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Abstract
Background: Emerging evidence suggests that genetic variations in taste receptor genes may influence 
dietary behaviors, energy homeostasis, and metabolic risk, contributing to type 2 diabetes mellitus (T2DM) 
pathogenesis. The objective of this study is to evaluate the association between single nucleotide 
polymorphisms (SNPs) in taste receptor genes and T2DM.
Methods: This systematic review followed the Preferred Reporting Items for Systematic reviews and Meta-
Analyses (PRISMA) 2020 guidelines and was registered with the International Prospective Register of 
Systematic Reviews (PROSPERO; CRD42022351880). A comprehensive literature search was conducted 
across PubMed, ScienceDirect, Cochrane Library, and Google Scholar through June 2025. Original studies 
examining SNPs in taste receptor genes among individuals with T2DM were included. Quality assessment 
was performed independently by using the Newcastle-Ottawa scale.
Results: Sixteen studies involving diverse populations met the inclusion criteria. Significant associations 
with T2DM were observed for SNPs in type 2 taste receptor gene family R member 3 (TAS2R3; 
rs11763979), TAS2R4 (rs2233998), TAS2R7, TAS2R9, TAS2R38, TAS2R50, cluster determinant 36 (CD36; 
rs1761667, rs3211956, rs7755), carbonic anhydrase VI gene (CA6; rs2274327), transient receptor 
potential vanilloid-1 (TRPV1; rs161364, rs8065080), transient receptor potential cation channel subfamily 
M gene member 5 (TRPM5; rs4929982), and TRPM8 (rs12472151). These polymorphisms may alter taste 
perception and gut hormone responses [e.g., glucagon-like peptide 1 (GLP-1)], affecting dietary intake, 
satiety, insulin secretion, and glucose regulation.
Discussion: The findings suggest that genetic variations in taste receptor genes may contribute to T2DM 
through behavioral and metabolic mechanisms. Incorporating gustatory phenotyping with genotypic 
profiling could enable personalized dietary strategies and inform novel therapeutic approaches targeting 
taste-mediated gut signaling. Further large-scale, multi-ethnic, and mechanistic studies are warranted to 
confirm these associations and elucidate their clinical implications.
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Introduction
Over the past few decades, the global prevalence of type 2 diabetes mellitus (T2DM) has increased 
markedly, with projections estimating up to 7,862 cases per 100,000 individuals [1]. This upward trend 
may be attributed to a complex interplay of genetic and environmental risk factors, including obesity, 
insulin resistance, metabolic dysfunction, dietary habits, and epigenetic modifications [1]. In addition to 
these well-established risk factors, emerging evidence suggests that behavioral psychology and impaired 
satiety signaling also play a significant role in the pathogenesis of T2DM [2–4].

Recent studies have identified that single nucleotide polymorphisms (SNPs) in taste genes are 
significantly associated with elevated risk of metabolic syndrome, diabetes mellitus, obesity, 
carcinogenesis, Alzheimer’s disease, Parkinson’s disease, thyroid dysfunction, and substance use disorders 
[3–5]. Taste perception and signal transduction across the six taste modalities—sweet, salt, sour, bitter, 
umami, and fat taste—are mediated by various taste receptor genes such as type 1 taste receptor gene 
family R (TAS1R), TAS2R, sodium channel epithelial 1 (SCNN1), cluster determinant 36 (CD36), transient 
receptor potential cation channel subfamily M gene (TRPM), guanine nucleotide binding protein subunit 
alpha transducing 3 (GNAT3), carbonic anhydrase VI gene (CA6), IZUMO sperm-egg fusion 1 gene (IZUMO1), 
metabotropic glutamate receptor 1 gene (GRM1), and polycystic kidney disease (PKD)-like genes (e.g., 
PKD1L3, PKD2L1, and PKD2L3) [4–7]. Each taste modality is regulated by specific taste receptor genes. For 
instance: sweet taste is primarily mediated by TAS1Rs, TRPMs, and GNAT3; bitter taste by TAS2Rs, TRPMs, 
and CA6; salt taste by transient receptor potential vanilloid-1 (TRPV1; nerve endings) and SCNN1s (subunits 
alpha, beta, gamma, and delta); sour taste by TAS1Rs and PKD-like genes; umami taste by TAS1Rs, TRPMs, 
GNAT3, and GRM1; and fat taste by CD36 and IZUMO1 [5–7]. Taste perception begins with the interaction of 
food containing particular taste stimuli with oral and extra-oral taste receptors, triggering intracellular 
calcium release into the cytoplasm, depolarization of afferent nerve fibers and signal transduction via 
cranial nerves (facial nerve, glossopharyngeal nerve, sensory vagal afferents, trigeminal nerve and the 
trigeminal ganglion) to the central processing centers (nucleus of solitary tract, ventral posteromedial 
thalamic nucleus, the operculum, insular and the somatosensory cortex) [8]. These brain regions also 
influence gut hormone secretion [e.g., ghrelin, glucagon-like peptide 1 (GLP-1), glucose-dependent insulin-
releasing peptide], thereby regulating satiety and energy homeostasis [8]. Genetic variations in taste 
receptors may impair this signaling cascade, leading to altered taste perception, eating behavior, impaired 
energy homeostasis, and increased susceptibility to T2DM [5]. Notably, TAS1R expression in the gut is 
upregulated in response to hyperglycemia in individuals with T2DM [9]. This suggests that modulating 
taste receptor pathways may have therapeutic potential, particularly through agents that mimic GLP-1 
receptor agonists [2, 8].

