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Abstract
Adenylyl cyclase 5 knockout (AC5 KO) is a healthful longevity model; not only do the AC5 KO mice live a 
third longer than wild-type (WT) mice, but they are also protected against obesity, diabetes, heart failure, 
and exercise intolerance, mediated by anti-apoptosis, cell survival, myocardial biogenesis, and anti-
oxidative stress mechanisms. To translate these salutary effects to the clinics, we developed a drug, C90, 
which recapitulates the AC5 KO model of healthful longevity. We then examined its effects on glucose 
tolerance and exercise capacity. C90 (30 mg/kg/day) or vehicle was chronically administered to age-
matched C57BL/6 mice via an osmotic pump. The WT mice receiving C90 exhibited improved glucose 
tolerance, following glucose i.v. injection, when compared to the vehicle. Furthermore, the C90-treated mice 
had a lower fasting glucose level when compared to the vehicle-treated mice (113 ± 6.5 mg/dL vs. 129 ± 4.2 
mg/dL, p < 0.05). Additionally, the WT group that received C90 exhibited greater exercise capacity, 
reflected by longer running distance (384 ± 27 m vs. 253 ± 16 m, p < 0.05) and greater work to exhaustion 
(18.1 ± 1.5 J vs. 12.4 ± 0.7 J, p < 0.05) than mice receiving vehicle. In view of these findings, C90 is an 
excellent candidate for clinical development as an effective pharmacological treatment for glucose 
intolerance and enhancing exercise performance.
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Introduction
Adenylyl cyclase mediates increased sympathetic tone through beta-adrenergic receptor stimulation, 
resulting in increased cardiac function and exercise performance when stimulated. Importantly, increased 
exercise capacity is almost always associated with increased sympathetic tone [1–3]. Paradoxically, 
adenylyl cyclase 5 knockout (AC5 KO) is a healthful longevity model with decreased sympathetic tone [4], 
and with protection against glucose intolerance [5], obesity [5], heart failure [6–8], and enhanced exercise 
capacity [9] (Figure 1). The goal of this investigation was to determine whether C90, an AC5 inhibitor, 
recapitulates the salutary features observed in AC5 KO mice, including enhanced exercise capacity and 
glucose tolerance. Healthful longevity in AC5 KO mice is mediated by anti-apoptosis, cell survival, 
myocardial biogenesis, and anti-oxidative stress mechanisms [4–9]. The cellular mechanisms responsible 
are noted in Figure 1.

Figure 1. Pathways mediating healthful aging in AC5 KO and AC5 inhibition. The mechanisms mediating the healthful 
longevity, enhanced exercise performance, cardioprotection, and protection against diabetes in the AC5 KO mice and the AC5 
pharmacological inhibitor are shown. Deletion or inhibition of AC5 reduces intracellular cAMP production, which leads to less 
activation of protein kinase PKA. The reduced activity of PKA leads to increased activity of Raf-1/MEK/ERK and SIRT1/PGC-
1α/FoxO3a, ultimately increasing MnSOD, inducing healthful longevity with activation of anti-apoptosis, cell survival, 
mitochondrial biogenesis, and anti-oxidative stress. AC5 KO: adenylyl cyclase 5 knockout; PKA: protein kinase A; SIRT1: sirtuin 
1; PGC-1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha; FoxO3a: forkhead box O3.
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The AC5 inhibitor, C90, the focus of this investigation, is a pharmacological analog of the AC5 KO, which 
we have developed and found to protect against myocardial infarction and acute heart failure in mice, and 
protects against chronic atherosclerosis in rabbits [10]. C90 has several features making it superior to other 
AC5 inhibitors, i.e., it is a more specific inhibitor and less toxic, and more soluble, and can be structured for 
future oral use [10, 11]. Our previous study demonstrated the efficacy and selectivity of C90 as an AC5 
inhibitor [10]. C90 reduced forskolin-induced AC activity and cAMP in wild-type (WT) mice, compared with 
vehicle. However, in AC5 KO, C90 no longer reduced cAMP in response to forskolin, indicating that the 
mechanism of reduction by C90 involved AC5 inhibition and not just inhibition of any AC isoform [10].

