Supplementary Information

The Table S1 highlights the overall absorption and disposition characteristics of BI and BE. The Pharmacokinetics of BI is characterized with poor oral absorption, high plasma protein binding, extensive metabolism, and enterohepatic recycling, prolonged oral half-life but low systemic levels poor in contrast to that of BE which shows better absorption, faster distribution, and clearance; lower dependence on microbiota but shorter systemic retention.

Table S1: Comparative Pharmacokinetics of Baicalin and Baicalein

Parameter	Baicalin	Baicalein	References
Chemical	Glucuronide form (glycoside)	Aglycone (non-	(1)
nature		glycoside)	
Lipophilicity	Low (0.316) – poor membrane	High (2.59) – good	(2)
(log P)	permeability	membrane permeability	
Cell	$0.037 \times 10^{-6} \text{ cm/s (very low)}$	$7.29 \pm 0.70 \times 10^{-6} \text{ cm/s}$	(2,3)
membrane		(high)	
permeability			
(P _{app})			
Primary	Colon (~2.32%/h); poor	Efficient absorption	(4-6), (15)
absorption	absorption in small intestine	throughout GI tract	
site	(~0.94%/h)		
Bioavailabilit	Very low; dependent on	Low (~2.2% in rats) but	(6-8)
У	microbial conversion	higher than baicalin	
Absorption	Passive diffusion; partially	Passive diffusion; high	(9,10)
mechanism	dissociates under acidic pH	lipophilicity enhances	(2), (4,5)
		uptake	
Distribution	High binding to HSA; low	Strong HSA binding;	(11-13)
	CNS penetration; highest tissue	broader tissue	
	levels in kidneys; moderate in	distribution including	
	liver, heart, lungs, spleen, and	CNS	

	brain		
BBB	Can cross BBB via OATP1A2	Also penetrates BBB but	(14)
permeability	and OATP2B1; potential CNS	less studied compared to	
	protective role	baicalin	
Metabolism	Extensive in liver and kidney:	Metabolized mainly to	(6), (13),
	glucuronidation, methylation,	glucuronide conjugates;	(15,16)
	sulfation, hydroxylation;	faster clearance than	
	excreted in bile, urine, and	baicalin	
	feces		
Half-life (t½)	IV: 0.1–4 h; Oral: up to 12.1 h	Shorter t½; rapid	(6),(15)
		systemic clearance	
Excretion	Mainly via bile and urine;	Faster renal and biliary	(13), (15)
	significant enterohepatic	excretion; less recycling	
	recycling		

References:

- (1) Noh K, Kang Y, Nepal MR, Jeong KS, Oh DG, Kang MJ, Lee S, Kang W, Jeong HG, Jeong TC. Role of Intestinal Microbiota in Baicalin-Induced Drug Interaction and Its Pharmacokinetics. Molecules. 2016 Mar 10;21(3):337.
- (2) Li C, Zhang L, Zhou L, Wo SK, Lin G, Zuo Z. Comparison of Intestinal Absorption and Disposition of Structurally Similar Bioactive Flavones in *Radix Scutellariae*. AAPS J. 2012;14(1):23-34.
- (3) Ancuceanu R, Dinu M, Dinu-Pirvu C, Anuța V, Negulescu V. Pharmacokinetics of B-Ring Unsubstituted Flavones. Pharmaceutics. 2019 Aug 1;11(8):370.
- (4) Tian XJ, Yang XW, Yang X, Wang K. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model. Int J Pharm. 2009 Feb 9;367(1-2):58-64.
- (5) Kalapos-Kovács B, Magda B, Jani M, Fekete Z, Szabó PT, Antal I, Krajcsi P, Klebovich I. Multiple ABC Transporters Efflux Baicalin. Phytother Res. 2015 Dec;29(12):1987-90.

- (6) Xing J, Chen X, Zhong D. Absorption and enterohepatic circulation of baicalin in rats. Life Sci. 2005 Nov 26;78(2):140-146.
- (7) Zhao L, Wei Y, Huang Y, He B, Zhou Y, Fu J. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine. 2013;8:3769-3779.
- (8) Ren Y, Nie L, Zhu S, Zhang X. Nanovesicles-Mediated Drug Delivery for Oral Bioavailability Enhancement. Int J Nanomedicine. 2022;17:4861-4877.
- (9) Gaohua L, Miao X, Dou L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin Drug Metab Toxicol. 2021 Sep;17(9):1103-1124.
- (10) Chen L, Cao H, Huang Q, Xiao J, Teng H. Absorption, metabolism and bioavailability of flavonoids: a review. Crit Rev Food Sci Nutr. 2022;62(28):7730-7742.
- (11) Liu H, Bao W, Ding H, Jang J, Zou G. Binding modes of flavones to human serum albumin: insights from experimental and computational studies. J Phys Chem B. 2010;114:12938-12947.
- (12) Wei Y, Pi C, Yang G, Xiong X, Lan Y, Yang H, et al. LC-UV Determination of Baicalin in Rabbit Plasma and Tissues for Application in Pharmacokinetics and Tissue Distribution Studies of Baicalin after Intravenous Administration of Liposomal and Injectable Formulations. Molecules. 2016;21:444.
- (13) Zhang J, Cai W, Zhou Y, Liu Y, Wu X, Li Y, et al. Profiling and identification of the metabolites of baicalin and study on their tissue distribution in rats by ultrahigh-performance liquid chromatography with linear ion trap-Orbitrap mass spectrometer. J Chromatogr B Analyt Technol Biomed Life Sci. 2015;985:91-102.
- (14) Cho J, Hong EB, Kim YS, Song J, Ju YH, Kim H, et al. Baicalin and baicalein from *Scutellaria baicalensis* Georgi alleviate aberrant neuronal suppression mediated by GABA from reactive astrocytes. CNS Neurosci Ther. 2024 May;30(5):e14740.

- (15) Lai MY, Hsiu SL, Chen CC, Hou YC, Chao PD. Urinary pharmacokinetics of baicalein, wogonin and their glycosides after oral administration of *Scutellariae Radix*. Biol Pharm Bull. 2003;26:79-83.
- (16) Huang T, Liu Y, Zhang C. Pharmacokinetics and Bioavailability Enhancement of Baicalin: A Review. Eur J Drug Metab Pharmacokinet. 2019;44:159-168.