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Abstract
Circadian rhythms are present in almost every cell of the body and play important roles in various 
physiological processes. The central circadian clock in the suprachiasmatic nucleus (SCN) is synchronized 
to the environmental light-dark cycle and ensures a temporal order for the peripheral clocks, which in turn 
modulate tissue and organ function. This temporal organization is crucial for the precise timing of bodily 
processes, including sleep, glucocorticoid release, and the function of the glymphatic system. Sleep and the 
glymphatic system are significantly impacted by the rhythmic secretion of glucocorticoids. One important 
function of the glymphatic system is the clearance of waste metabolites, which most likely happens during 
sleep. Disruptions within the SCN, glucocorticoid rhythms, sleep, or glymphatic clearance have been 
implicated in compromised brain health. This review explores the current knowledge on the 
interdependence of the SCN, glucocorticoids, sleep, and the glymphatic system, and emphasizes their 
importance in homeostasis and pathology; in particular, Alzheimer’s disease.
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Introduction
Life has evolved under cyclic environmental conditions, driving organisms to adapt their active period to 
align with the 24-hour light-dark cycle. As a result, most physiological and biochemical processes, like body 
temperature, blood flow, and hormone release, are highly regulated and optimized throughout the day [1]. 
Importantly, these rhythms persist in the absence of external time cues and, since they have a period of 
approximately but not exactly 24 hours, are termed circadian rhythms. These circadian rhythms are 
present in nearly every tissue and organ system and are controlled by molecular circadian clocks. To align 
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or entrain all these internal biological clocks to the external light-dark cycle and to maintain the right 
timing between physiological processes, mammals rely on a central circadian clock in the suprachiasmatic 
nucleus (SCN), which is located in the hypothalamus [2]. The SCN receives photic input from specialized 
ganglion cells in the retina to entrain its own circadian rhythm to the light-dark cycle, and it makes use of 
several neuronal and hormonal pathways to convey this timing information to peripheral tissues (Figure 1). 
This entrainment ensures that physiological processes occur at optimal times for performance and health.

Figure 1. Overview of the circadian system. Upper: the suprachiasmatic nucleus (SCN), located in the hypothalamus, 
receives light information from specialized retinal ganglion cells to entrain its circadian rhythm to the external light-dark cycle. 
The electrical activity of the SCN is highest when there is light input. Lower: the SCN entrains peripheral clocks in structures like 
the choroid plexus (ChP) (red), lungs, heart, liver, adrenal gland, and muscles through body temperature rhythms, autonomic 
nervous system signals, and hormones. Peripheral clocks can also be entrained by external zeitgebers, such as exercise 
(muscle) and nutrient intake (liver). Reciprocally, peripheral clocks interact with the SCN. Created in BioRender. van der Zwet, 
L. (2025) https://BioRender.com/2t7oo3q

https://BioRender.com/2t7oo3q
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One of the systemic signals that is regulated by the SCN and helps to keep temporal order in 
physiological processes is the rhythmic release of glucocorticoids (GCs) from the adrenal gland cortex. In 
humans, GC levels peak at the beginning of the day, likely to anticipate and prepare the body for a period of 
wakefulness. In nocturnal mice, the GC level also peaks shortly before the active period, and it has been 
shown that this circadian rhythm in GCs is dependent on a functional SCN [3]. GCs will also cross the blood-
brain barrier in a controlled way [4] and modulate a multitude of brain functions.

One brain area under the control of circadian rhythmicity and influenced by GC is the choroid plexus 
(ChP) [5, 6]. This epithelial tissue lines the walls of the ventricles and is the main source of cerebrospinal 
fluid (CSF) in the brain, an important component of fluid homeostasis in the brain [7]. The produced CSF 
eventually moves through the glymphatic system, a network of perivascular spaces that facilitate 
directional motion of fluid in the brain. This CSF movement is thought to be primarily important for 
clearing waste metabolites and proteins [8, 9]. In addition, the glymphatic system seems to distribute 
compounds important for signalling and modulating brain function [8]. The cyclic signals released by the 
ChP may therefore be used to synchronize circadian rhythms of cellular processes in different brain areas 
[5, 10, 11]. Recent research has highlighted the connections between the SCN, GCs, and the glymphatic 
system. For instance, Drapšin et al. [5] demonstrated that disruption of the SCN affects circadian GC 
regulation and that the ChP’s internal circadian clock is highly sensitive to GCs [6].