The AC5 KO and the AC5 inhibitor both decrease sympathetic tone [4, 9], making this therapeutic 
approach more favorable for treating patients with heart failure or coronary artery disease. It would be 
important to translate these beneficial effects to patients. Whereas all these features in the AC5 KO are 
important for healthful aging, the enhanced exercise capacity is also therapeutic for most diseases, as well 
as normal health. Therefore, a pharmacological compound that recapitulates these features would have 
considerable clinical appeal. With advancing age, it becomes increasingly important to find a 
pharmacological moiety to combat the deleterious influences of aging and enhance those functions that are 
beneficial for healthful aging, e.g., improved glucose tolerance and increased exercise capacity. It is our 
hypothesis that the AC5 inhibitor, C90, will fill this gap by replicating the salutary effects observed in AC5 
KO mice.

Materials and methods
Animal experimental procedures

All experiments were performed on 3–5-month-old male C57BL/6 mice. All mice were housed at Rutgers 
New Jersey Medical School. All experiments were conducted at Rutgers New Jersey Medical School. For 
exercise studies, all mice were matched for body weight. Animals were all placed on standard chow and had 
free access to water for the duration of the study. Animals used in this study were maintained, and all 
experiments were performed, in accordance with the Guide for the Care and Use of Laboratory Animals 
(National Research Council, 8th ed., 2011). All animals were kept on a standard 12:12-hour light-dark cycle. 
These studies were approved by the Institutional Animal Care and Use Committee of Rutgers New Jersey 
Medical School.

C90 synthesis and administration

The AC5 inhibitor C90 was synthesized [12] and subcutaneously administered at 30 mg/kg/day or its 
vehicle via osmotic pumps as previously described [10, 13] for 7 and 14 days for exercise capacity, and for 
14 days for the glucose tolerance test. After mice were anesthetized with isoflurane at 2–3% in oxygen, 
ALZET pumps (Durect, Cupertino, CA) were implanted to deliver C90 or vehicle to mice at a concentration 
of 30 mg/kg/day for 7 days of treatment (0.5 µL/h, 1007D) and for 14 days of treatment (0.25 µL/h, 1002). 
The doses were selected from prior work on other AC5 inhibitors [14]. After preparation, the pumps were 
incubated overnight and implanted subcutaneously onto the back of the mice the following day. Cefazolin 
(100 mg/mL) was given intramuscularly in the quadriceps after surgery. The mice were allowed to recover 
for 7 days before exercise testing began [13].

Glucose tolerance test

Glucose tolerance test mice (n = 8/group) were fasted for 6 h prior to initiation of the glucose tolerance test 
[5]. A 50 µL blood sample was drawn from a venous tail puncture at the end of the fasting period for basal 
glucose measurement with a glucometer (Accu Check, Roche, Indianapolis, IN, USA). A dose of dextrose 
(50% solution, 1 g/kg body weight) was injected intraperitoneally, and blood was drawn at 15, 30, 60, 90, 
120, and 180 min after injection for glucose measurements. The area under the curve (AUC) of the glucose 
levels over time was calculated and compared in the vehicle and treated groups.
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Exercise protocol and indices of exercise capacity

Mice (n = 6/group) were exercised on a treadmill (AN5817474, Accuscan Instruments, Columbus, OH, USA) 
attached to a metabolic chamber to measure maximum exercise capacity. Mice were subjected to a practice 
trial 3 days before the experiment to adapt to the treadmill testing environment [9, 13, 15].

Food was withdrawn 3 h before exercise testing. All mice were exercised at the same time of day for 
each experiment. All exercise testing was done by the same investigator, blinded to the treatment group. At 
the time of the experiment, each mouse was placed on the treadmill with a constant 10% grade. The 
treadmill started at 4 m/min, and the speed increased incrementally by 2 m/min every 2 min until the mice 
reached exhaustion. At the end of each treadmill lane was a rod that delivered a shock, which served as 
negative reinforcement for cessation of running. Work to exhaustion was defined as spending 10 seconds 
on the rod without attempting to reengage the treadmill belt. The indices of exercise capacity measured 
were maximal distance and work to exhaustion [9, 13, 15].

Euthanasia and a humane endpoint

In accordance with institutional and federal guidelines for the ethical treatment of animals, euthanasia was 
performed when animals exhibited signs of severe distress, pain, or illness that could not be alleviated and 
when continued participation in the study would compromise their welfare. Euthanasia was carried out 
using approved methods to ensure rapid and painless death.

Data analysis and statistics

All data are expressed as mean ± standard error of the mean (SEM). To compare two independent groups, 
we used the Student’s unpaired t-test, whereas for more than two variables, two-way analysis of variance 
(ANOVA) with Sidak’s multiple comparisons test was used. p < 0.05 was taken as the level of significance.

