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Supplementary methods 

In-house neoepitope dataset 

Three melanoma patients that received VACCIMEL [1] were selected for this analysis. 

Their samples were obtained following the protocol described in [2]. Tumor samples 

were processed to perform Whole-exome Sequencing (WES), RNA sequencing 

(RNAseq), and Human Leukocyte Antigens (HLA) typing as described in [3]. To 

identify somatic variants, MuTect2 [4] was used following Genome Analysis Toolkit 

(GATK) best practices. Neopeptides were obtained with mutant peptide extractor and 

informer (MuPeXi) [5] and selected considering a predicted rank score of binding 

affinity to Major Histocompatibility Complex (MHC) ≤ 2 by using NetMHCpan 4.0 

EL [6] and corresponding wild-type > 2. From all the candidates obtained with this 

pipeline, a group of peptides was manually selected to synthesize and assess the 

immune response. For promiscuous neopeptides, the allele with better predicted 

binding affinity was selected for further analysis. Neopeptide source mutated proteins 

were obtained with SeqTailor [7] and manually curated. Quantification of transcript 

expression from RNAseq data was obtained with Kallisto [8].  

Neoepitope immunogenicity assessment 

The interferon gamma (IFNγ) enzyme-linked immunospot (ELISPOT) Assay for the 

predicted neopeptides was performed with peripheral blood mononuclear cells (PBMC) 

at three time points after vaccination with VACCIMEL (P1= 6 months, P2= 1 yr, P3= 

2yr) as previously described [3]. The background baseline for each patient and time 

point was calculated as the average number of spots present in non-stimulated cells. 

Quantitative values of immune response were derived from the ratio between the 

number of spots and the corresponding background baseline. The maximum value from 

any time point was considered, and neopeptides were labeled as positive or 

immunogenic if the number of spots is 2,5 times higher than baseline.  

Amino acid enrichment analysis  

To analyze the amino acid composition of immunogenic peptide datasets from different 

sources, we downloaded neopeptides from Neoepitope Database (NEPdb) [9] and 

Cancer Epitope Database and Analysis Resource (CEDAR) [10] (December 2022) and 

viral peptides from Immune Epitope Database (IEDB) (August 2021) that were 

experimentally evaluated for T cell responses. For viral peptides, the query included 

linear peptides that bind to MHC class I, with human as host organism, and virus as 

source organism. Entries that have MHCs with low resolution or not included in 

NetMHCpan 4.1 were discarded, as well as entries of peptides with non-conventional 

amino acids. In the case of neopeptides from NEPdb, we selected only 8 to 10 mers. 

Further, we predicted the likelihood of binding to the corresponding MHC using 

NetMHCpan, excluded peptides with a rank score higher than 2 (predicted non-binders), 



and selected the predicted Icore as the minimal peptidic sequence that can form a 

pMHC-TCR complex. From this sequence, the first and last 3 amino acids containing 

anchor positions were discarded. In this way, the central region of the peptide, which is 

associated with the interaction with the T cell receptor (TCR), was conserved for further 

analysis. The enrichment (e) of each amino acid (aa) was calculated using the following 

formula 

𝑒𝑎𝑎 = 𝑙𝑜𝑔2((𝑃𝑎𝑎 + 0.01) ÷ (𝑁𝑎𝑎 + 0.01)) 

Where P is the proportion of the amino acid (aa) among the selected region in 

immunogenic neopeptides and N in non-immunogenic neopeptides. 

Methods used to predict immunogenicity in-house dataset 

ProteaSMM [11] predictions were retrieved via IEDB API.  

Only the predictions of transporter associated with antigen-processing (TAP) binding 

affinity and proteasome cleavage from NetCTLpan [12] were considered for this study. 

NetCTLpan was downloaded and executed locally following the author's 

recommendations.  

NetMHCstabpan [13] predictions considered for this study do not include affinity 

predictions (-ia 0). NetMHCstabpan was downloaded and executed locally following 

the author's recommendations.  

NetMHCpanexp [14] was downloaded and executed locally following the author's 

recommendations.  

Expression data to perform HLAthena [15] predictions were obtained with 

NetMHCpanexp. HLAthena was executed from docker containers following the 

author's recommendations. 

Improved Proteasome Cleavage Prediction Server (iPCPS) [16] models used in this 

review were selected by best specificity (immunoproteasome model 1 and proteasome 

model 2). iPCPS predictions were obtained from the web server. 

Kernel similarity was calculated as described in [17] using a block of amino acid 

substitution matrix (BLOSUM) 62 matrix. This metric was also applied to peptides with 

removed anchor positions. Anchors were defined as the positions with the highest 

information content in the motifs of each MHC molecule preference.  

Pairwise sequence similarity was calculated as described in [18]. 

DeepNetBim [19] only accepts peptides of 9 amino acids. The predicted binding core 

with NetMHCpan 4.0 [6] was used to analyze all peptides included in the dataset. In 8-



meres, the predicted position of insertion was replaced with X. DeepNetBim was 

downloaded and executed following the author's recommendations. 

DeepImmuno [20] only accepts peptides of 9 and 10 amino acids. The predicted binding 

core with NetMHCpan 4.0 [6] was used to analyze all peptides included in the dataset. 

In 8-meres, the predicted position of insertion was replaced with alanine, and in 

11meres, 1 amino acid was deleted at the deletion predicted position. DeepImmuno 

predictions were obtained from the web server. 