Several studies have reported significant taste impairments in individuals with diabetes mellitus [10, 
11]. Chamoun et al. [12] demonstrated associations between psychophysical measures of taste and 94 SNPs 
across 11 taste receptor genes, particularly those related to sweet, salty, umami, and fat taste perception. A 
recent review further highlighted the critical role of taste receptor function in the pathophysiology of T2DM 
and energy homeostasis [13].

Despite the growing body of evidence, no qualitative meta-synthesis has systematically evaluated the 
association between SNPs in taste receptor genes and T2DM. This study aims to evaluate the evidence on 
the association of taste gene polymorphisms and T2DM.

Materials and methods
This qualitative meta-synthesis was registered with the International Prospective Register of Systematic 
Reviews (PROSPERO; Registration No. CRD42022351880) [14] and conducted in accordance with the 
Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 guidelines.
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Search strategy and selection criteria

A comprehensive literature search was performed across PubMed, ScienceDirect, Cochrane Library 
databases, and Google Scholar using the keywords “Diabetes mellitus” AND (“taste receptor gene” OR “taste 
gene” OR “taste gene polymorphisms” OR “taste gene mutations”). Manual screening of reference lists and 
citation tracking of relevant articles was also conducted to ensure thorough coverage of the literature up to 
June 2025. Inclusion criteria: Original research articles investigating SNPs in taste receptor genes among 
patients with T2DM were included. Exclusion criteria: Articles not relevant to the study, including review 
articles, case reports, editorials, consensus statements, clinical guidelines, conference abstracts, and book 
chapters, were excluded. Titles and abstracts were screened to identify potentially relevant records. Full-
text screening of the identified records was assessed for inclusion by one reviewer and independently 
reassessed by the reviewer. The PICO framework for this study are as follows: (1) population: individuals 
diagnosed with T2DM, (2) intervention/exposure: presence of SNPs or variant genotypes in taste receptor 
genes, (3) comparison: comparison between individuals with variant versus wild-type genotypes, and (4) 
outcome: association between taste receptor polymorphisms and T2DM.

Data extraction and quality assessment

Relevant study characteristics were systematically extracted, including first author, year of publication, 
study design, country of origin, sample size, age of participants, diagnostic criteria for T2DM, taste receptor 
genotyping, and other characteristic features, from studies that met the inclusion criteria. Methodological 
quality assessment of the included studies was carried out with the Newcastle-Ottawa scale (Table S1) [3, 
4]. Data extraction was performed by one reviewer and cross-verified by another reviewer.

Results
The PRISMA flowchart (Figure 1) illustrates the selection process. A total of 5,712 records were identified 
through database searches and manual screening. After title and abstract screening, followed by full-text 
review, sixteen studies met the eligibility criteria and were included in the qualitative meta-synthesis. Four 
studies were excluded due to the inclusion of populations other than T2DM (one study was conducted in 
individuals with prediabetes [15], and three studies were conducted in patients with gestational diabetes 
mellitus (GDM) [16–18]).