Animals were age-matched prior to randomization. Randomization was performed using a computer-
generated sequence to assign animals to experimental groups, ensuring balanced distribution across 
treatment conditions. All measurements listed below were conducted in a blinded manner, with 
investigators unaware of group assignments during data collection and analysis to minimize bias.

Results
Treatment with C90 improves glucose tolerance

Sensitivity to glucose was measured using a glucose tolerance test in mice treated with C90 (Figure 2A). 
Following a 14-day treatment, the C90-treated mice exhibited an overall improvement in glucose tolerance 
(Figure 2B), measured as AUC, when compared to vehicle-treated mice (6,414 ± 890 mg/dL·min vs. 9,658 ± 
1,039 mg/dL·min, p < 0.05). Furthermore, C90-treated mice had a lower fasting glucose level when 
compared to vehicle-treated mice (113 ± 6.5 mg/dL vs. 129 ± 4.2 mg/dL, p < 0.05).

C90 infusion leads to enhanced exercise capacity in C57BL/6 mice

C57BL/6, male, age-matched mice treated with C90 (30 mg/kg/day), via an infusion pump, exhibited a 
greater running distance (358 ± 28 m vs. 222 ± 21 m, p < 0.05) (Figure 3A) and a 53% increase in work to 
exhaustion (p < 0.05) (Figure 3B), when compared to their vehicle-treated counterparts following 7 days of 
treatment. Similar results were observed after 14 days of treatment with greater running distance (384 ± 
27 m vs. 253 ± 16 m, p < 0.05) and greater work to exhaustion (18.1 ± 1.5 J vs. 12.4 ± 0.7 J, p < 0.05).

After 14-day treatment, no significant differences in body weight were observed between the vehicle 
and C90 groups.

Discussion
The results of this investigation further confirm the similarity between the AC5 inhibitor, C90, and the 
genetic deletion of AC5, as in the AC5 KO mice. We previously found that C90 protects against myocardial 
ischemia [10], and in this investigation, we found that C90 improves glucose tolerance and exercise 
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Figure 2. C90 improves glucose tolerance in wild-type (WT) C57BL/6 mice. 3–5-month-old male C57BL/6 were chronically 
treated with C90 at 30 mg/kg/day via osmotic pumps for 14 days. The glucose tolerance test was examined after 2 weeks of 
treatment. Compared to the vehicle group, WT mice that received C90 display improved glucose tolerance, as shown in the 
curve (A) and area under the curve (B). *p < 0.05, by Student’s unpaired t-test. n = 8 in each group.

Figure 3. C90 enhances exercise capacity in wild-type (WT) C57BL/6 mice. 3–5-month-old male C57BL/6 were chronically 
treated with C90 at 30 mg/kg/day via osmotic pumps for 14 days. Maximal exercise capacity was tested at baseline and after 1 
and 2 weeks of treatment. WT mice that received C90 showed longer running distance (A) and greater work to exhaustion (B), 
when compared to the vehicle group, after 1 and 2 weeks of C90 treatment. **p < 0.01, ***p < 0.001 by two-way ANOVA with 
Sidak’s multiple comparisons test. n = 6 in each group.

performance, which are also observed in the AC5 KO mice [5, 9]. These salutary features of C90 would likely 
improve healthful longevity and protect against the decline in cardiovascular fitness, development of 
metabolic syndrome and diabetes, and reduced exercise capacity in the aging population. Exercise reduces 
cardiovascular risk and improves longevity, and is an independent predictor of all-cause mortality [16–18]. 
Reduced exercise or functional capacity is a central feature of heart failure, as noted in the New York Heart 
Association functional classification system [19] and recent reviews [20, 21], used by cardiologists to risk-
stratify patients with heart failure, as exercise intolerance strongly correlates with higher mortality [22]. 
Improving exercise tolerance would be a major therapeutic advance for all patients with heart failure, and 
potentially all elderly patients and those with other diseases, e.g., obesity and diabetes, that limit their 
ability to exercise. Therefore, a new therapy for improving exercise tolerance would have almost universal 
applicability to the aging population and to patients with a wide range of diseases. Furthermore, improving 
exercise tolerance would also be applicable to the younger, healthy population that routinely exercises for 
fitness and for long-term healthful longevity. Improved glucose tolerance helps prevent age-related 
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diseases like type 2 diabetes and cardiovascular conditions, supporting longer health span and better 
metabolic resilience in older adults [23]. Therefore, developing a small molecule AC5 inhibitor that 
improves exercise capacity and glucose tolerance would be extremely useful clinically.

