohol intake; MHF: metabolic hyperferritinemia; MR: Mendelian randomization; MRI: magnetic resonance imaging; NFS: non-alcoholic fatty liver disease fibrosis score; NHANES: National Health and Nutrition Examination Survey; PDFF: proton density fat fraction; PDW: platelet distribution width; PLC: primary liver cancer; PTC: plateletcrit; SLD: steatotic liver disease; T2D: type 2 diabetes; TIBC: total iron-binding capacity; UIBC: unsaturated iron-binding capacity.

References

- 1. Armandi A, Sanavia T, Younes R, Caviglia GP, Rosso C, Govaere O, et al. Serum ferritin levels can predict long-term outcomes in patients with metabolic dysfunction-associated steatotic liver disease. *Gut.* 2024;73:825–34. [PMID: 38199805 DOI: 10.1136/gutjnl-2023-330815]
- Amangurbanova M, Huang DQ, Noureddin N, Tesfai K, Bettencourt R, Siddiqi H, et al. A Prospective Study on the Prevalence of MASLD in Patients With Type 2 Diabetes and Hyperferritinaemia. *Aliment Pharmacol Ther*. 2025;61:456–64. [PMID: 39499168 DOI: 10.1111/apt.18377]
- 3. Liang Y, Luo S, Bell S, Mo JMY, He B, Zhou Y, et al. Do iron homeostasis biomarkers mediate the associations of liability to type 2 diabetes and glycemic traits in liver steatosis and cirrhosis: a two-step Mendelian randomization study. BMC Med. 2024;22:270. [PMID: 38926684 PMCID: PMC11210020 DOI: 10.1186/s12916-024-03486-w]
- 4. Guo W, Weng T, Song Y. Association of serum iron status with MASLD and liver fibrosis. *PLoS One*. 2025;20:e0319057. [PMID: 40168317 PMCID: PMC11960921 DOI: 10.1371/journal.pone.0319057]
- 5. Nemer M, Osman F, Said A. Dietary macro and micronutrients associated with MASLD: Analysis of a national US cohort database. *Ann Hepatol.* 2024;29:101491. [PMID: 38412922 DOI: 10.1016/j.aohep.2024.101491]
- 6. Ito D, Shimizu S, Haisa A, Yanagisawa S, Inoue K, Saito D, et al. Long-term effects of ipragliflozin and pioglitazone on metabolic dysfunction-associated steatotic liver disease in patients with type 2 diabetes: 5 year observational follow-up of a randomized, 24 week, of active-controlled trial: Effect ipragliflozin in $\mathsf{MASLD}.J$ Diabetes Investig. 2024;15:1220-30. [PMID: 38775319 PMCID: PMC11363141 DOI: 10.1111/jdi.14246]
- 7. Li C, Qu M, Tian X, Zhuang W, Zhu M, Lv S, et al. Epidemiological and transcriptome data identify association between iron overload and metabolic dysfunction-associated steatotic liver disease and hepatic fibrosis. *Nutr Res.* 2024;131:121–34. [PMID: 39383734 DOI: 10.1016/j.nutres.2024.09.011]
- 8. Song BG, Goh MJ, Kang W, Gwak GY, Paik YH, Choi MS, et al. Serum Ferritin Levels and Liver-Related Events in Individuals With Steatotic Liver Disease: A Longitudinal Cohort Study. *Aliment Pharmacol Ther*. 2025;61:491–500. [PMID: 39573902 DOI: 10.1111/apt.18402]