The characteristics of the included studies were summarized in Table 1 and Table S1. Diagnostic 
criteria for T2DM were based on the definitions used within each included study. Methodological quality 
assessment of the included studies by the Newcastle-Ottawa scale indicated that all sixteen studies were of 
good quality (Table S1).

The results revealed that SNPs in taste genes including TAS2R3 gene (SNP rs11763979), TAS2R4 gene 
(SNP rs2233998), TAS2R7 gene (SNPs rs2588350 and rs619381), TAS2R9 gene (SNP rs3741845), TAS2R38, 
TAS2R50 gene (SNP rs6488334), TRPV1 gene (SNPs rs161364 and rs8065080), CD36 gene (SNPs 
rs1761667, rs3211956, rs7755, rs1049673, and rs1527479), and CA6 gene (SNP rs2274327) were 
significantly associated with patients with T2DM. Additionally, TRPM5 gene (SNP rs4929982) and TRPM8 
gene (SNP rs12472151) polymorphisms were significantly associated with metabolic syndrome, including 
T2DM.

Discussion
The findings suggest that SNPs in several taste-related genes, including TAS2R3, TAS2R4, TAS2R7, TAS2R9, 
TAS2R38, TAS2R50, TRPV1, CD36, CA6, TRPM5, and TRPM8, may contribute to the etiology of T2DM and its 
associated metabolic complications. Although the precise mechanisms remain to be elucidated, current 
evidence supports the hypothesis that genetic variations in taste genes influence taste stimuli perception, 
individual food preferences, nutrient intake, and eating behavior, thereby increasing the risk of T2DM [22].
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Figure 1. Flow chart summarizing the selection process. Adapted from [19], © 2021, The Author(s) (CC BY 4.0)

Table 1. General characteristics of the studies included in the qualitative meta-synthesis

Study Study design 
(country)

Population Genotyping Inference

Leprêtre et 
al. [20], 
2004

Cohort 
(France)

454 CD36 gene (entire sequence) No significant association was found 
between CD36 gene and T2DM (P > 0.1)

Corpeleijn 
et al. [21], 
2006

Cohort 
(Netherlands)

151 CD36 gene SNP rs1527479 and 478 
C/T substitution

CD36 gene SNP rs1527479 TT haplotype 
was significantly associated with T2DM (P
 = 0.035), fasting glucose concentration (P  
< 0.05) and insulin resistance (P < 0.05)

Dotson et 
al. [22], 
2008

Case-control 
(USA)

503 70 SNPs in TAS1Rs and TAS2Rs gene 
subtypes

TAS2R3 gene SNP rs11763979 (P = 
0.03), TAS2R7 gene SNPs rs2588350 (P
 = 0.0007) and rs619381 (P = 0.009), 
TAS2R9 gene SNP rs3741845 (P = 
0.005), and TAS2R50 gene SNP 
rs6488334 (P = 0.04) were significantly 
associated with patients with T2DM

Banerjee 
et al. [23], 
2010

Case-control 
(India)

400 Two SNPs (rs1527483 and rs1761667) 
in the CD36 gene

CD36 SNP (G>A) rs1761667 GA was 
significantly associated with patients with 
T2DM (P < 0.001)

Wang et al. 
[24], 2012

Case-control 
(China)

113 CD36 gene SNPs (rs1527483 and 
rs1049673)

CD36 SNP rs1049673 CG & GG 
haplotypes were significantly associated 
with impaired glucose tolerance (P = 
0.023) and T2DM (P = 0.011) in patients 
with essential hypertension, respectively

Gautam et 
al. [25], 
2015

Case-control 
(India)

100 Six CD36 SNPs (rs1984112, 
rs1761667, rs1527479, rs3211938, 
rs1527483, and rs3212018)

CD36 SNPs rs1761667 (G>A) and 
rs3211938 (T>G) showed significant 
association with T2DM (GAATTC1, P < 
0.001)

Tabur et al. 
[26], 2015

Case-control 
(Turkey)

308 25 TRPM1–8 gene SNPs rs28441327, 
rs11070811, rs2241493, rs111649153, 
rs1618355, rs1328142, rs3760663, 
rs34364959, rs4929982, rs886277, 
rs34551253, rs3986599, rs3750425, 
rs62569677, rs55924090, rs1016062, 
rs2362294, rs2362295, rs10490018, 
rs2052029, rs6431648, rs10803666, 
rs12472151, rs2215173, and rs6740118