The pharmacological inhibitor of AC5, C90, is novel in that it improves glucose tolerance and exercise 
capacity, major features required for healthful longevity. Our previous study has shown C90’s efficacy and 
selectivity as an AC5 inhibitor [10]. Aging [24] and diseases such as diabetes mellitus [25], heart failure 
[26], and obesity, among other conditions, negatively impact exercise tolerance. Large-scale clinical trials 
have successfully focused on reducing mortality and morbidity associated with those disease processes. Yet 
there is modest progress in improving the quality of life of those patients, which is highly dependent on 
their functional capacity. There is a significant interest in developing new interventions that enhance 
exercise tolerance. Still, no FDA-approved pharmacologic treatments are available that can directly improve 
exercise tolerance.

The treatment of type 2 diabetes and the underlying pathophysiologic mechanism, i.e., insulin 
resistance, has rapidly evolved. There is currently a broad array of drugs as part of the pharmacologic 
armamentarium to treat diabetes beyond the older compounds such as insulin, sulfonylureas, biguanides, 
and thiazolidinediones [27]. Some drugs that have revolutionized diabetes management include the 
glucagon-like peptide 1 receptor agonists, which have an effective antidiabetic treatment but also have 
shown an effect on weight loss [28] and reduction of cardiovascular events [29, 30]. Additionally, there are 
the sodium-glucose co-transporter 2 inhibitors (SGLT-2i) that have a mild effect on diabetes [31, 32]. The 
improved glucose tolerance found in the AC5 KO mice [5] and in the current data for the AC5 inhibitor 
(Figure 2) is critical for protection against diabetes and aging, even without diabetes.

Given the broader effects of the AC5 inhibitor, including glucose metabolism, exercise tolerance, 
obesity prevention, ischemic cardiomyopathy, and longevity prolongation, this drug is unique and an 
attractive novel treatment for combating the factors impairing healthful longevity. For translation to 
patients, more chronic studies, more cellular mechanistic studies, more toxicology, larger animal, and sex 
studies need to be done. The next goal will be to also conduct a longer-term study in a diabetic disease 
model.

It is interesting that the inhibition of AC5 improves exercise performance, since AC mediates increased 
beta-adrenergic receptor signaling, which is central to improved exercise. The mechanism is complex but 
involves selective differences in AC5 from other AC isoforms. In part, the answer comes from the fact that a 
selective cardiac specific AC5 KO mouse does not improve exercise performance, whereas the total body 
AC5 KO mouse and the skeletal muscle-specific AC5 KO mouse both increase exercise performance [9]. 
Therefore, there must be other mechanisms that compensate for the minor contribution of AC5’s increase 
in total AC activity, e.g., increased mitochondrial biogenesis and reduced oxidative stress [9, 33], which also 
mediate increased exercise capacity. The AC5 KO and AC5 inhibitor mechanisms mediating healthful 
longevity are shown in Figure 1. The AC5 KO model of healthful aging, specifically the enhanced exercise 
capacity, is mediated by upregulated antioxidant (MnSOD), the sirtuin 1/peroxisome proliferator-activated 
receptor gamma coactivator 1-alpha (SIRT1/PGC-1α) pathway, and mitochondrial biogenesis [9]. The 
protection against oxidative stress is mediated by reducing cAMP and protein kinase A (PKA), which in turn 
activates the Raf/MEK/ERK pathway, which increases MnSOD [4] and regulates cardiomyopathy through 
the AC5, SIRT1, PGC-1α, FOXO3a, and MnSOD pathways [7]. In addition, the improved glucose tolerance is 
derived from genes regulating mitochondrial biogenesis [5]. A future goal is to determine if the mechanisms 
mediating the salutary effects of C90 are the same as those for the AC5 KO. In addition, extensive studies on 
more chronic effects, other models of disease, and toxicology will be needed before a clinical trial can 
commence. Additional positive features are the statistics showing minimal variability and that no adverse 
effects of C90 treatment were observed in this study.

The novel AC5 inhibitor, C90, is highly water-soluble, and the toxicology studies performed to date also 
indicate that this compound is an excellent candidate to advance for human treatment, as it appears to be 
safe. A critical positive feature of this AC5 inhibitor is that it decreases sympathetic tone while improving 
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exercise capacity, which would be particularly helpful to patients with heart failure and myocardial 
ischemic disease, where increased sympathetic tone, usually accompanying increased exercise 
performance, is deleterious.
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AUC: area under the curve

PGC-1α: peroxisome proliferator-activated receptor gamma coactivator 1-alpha
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