

Figure S1. Identification of free proteins as the adipocyte-derived mediator causing the MET-like effect in MDA-MB-231 cells. (A) Representative images of MDA-MB-231 cells grown in Matrigel and treated with AE-CM containing particles greater or less than 10 kDa in size or containing only EVs. EVs were precipitated from AE-CM using the ExoQuick EV isolation kit (System Biosciences, Palo Alto, CA). To separate AE-CM into <10 kDa or >10 kDa fractions, collected AE-CM was subjected to ultracentrifugation at 14,000 *g* for 30 minutes in a 10 kDa ultrafiltration spin column. This was then repeated at 10,000 *g* for 1 minute, using a fresh collection tube. 500 µL of the < 10 kDa and > 10 kDa fractions were collected from the elute and concentrate remaining in the column, respectively. These were diluted 1:2 in growth media before addition to MDA-MB-231 cultures; (B) total percentage of cell culture structures, reported as mean \pm SEM. Differences between the groups approached statistical significance however, due to insufficient experimental repetitions, significance could not be reached. Structures were determined by visual identification in ImageJ. Graph and Images prepared using GraphPad Prism and ImageJ respectively

Figure S2. Representative images of mature adipocytes cultured in two media types, as well as in the presence and absence of Matrigel. Full differentiation of adipocytes can be visually verified, with $\geq 40\%$ of cells containing lipid droplets. Magnification = $400\times$

Table S1. List of proteins differentially secreted by adipocytes in the presence of ECM (AE-CM) compared to adipocytes alone (A-CM) that are not reported to be in Matrigel (PSM counts > 2 in AE-CM, fold change > 2)

Protein	Symbol	A-CM	AE-CM	Fold	Function according to STRING
name		(PSM	(PSM	Change	
		counts)	counts)		
Nucleopro	Tpr	18.5	56.5	3.1	Nucleoprotein TPR; component of
tein TPR					the nuclear pore complex (NPC), a
(Transloca					complex required for the trafficking
ted					across the nuclear envelope.
Promoter					Functions as a scaffolding element

Region,					in the nuclear phase of the NPC
Nuclear					essential for normal
Basket					nucleocytoplasmic transport of
Protein)					proteins and mRNAs, plays a role in
					the establishment of nuclear-
					peripheral chromatin
					compartmentalization in interphase,
					and in the mitotic spindle
					checkpoint signaling during
					mitosis. Involved in the quality
					control and retention of unspliced
					mRNAs in the nucleus; in
					association with NUP153, regulates
					the nuclear export of unspliced
					mRNA [] (2363 aa)
Stress-70	Hspa9	10.5	27	2.6	Stress-70 protein, mitochondrial;
protein,					chaperone protein which plays an
mitochond					important role in mitochondrial
rial					iron-sulfur cluster (ISC) biogenesis.
					Interacts with and stabilizes ISC
					Interacts with and stabilizes ISC cluster assembly proteins FXN,
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (by similarity);
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (by similarity); belongs to the heat shock protein 70
					Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (by similarity); belongs to the heat shock protein 70 family (679 aa)
14-3-3	Ywhae	nd	16.5		Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (by similarity); belongs to the heat shock protein 70 family (679 aa) 14-3-3 protein epsilon; adapter
14-3-3 protein	Ywhae	nd	16.5		Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (by similarity); belongs to the heat shock protein 70 family (679 aa) 14-3-3 protein epsilon; adapter protein implicated in the regulation