TRPM5 gene SNP rs4929982 A allele (P = 
0.0019) and TRPM8 gene SNP 
rs12472151 C allele (P < 0.001) 
polymorphisms might be related to the 
individual susceptibility to metabolic 
syndrome (including T2DM)
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Table 1. General characteristics of the studies included in the qualitative meta-synthesis (continued)

Study Study design 
(country)

Population Genotyping Inference

Park et al. 
[27], 2016

Cohort (South 
Korea)

8,842 7 SNPs in TRPV1 gene such as SNPs 
rs161364, rs8065080, rs150908, 
rs222745, rs7217945, rs222741, and 
rs2737141

TRPV1 gene SNPs rs161364 C allele (P = 
0.0487) and rs8065080 C allele (P = 
0.0378) were significantly associated with 
the prevalence of T2DM in dominant 
genetic models

Zhang et 
al. [28], 
2018

Case-control 
(China)

546 Four CD36 SNPs rs1194197, 
rs2151916, rs3211956, and rs7755

Overweight/obesity individuals carrying 
SNP variant alleles of rs3211956 
(GG+GT, P = 0.024) and rs7755 (AA+AG, 
P = 0.007) were associated with increased 
risk of T2DM compared to normal weight 
individuals carrying wild-type homozygous 
alleles

Fujii et al. 
[29], 2019

Cross-
sectional 
(Japan)

495 Two CD36 gene SNPs (rs1761667 and 
rs1527483)

CD36 gene SNP rs1761667 AA haplotype 
was associated with higher intake of total 
fat (P = 0.01) and monounsaturated fatty 
acids (P = 0.05) when compared to GG 
and GA haplotypes. In addition, the 
frequency of CD36 gene SNP rs1761667 
GG haplotype was higher in T2DM

Mrag et al. 
[30], 2020

Cohort 
(Tunisia)

300 CA6 gene SNP rs2274327 The CA6 gene SNP rs2274327 T allele in 
its dominant model (TT+CT vs. CC, 67.7% 
vs. 32.3%) was increasingly associated 
with T2DM. Similarly, taste impairment in 
T2DM was significantly associated with 
CA6 gene SNP rs2274327 T allele in its 
dominant model (OR = 1.97 [95% CI = 
1.21 to 3.23], P = 0.006)

Hatmal et 
al. [31], 
2021

Case-control 
(Jordan)

350 CD36 gene rs1761667 (G>A) and 
rs1527483 (C>T) were genotyped

No significant association was observed 
between CD36 polymorphisms and 
patients with T2DM or dyslipidemia (P > 
0.1)

Touré et al. 
[32], 2022

Cross-
sectional 
(Senegal)

100 2 tag SNPs in CD36 (rs3211867 and 
rs1761667)

No significant difference was observed 
between controls and T2DM subjects (P = 
0.9)

Franzago 
et al. [33], 
2023

Cohort (Italy) 23 CD36 gene SNPs rs1984112 (A>G) and 
rs1761667 (G>A), BMAL1 gene SNP 
rs7950226 (G>A), and CLOCK gene 
SNPs rs1801260 (A>G), rs4864548 
(A>G), and rs3736544 (G>A)

CD36 gene SNP rs1761667 (G>A) A allele 
in its dominant form (AA+GG genotype) 
was significantly associated with patients 
with T2DM (P = 0.001)

Lee and 
Shin [34], 
2023

Cohort 
(Korea)

4,552 TAS2R4 SNP rs2233998 TAS2R4 SNP rs2233998 TT haplotype 
was significantly associated with the 
incidence of T2DM in women (HR [95% 
CI] = 1.48 [1.13–1.93], P = 0.0182)

Husami et 
al. [35], 
2025

Case-control 
(India)

680 2,658 gene variants TAS2R38 genetic variants were 
associated with an increased risk of T2DM 
(P < 0.05)

case: patients with T2DM as defined in the respective studies; control: normal healthy individuals as defined in the respective 
studies; CD36: cluster determinant 36; T2DM: type 2 diabetes mellitus; SNP: single nucleotide polymorphism; TAS1R: type 1 
taste receptor gene family R; TRPM1: transient receptor potential cation channel subfamily M gene member 1; TRPV1: transient 
receptor potential vanilloid-1; CA6: carbonic anhydrase VI gene; OR: odds ratio; CI: confidence intervals; BMAL1: brain and 
muscle aryl hydrocarbon receptor nuclear translocator-like protein-1; CLOCK: circadian locomotor output cycles kaput; HR: 
hazard ratio