- 9. Xia T, Ni J, Ni Y, Wu X, Du K, Wan X, et al. Serum iron status is associated with all-cause mortality in metabolic dysfunction-associated steatotic liver disease: a prospective, observational study. *Front Endocrinol (Lausanne)*. 2024;15:1454193. [PMID: 39464186 PMCID: PMC11502310 DOI: 10.3389/fendo.2024.1454193]
- 10. Song Z, Miao X, Xie X, Tang G, Deng J, Hu M, et al. Associations between serum ferritin baselines and trajectories and the incidence of metabolic dysfunction-associated steatotic liver disease: a prospective cohort study. *Lipids Health Dis.* 2024;23:141. [PMID: 38760825 PMCID: PMC11100236 DOI: 10.1186/s12944-024-02129-6]
- 11. Kalafateli M, Forlano R, Barnes E, Martinez-Gili L, Lacey M, Sigon G, et al. Risk Factors of Metabolic Dysfunction-associated Steatotic Liver Disease in a Cohort of Patients With Chronic Hepatitis B. *Clin Gastroenterol Hepatol.* 2025;S1542–356500533–6. [PMID: 40609817 DOI: 10.1016/j.cgh.2025.06.014]
- 12. Fukada H, Kon K, Yaginuma R, Uchiyama A, Morinaga M, Ishizuka K, et al. Effectiveness and risks of dapagliflozin in treatment for metabolic dysfunction-associated steatotic liver disease with type 2 diabetes: a randomized controlled trial. *Front Med (Lausanne)*. 2025;12:1542741. [PMID: 40201320 PMCID: PMC11975940 DOI: 10.3389/fmed.2025.1542741]
- 13. Ghodsian N, Abner E, Emdin CA, Gobeil É, Taba N, Haas ME, et al. Electronic health record-based genome-wide meta-analysis provides insights on the genetic architecture of non-alcoholic fatty liver disease. *Cell Rep Med.* 2021;2:100437. [DOI: 10.1016/j.xcrm.2021.100437]
- Fairfield CJ, Drake TM, Pius R, Bretherick AD, Campbell A, Clark DW, et al. Genome-Wide Association Study of NAFLD Using Electronic Health Records. *Hepatol Commun.* 2022;6:297–308. [PMID: 34535985 PMCID: PMC8793997 DOI: 10.1002/hep4.1805]
- 15. Benyamin B, Esko T, Ried JS, Radhakrishnan A, Vermeulen SH, Traglia M, et al.; InterAct Consortium; van Duijn C, Beilby J, Pramstaller PP, Hicks AA, Ouwehand WH, Oexle K, et al. Novel loci affecting iron homeostasis and their effects in individuals at risk for hemochromatosis. *Nat Commun.* 201;5:4926. [PMID: 25352340 PMCID: PMC4215164 DOI: 10.1038/ncomms5926]
- 16. Bell S, Rigas AS, Magnusson MK, Ferkingstad E, Allara E, Bjornsdottir G, et al.; DBDS Genomic Consortium; Peters JE, Westergaard D, Holm H, Soranzo N, Banasik K, Thorleifsson G, et al. A genome-wide meta-analysis yields 46 new loci associating with biomarkers of iron homeostasis. *Commun Biol.* 2021;4:156. [PMID: 33536631 PMCID:

- PMC7859200 DOI: 10.1038/s42003-020-01575-z]
- 17. Zeng Y, Wang X, Liao S, Li C, Chen J, He H. Iron Homeostasis as a Mediator Linking Central Obesity with MASLD and Primary Liver Cancer: A Two-Step Mendelian Randomization Study. *Biomedicines*. 2025;13:1641. [PMID: 40722713 PMCID: PMC12292972 DOI: 10.3390/biomedicines13071641]
- Suresh D, Li A, Miller MJ, Wijarnpreecha K, Chen VL. Associations between metabolic hyperferritinaemia, fibrosis-promoting alleles and clinical outcomes in steatotic liver disease. *Liver Int.* 2024;44:389–98. [PMID: 37971775 PMCID: PMC10872664 DOI: 10.1111/liv.15787]
- 19. Semmler G, Balcar L, Wernly S, Völkerer A, Semmler L, Hauptmann L, et al. Insulin resistance and central obesity determine hepatic steatosis and explain cardiovascular risk in steatotic liver disease. *Front Endocrinol (Lausanne)*. 2023;14:1244405. [PMID: 37842290 PMCID: PMC10570507 DOI: 10.3389/fendo.2023.1244405]
- 20. Gensluckner S, Wernly B, Koutny F, Strebinger G, Zandanell S, Stechemesser L, et al. Prevalence and Characteristics of Metabolic Hyperferritinemia in a Population-Based Central-European Cohort. *Biomedicines*. 2024;12:207. [PMID: 38255312 PMCID: PMC10813305 DOI: 10.3390/biomedicines12010207]
- 21. Onisor D, Roiban AL, Cernea S. Metabolic Dysfunction-Associated Steatotic Liver 2 Patients—The Disease in Type Diabetes Relationship with **Platelets** Indicators. Medicina (Kaunas). 2024;60:2091. [PMID: 39768970 PMCID: PMC11676065 DOI: 10.3390/medicina60122091]
- 22. Li JH, Ma XY, Yi Y, Li LR, Xu ZY, Chang Y. Association between Serum Ferritin Levels and Metabolic-associated Fatty Liver Disease in Adults: a Cross-sectional Study Based on the NHANES. *Curr Med Sci.* 2024;44:494–502. [PMID: 38748368 DOI: 10.1007/s11596-024-2868-0]