				and specialized signaling pathways.
				Binds to a large number of partners,
				usually by recognition of a
				phosphoserine or phosphothreonine
				motif. Binding generally results in
				the modulation of the activity of the
				binding partner (by similarity).
				Positively regulates phosphorylated
				protein HSF1 nuclear export to the
				cytoplasm; belongs to the 14-3-3
				family (255 aa)
UDP-	Uggt1	nd	16	UDP-glucose-glycoprotein
glucose:gl				glucosyltransferase 1; recognizes
ycoprotein				glycoproteins with minor folding
glucosyltr				defects. Reglucosylates single N-
ansferase 1				glycans near the misfolded part of
				the protein, thus providing quality
				control for protein folding in the
				endoplasmic reticulum.
				Reglucosylated proteins are
				recognized by calreticulin for
				recycling to the endoplasmic
				reticulum and refolding or
				degradation; UDP-glucose
				glycoprotein glucosyltransferases
				(1555 aa)
Polyadeny	Pabpc1	nd	15.5	Polyadenylate-binding protein 1;
late-				binds the poly(A) tail of mRNA,
binding				including that of its own transcript.
protein 1				May be involved in cytoplasmic
				regulatory processes of mRNA

				metabolism such as pre-mF	RNA
				splicing. Its function in translati	onal
				initiation regulation can either	r be
				enhanced by or repressed by PA	IP2.
				Can probably bind to cytoplas	smic
				RNA sequences other than poly	y(A)
				in vivo. Involved in translation	nally
				coupled mRNA turne	over.
				Implicated with other R	NA-
				binding proteins in the cytoplas	smic
				deadenylation/translational	and
				decay interplay of the FOS mF	RNA
				mediated by the major coding-r	[]
				(636 aa)	
Proliferati	Pcna	nd	13	Proliferating cell nuclear anti	gen;
ng cell				auxiliary protein of I	DNA
nuclear				polymerase delta and is involve	ed in
antigen				the control of eukaryotic I	DNA
				replication by increasing	the
				polymerase's processibility du	ring
				elongation of the leading str	and.
				Induces a robust stimulatory e	ffect
				on the 3'-5' exonuclease and	3'-
				phosphodiesterase, but not apur	inic-
				apyrimidinic (AP) endonucle	ease,
				APEX2 activities. Has to be loa	aded
				onto DNA in order to be abl	e to
				stimulate APEX2. Plays a key	role
				in DNA damage response (DDR	() by
				being conveniently positioned a	t the
				replication fork to coordinate I	DNA

					replication with DNA re [] (261
					aa)
Endoplas	Erp44	nd	10	10.0	Endoplasmic reticulum resident
mic					protein 44; mediates thiol-
reticulum					dependent retention in the early
resident					secretory pathway, forming mixed
protein 44					disulfides with substrate proteins
					through its conserved CRFS motif.
					Inhibits the calcium channel activity
					of ITPR1. May have a role in the
					control of oxidative protein folding
					in the endoplasmic reticulum.
					Required to retain ERO1A and
					ERO1B in the endoplasmic
					reticulum (406 aa)
Glucosami	Gnpda1	3	8.5	2.8	Glucosamine-6-phosphate
ne-6-					isomerase 1; seems to trigger
phosphate					calcium oscillations in mammalian
isomerase					eggs. These oscillations serve as the
1					essential trigger for egg activation
					and early development of the
					embryo (by similarity); belongs to
					the glucosamine/galactosamine-6-
					phosphate isomerase family (289
					aa)
Protein	Fam49b	2.5	7	2.8	Protein FAM49B; family with
FAM49B					sequence similarity 49 member B
					(324 aa)
KH	Khdrbs1	nd	6.5		KH domain-containing, RNA-
domain-					binding, signal transduction-
containing					associated protein 1; recruited and