The neoantigen immunogenicity prediction model of immunogenic epitope/neoepitope 

prediction (INeo-Epp) [21] only supports single amino acid mutations. To analyze 

peptides originating in frameshift variants, we modified the wild-type peptide input 

sequence to be equal to the mutated peptide, except in the amino acid nearest to the 

anchor position, which was conserved as in the wild-type. (i.e. Mutant peptide: 

EADLRVQSL, Wild-type peptide: EATLRTQSL, Wild-type sequence used as input 

to the program: EATLRVQSL) 

IEDB immunogenicity [22], Predictor of Immunogenic Epitopes (PRIME) [23], 

NetCleave [24], NetMHCpan and MHCflurry [25] were downloaded and executed 

locally following the author's recommendations.  

Antigen.garnish [26], and DeepHLApan [27] were executed from docker containers 

following the author's recommendations.  

Tumor Antigen predictor (TA predictor) [28] and identification of Tumor T cell 

Antigens-Random Forest iTTCA-RF [29] predictions were obtained from the 

corresponding web servers. 

Variant allele frequency was obtained with MuTect2 [4]. 

Comparative evaluation of predictive methods 

Evaluation metrics were calculated using the scikit-learn package [30] in Python 3.8.10. 

Statistical and correlation analysis were performed with SciPy 1.6.3. 
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Figure S1. A positive correlation between Human Protein Atlas inferred expression 

values and RNAseq derived values for the proteins generating neopeptides in patients 

005 and 006 (Pearson’s correlation test, r = 0.97). 
  



Table S2. Comparison of AUC of methods trained with neopeptides contained 

in the in-house neoepitope dataset, including and excluding such peptides 
                                  

 

AUC including over-

lapped peptides 

AUC excluding 

overlapped peptides 

DeepHLApan immunogenicity 0.53 0.52 

DeepImmuno 0.47 0.47 

NetCleave 0.41 0.4 

NetMHCpanExp 0.54 0.53 
 



 

Table S3. Performance metrics of all the methods reviewed 

                                  

Method 

AUC 

ROC 

AUC ROC 

0.1 

AUC 

ROC 0.2 

Spearman 

correlation 

Pearson 

correlation 

MHCflurry AP 0.609 0.53 0.542 0.169 0.152 

PRIME score 0.604 0.536 0.533 0.188 0.178 

PRIME rank 0.601 0.494 0.466 -0.182 -0.12 

Variant Allele Frequency 0.6 0.492 0.52 0.154 0.098 

INeo-Epp neoantigen 0.584 0.49 0.489 0.139 0.032 

ProteaSMM constitutive proteasome 0.58 0.514 0.513 0.139 0.148 

HLAthena MSiCE 0.58 0.474 0.462 -0.149 -0.135 

HLAthena MSiC 0.576 0.474 0.458 -0.141 -0.135 

MHCflurry PS 0.571 0.53 0.547 0.154 0.186 

NetCTLpan TAP 0.568 0.496 0.505 0.098 0.065 

ProteaSMM immunoproteasome 0.561 0.49 0.485 0.097 0.081 

MixMHCpred 0.556 0.474 0.456 -0.095 -0.128 

TA predictor 0.552 0.531 0.529 0.093 0.062 

HLAthena MSiE 0.549 0.474 0.47 -0.105 -0.103 

IEDB immunogenicity 0.548 0.504 0.52 0.072 0.062 

NetMHCpanExp rank 0.54 0.531 0.517 -0.09 -0.051 

Antigen.garnish Dissimilarity 0.533 0.476 0.494 0.087 -0.105 

DeepNetBim binding 0.53 0.493 0.495 0.081 0.124 

DeepHLApan immunogenic score 0.529 0.528 0.517 0.046 0.031 

INeo-Epp antigen 0.524 0.525 0.533 0.064 0.035 

NetMHCstabpan Thalf(h) 0.521 0.508 0.494 0.053 0.021 

iTTCA-RF 0.516 0.501 0.502 0.019 -0.006 

DeepNetBim immunogenicity 0.513 0.502 0.504 0.045 0.054 

Kernel Self Similarity without anchors 0.509 0.499 0.499 -0.041 -0.062 

Antigen.garnish Foreignness score 0.505 0.511 0.519 -0.004 0.018 

HPA expression 0.5 0.493 0.51 0.009 -0.049 

NetMHCpan 4.0 0.499 0.53 0.548 -0.032 -0.099 

Kernel Self Similarity 0.497 0.496 0.488 -0.001 0.055 

DeepNetBim immunogenicity probability 0.495 0.499 0.498 0.017 0.044 

MHCflurry BA 0.491 0.487 0.488 -0.021 -0.095 

NetMHCstabpan rank 0.487 0.48 0.484 0 -0.075 

DeepHLApan binding score 0.485 0.482 0.48 -0.008 0.024 

iPCPS Proteasome C-terminal 0.48 0.479 0.477 -0.018 0.014 

iTTCA-RF probability 0.48 0.474 0.457 -0.017 -0.019 

DeepImmuno 0.466 0.491 0.491 -0.068 -0.098 

iPCPS Immunoproteasome C-terminal 0.464 0.494 0.478 -0.04 -0.021 

iPCPS Proteasome 0.46 0.495 0.49 -0.09 -0.11 

NetCTLpan Cleavage 0.459 0.474 0.456 -0.075 -0.011 

iPCPS Proteasome internal 0.444 0.477 0.481 0.115 0.072 

Paired sequence similarity 0.434 0.507 0.524 0.071 0.07 

iPCPS Immunoproteasome 0.423 0.487 0.472 -0.147 -0.145 

iPCPS Immunoproteasome internal 0.415 0.505 0.499 0.143 0.206 

NetCleave 0.411 0.488 0.468 -0.152 -0.148 
 