For instance, TAS2R9 is expressed in gut entero-endocrine L-cells and mediates GLP-1 secretion in 
response to sweet taste stimuli [22]. Canivenc-Lavier et al. [13] recently described local glucose-dependent 
GLP-1 secretion by taste bud cells and proposed taste receptors as potential targets for T2DM treatment 
[3]. Similarly, reduced CD36 expression due to genetic polymorphisms may influence fat taste sensitivity 
and intake behaviors, possibly exerting a protective effect due to reduced fat taste sensitivity [4, 33]. 
Variations in the TRPM5 gene are associated with reduced GLP-1 levels, impaired insulin release, and 
altered glucose tolerance, highlighting the metabolic relevance of taste receptor polymorphisms [3, 22].
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This is in line with previous observations that the taste-dependent manner of GLP-1 secretion, glucose-
stimulated insulin secretion, and insulin sensitivity in patients with T2DM might be associated with the 
polymorphisms in taste receptor genes [3, 22, 26, 33]. These genetic variations may affect hunger signaling, 
gut motility, and taste-driven satiety hormone release [3, 4, 13]. For example, individuals carrying the 
TAS2R38 proline-alanine-valine (PAV) allele [a 6-n-propylthiouracil (PROP) taster genotype] exhibit 
heightened sensitivity to bitter compounds, which may impact food choices and contribute to dietary 
avoidance of bitter but nutritionally beneficial foods [4, 36–38]. Such phenotypic taste differences can now 
be identified using validated clinical gustatory tests (e.g., taste strips, solutions), which could help screen 
individuals at risk of metabolic diseases, including obesity and diabetes [3, 4, 36]. Moreover, pharmacologic 
agents that modulate the taste receptor expression based on an individual’s genotype may offer a novel 
therapeutic avenue [37]. Nevertheless, further large-scale molecular and clinical studies are warranted to 
validate these associations and uncover the underlying mechanisms driving gene-diet interactions in T2DM.

Strengths and limitations

Overall, this study provides the first systematic synthesis of the association between taste receptor gene 
polymorphisms and T2DM. However, several limitations exist: (1) high methodological heterogeneity 
among included studies; (2) potential selection and publication biases; (3) lack of randomized controlled 
trials; and (4) insufficient data for meta-analysis. Allele frequency variations across ethnicities further limit 
generalizability. Due to insufficient data to conduct a statistical analysis for all the genes included in the 
present study, the meta-analysis was not feasible. To address the potential heterogeneity in genotyping 
methods, variability in study designs, population characteristics, and definitions of T2DM in the included 
studies, Table 1 and Table S1 summarize the comparison of the characteristics of the included studies, 
including study design, sample size, country or location of study, and main findings. The risk of bias was 
assessed using the Newcastle-Ottawa scale, and narrative synthesis and reporting followed the PRISMA 
2020 guidelines. Further, citation searches and gray literature searches were performed and a 
predetermined inclusion and exclusion criteria based on the PROSPERO protocol was used to select the 
studies for inclusion.

Future perspectives

Further molecular and clinical studies, particularly randomized controlled trials and large, multi-ethnic 
cohort studies, are warranted to validate the role of taste receptor gene polymorphisms in the 
pathophysiology of T2DM. Gustatory testing to assess taste phenotypes, when paired with genotypic 
profiling, may offer a cost-effective approach to identify at-risk individuals and guide personalized dietary 
interventions. Exploration of taste modulators and GLP-1 analogs targeting specific taste receptors may 
open new therapeutic avenues in obesity and T2DM management. Moreover, SNPs in taste genes could 
serve as genetic markers for early detection and risk stratification.

Conclusion

In summary, this review provides evidence that SNPs in taste receptor genes are associated with T2DM. 
Altered taste perception and signal transduction may influence eating behavior, energy homeostasis, and 
glucose metabolism. Identifying taste phenotypes and targeting taste receptor gene expression may 
represent promising strategies for the prevention and treatment of T2DM. However, larger, well-designed 
studies are needed to confirm these associations and facilitate their clinical translation.
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