, RNA-				tyrosine phosphorylated by several
binding,				receptor systems, for example the T-
signal				cell, leptin and insulin receptors.
transducti				Once phosphorylated, functions as
on-				an adapter protein in signal
associated				transduction cascades by binding to
protein 1				SH2 and SH3 domain- containing
(band 2)				proteins. Role in G2-M progression
				in the cell cycle. Represses CBP-
				dependent transcriptional activation
				apparently by competing with other
				nuclear factors for binding to CBP.
				Also acts as a putative regulator of
				mRNA stability and/or translation
				rates and mediate [] (443 aa)
Isoform 2	Ap2b1	nd	6	AP-2 complex subunit beta;
of AP-2				component of the adaptor protein
complex				complex 2 (AP-2). Adaptor protein
subunit				complexes function in protein
beta				transport via transport vesicles in
				different membrane traffic
				pathways. Adaptor protein
				complexes are vesicle coat
				components and appear to be
				involved in cargo selection and
				vesicle formation. AP-2 is involved
				in clathrin-dependent endocytosis in
				which cargo proteins are
				incorporated into vesicles
				surrounded by clathrin (clathrin-
				coated vesicles, CCVs) which are

				destined for fusion with the early
				endosome. The clathrin lattice
				serves as a mechanical scaffold bu
				[] (951 aa)
TFG	Tfg	nd	5	Protein TFG; plays a role in the
protein				normal dynamic function of the
(band 1)				endoplasmic reticulum (ER) and its
				associated microtubules (400 aa)
U2	U2surp	nd	4.5	U2 snRNP-associated SURP motif-
snRNP-				containing protein; U2 snRNP
associated				associated SURP domain
SURP				containing; belongs to the splicing
motif-				factor SR family (1029 aa)
containing				
protein				
WD	Wdr5	nd	4.5	WD repeat-containing protein 5;
repeat-				contributes to histone modification.
containing				May position the N- terminus of
protein 5				histone H3 for efficient
				trimethylation at 'Lys-4'. As part of
				the MLL1/MLL complex it is
				involved in methylation and
				dimethylation at 'Lys-4' of histone
				H3. H3 'Lys-4' methylation
				represents a specific tag for
				epigenetic transcriptional
				activation. As part of the NSL
				complex it may be involved in
				acetylation of nucleosomal histone
				H4 on several lysine residues. May
				regulate osteoblasts differentiation;

				belongs to the WD repeat
				WDR5/wds family (334 aa)
Guanine	Gnas	nd	4	Guanine nucleotide-binding protein
nucleotide				G(s) subunit alpha isoforms XLas;
-binding				guanine nucleotide-binding proteins
protein				(G proteins) function as transducers
G(s)				in numerous signaling pathways
subunit				controlled by G protein-coupled
alpha				receptors (GPCRs). Signaling
isoforms				involves the activation of adenylyl
XLas				cyclases, resulting in increased
				levels of the signaling molecule
				cAMP. GNAS functions
				downstream of several GPCRs,
				including beta-adrenergic receptors.
				XLas isoforms interact with the
				same set of receptors as GNAS
				isoforms (by similarity) (1037 aa)
Prolyl 3-	P3h3	nd	4	Prolyl 3-hydroxylase 3; part of a
hydroxyla				complex composed of PLOD1,
se 3				P3H3 and P3H4 that catalyzes
				hydroxylation of lysine residues in
				collagen alpha chains and is
				required for normal assembly and
				cross-linkling of collagen fibrils.
				Required for normal hydroxylation
				of lysine residues in type I collagen
				chains in skin, bone, tendon, aorta
				and cornea. Required for normal
				skin stability via its role in
				hydroxylation of lysine residues in

					collagen alpha chains and in
					collagen fibril assembly. Apparently
					not required for normal prolyl 3-
					hydroxylation on collagen chains,
					possibly because it function []
					(736 aa)
Isoform 2	Abr	1.0	3.5	3.5	Active breakpoint cluster region-
of Active					related protein; GTPase-activating
breakpoint					protein for RAC and CDC42.
cluster					Promotes the exchange of RAC or
region-					CDC42-bound GDP by GTP,
related					thereby activating them; C2 domain
protein					containing (859 aa)
AP-1	Ap1g1	nd	3.5		AP-1 complex subunit gamma-1;
complex					subunit of clathrin-associated
subunit					adaptor protein complex 1 that plays
gamma					a role in protein sorting in the late-
					Golgi/trans-Golgi network (TGN)
					and/or endosomes. The AP
					complexes mediate both the
					recruitment of clathrin to
					membranes and the recognition of
					sorting signals within the cytosolic
					tails of transmembrane cargo
					molecules (825 aa)
E3	Rnf181	1.5	3	2.0	E3 ubiquitin-protein ligase
ubiquitin-					RNF181; E3 ubiquitin-protein
protein					ligase which accepts ubiquitin from
ligase					an E2 ubiquitin-conjugating
RNF181					enzyme in the form of a thioester
1					enzyme in the form of a thoester

				ubiquitin to targeted substrates;
				belongs to the RNF181 family (153
				aa)
Far	Fubp1	nd	3	Far upstream element-binding
upstream				protein 1; regulates MYC
element-				expression by binding to a single-
binding				stranded far-upstream element
protein 1				(FUSE) upstream of the MYC
				promoter. May act both as activator
				and repressor of transcription (644
				aa)
KH	Khdrbs1	nd	3	KH domain-containing, RNA-
domain-				binding, signal transduction-
containing				associated protein 1; recruited and
, RNA-				tyrosine phosphorylated by several
binding,				receptor systems, for example the T-
signal				cell, leptin and insulin receptors.
transducti				Once phosphorylated, functions as
on-				an adapter protein in signal
associated				transduction cascades by binding to
protein 1				SH2 and SH3 domain- containing
(band 1)				proteins. Role in G2-M progression
				in the cell cycle. Represses CBP-
				dependent transcriptional activation
				apparently by competing with other
				nuclear factors for binding to CBP.
				Also acts as a putative regulator of
				mRNA stability and/or translation
				rates and mediate [] (443 aa)
Mitogen-	Mapk1	nd	2.5	Mitogen-activated protein kinase 1;
activated				serine/threonine kinase which acts

protein					as an essential component of the
kinase 1					MAP kinase signal transduction
					pathway. MAPK1/ERK2 and
					MAPK3/ERK1 are the 2 MAPKs
					which play an important role in the
					MAPK/ERK cascade. They
					participate also in a signaling
					cascade initiated by activated KIT
					and KITLG/SCF. Depending on the
					cellular context, the MAPK/ERK
					cascade mediates diverse biological
					functions such as cell growth,
					adhesion, survival and
					differentiation through the
					regulation of transcription,
					translation, cytoskeletal
					rearrangements. The MAPK/ERK
					cascade plays a [] (360 aa)
BTB/POZ	Kctd12	1.0	2.0	2.0	BTB/POZ domain-containing
domain-					protein KCTD12; auxiliary subunit
containing					of GABA-B receptors that
protein					determine the pharmacology and
KCTD12					kinetics of the receptor response.
					Increases agonist potency and
					markedly alter the G-protein
					signaling of the receptors by
					accelerating onset and promoting
					desensitization (by similarity) (325
					aa)
Isoform 2	Sgce	1	2	2.0	Epsilon-sarcoglycan; component of
of					the sarcoglycan complex, a

Epsilon-					subcomplex of the dystrophin-
sarcoglyca					glycoprotein complex which forms
n					a link between the F-actin
					cytoskeleton and the extracellular
					matrix (462 aa)
Toll-	Tollip	1	2	2.0	Toll-interacting protein; component
interacting					of the signaling pathway of IL-1 and
protein					Toll-like receptors. Inhibits cell
					activation by microbial products.
					Recruits IRAK1 to the IL-1 receptor
					complex. Inhibits IRAK1
					phosphorylation and kinase activity.
					Connects the ubiquitin pathway to
					autophagy by functioning as a
					ubiquitin- ATG8 family adapter and
					thus mediating autophagic
					clearance of ubiquitin conjugates.
					The TOLLIP-dependent selective
					autophagy pathway plays an
					important role in clearance of
					cytotoxic polyQ proteins
					aggregates; C2 domain containing
					(274 aa)
V-type	Atp6v1e	nd	2		V-type proton ATPase subunit E 1;
proton	1				subunit of the peripheral V1
ATPase					complex of vacuolar ATPase
subunit E					essential for assembly or catalytic
1					function. V-ATPase is responsible
					for acidifying a variety of
					intracellular compartments in

				eukaryotic cells; V-type ATPases
				(226 aa)
Protein-	Lox	nd	2	Protein-lysine 6-oxidase;
lysine 6-				responsible for the post-
oxidase				translational oxidative deamination
				of peptidyl lysine residues in
				precursors to fibrous collagen and
				elastin. Regulator of Ras
				expression. May play a role in
				tumor suppression. Plays a role in
				the aortic wall architecture (by
				similarity); belongs to the lysyl
				oxidase family (417 aa)
Mitogen-	Mapk14	nd	2	Mitogen-activated protein kinase
activated				14; serine/threonine kinase which
protein				acts as an essential component of
kinase 14				the MAP kinase signal transduction
				pathway. MAPK14 is one of the
				four p38 MAPKs which play an
				important role in the cascades of
				cellular responses evoked by
				extracellular stimuli such as
				proinflammatory cytokines or
				physical stress leading to direct
				activation of transcription factors.
				Accordingly, p38 MAPKs
				phosphorylate a broad range of
				proteins and it has been estimated
				that they may have approximately
				200 to 300 substrates each. Some of

				the targets are downstream kinases
				which are a [] (360 aa)
Prolyl 3-	P3h2	nd	2	Prolyl 3-hydroxylase 2; prolyl 3-
hydroxyla				hydroxylase that catalyzes the post-
se 2				translational formation of 3-
				hydroxyproline on collagens.
				Contributes to proline 3-
				hydroxylation of collagen COL4A1
				and COL1A1 in tendons, the eye
				sclera and in the eye lens capsule
				(By similarity). Has high activity
				with the type IV collagen COL4A1,
				and lower activity with COL1A1.
				Catalyzes hydroxylation of the first
				Pro in Gly-Pro-Hyp sequences
				where Hyp is 4-hydroxyproline.
				Has no activity on substrates that
				lack 4- hydroxyproline in the third
				position; belongs to the leprecan
				family (708 aa)
Formylgly	Sumf1	nd	2	Sulfatase-modifying factor 1; Using
cine-				molecular oxygen and an
generating				unidentified reducing agent,
enzyme				oxidizes a cysteine residue in the
				substrate sulfatase to an active site
				3-oxoalanine residue, which is also
				called C(alpha)-formylglycine.
				Known substrates include GALNS,
				ARSA, STS and ARSE; belongs to
				the sulfatase-modifying factor
				family (374 aa)

Transcripti	Tead1	nd	2	Transcriptional enhancer factor
onal				(TEF)-1; transcription factor which
enhancer				plays a key role in the Hippo
factor				signaling pathway, a pathway
TEF-1				involved in organ size control and
				tumor suppression by restricting
				proliferation and promoting
				apoptosis. The core of this pathway
				is composed of a kinase cascade
				wherein MST1/MST2, in complex
				with its regulatory protein SAV1,
				phosphorylates and activates
				LATS1/2 in complex with its
				regulatory protein MOB1, which in
				turn phosphorylates and inactivates
				YAP1 oncoprotein and
				WWTR1/TAZ. Acts by mediating
				gene expression of YAP1 and
				WWTR1/TAZ, thereby regulating
				cell [] (426 aa)
TFG	Tfg	nd	2	Protein TFG; plays a role in the
protein				normal dynamic function of the
(band 2)				endoplasmic reticulum (ER) and its
				associated microtubules (400 aa)

PSM: peptide-spectrum matches; [...]: indicates that the description continues