Glymphatic influx produced by the ChP and waste clearance are thought to reach peak efficacy during 
sleep [12], which in turn is also modulated by the central circadian clock. GCs, among others, can influence 
sleep patterns, and sleep disturbances are commonly reported as side effects by patients treated with 
exogenous GCs, as well as by patients with Cushing’s syndrome, which is characterized by excessive cortisol 
production [13]. As the efficacy of the glymphatic system has been associated with sleep in humans [14], 
sleep-wake cycles may be an important link in the interplay between the SCN, GC release, and the 
glymphatic system. Disruptions in the crosstalk between these systems may contribute to the etiopathology 
and pathogenesis of neurodegenerative disease, where less efficient clearing by the glymphatic system may 
lead to increased deposition of tau, α-synuclein, and amyloid-β, leading to neurological diseases like 
Parkinson’s and Alzheimer’s disease (AD), highlighting the importance of further investigation. However, a 
comprehensive review illustrating and critically analysing these interactions has not yet been presented.

So, while the elements of brain homeostasis in health and disease are being thoroughly investigated, 
the interactions between them, and particularly the influence of the circadian system as a potential 
regulator and at the same time therapeutic target, receive less attention. Therefore, this review aims to 
explore the interactions between the SCN and circadian rhythms, GCs, sleep, and the glymphatic system. 
The first section examines the SCN and its influence on sleep. The second section addresses circadian GC 
release and explores mechanisms by which GCs affect peripheral clocks. In the third section, the focus will 
shift to the ChP and the glymphatic system, linking prior sections to discuss how circadian and sleep-driven 
influences optimize glymphatic clearance. The final section synthesizes the connection between the SCN, 
GCs, sleep, and the glymphatic system and examines how dysregulation of these systems may contribute to 
neurodegenerative processes.

The circadian system
Circadian rhythms in mammals are coordinated by the SCN, a hypothalamic bilateral nucleus located just 
above the optic chiasm [15]. The SCN receives and processes photic information, which it uses to convey 
external time information to peripheral clocks, thereby synchronizing them to the environment [16]. The 
next section will examine the SCN and its interactions with sleep.

The SCN: a central clock

In the SCN, as well as in most peripheral cells, a transcriptional-translational feedback loop (TTFL) occurs 
in the expression of a handful of clock genes, which lasts ~24 hours [17]. The TTFL consists of a positive 
and negative feedback loop (Figure 2). In the negative feedback loop, a heterodimer composed of BMAL1 
and CLOCK or NPAS2 [18] binds to the E-box of three different period (Per) genes and two different 
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cryptochrome (Cry) genes. After translation and post-translational modification, PER and CRY proteins 
translocate back into the nucleus, where CRY interacts with the CLOCK-BMAL1 heterodimer to inhibit its 
own transcription. As a result of this negative feedback loop, Bmal1 mRNA reaches peak levels twelve hours 
in antiphase with Per and Cry mRNA levels [2].

Figure 2. Simplified schematic representation of the transcriptional-translational feedback loop. The CLOCK-BMAL1 
heterodimer activates transcription of several clock genes (Cry, Per, Rev-Erbα) by docking onto an E-box, a dimer of CRY and 
PER, in turn, inhibits CLOCK-BMAL1 heterodimer formation. Created in BioRender. van der Zwet, L. (2025) https://BioRender.
com/klj0tg1

Besides Per and Cry, the CLOCK-BMAL1 heterodimers activate Rev-Erbα expression, starting the 
positive feedback loop. REV-ERBα represses the transcription of Bmal1. Therefore, when CRY inhibits the 
CLOCK-BMAL1 heterodimer, it also inhibits the expression of Rev-Erbα. This inhibition leads to the de-
repression—thus activation—of Clock and Bmal1 transcription and resets the TTFL [2].

The TTFL does not complete in exactly 24 hours. Therefore, the SCN receives afferent information from 
external zeitgebers to synchronize its clock gene transcription to the time of day [19]. This entrainment 
allows the SCN to convey accurate temporal cues, in synchrony with the environment, to peripheral clocks.

Light is one of the most potent zeitgebers for the SCN [20]. A subset of intrinsically photosensitive 
retinal ganglion cells (ipRGCs) expresses melanopsin, a photosensitive pigment. When these ipRGCs detect 
light or receive photic information from photoreceptor cells in the retina, they process and relay this 
information to the SCN through the retinohypothalamic tract [21–23]. Glutamate, which is the main 
neurotransmitter of this tract, stimulates NMDA receptors and consequently L-type voltage-dependent Ca2+ 
channels on the SCN neurons, leading to an increase in intracellular calcium concentration ([Ca2+]i) [2, 24–
26]. This increased [Ca2+]i can adjust transcription of the clock genes in the TTFL by activating the cAMP 
response element-binding protein (CREB)/CRE transcriptional pathway [27]. Besides photic input, non-
photic input like behavioural activity is also known to be able to modulate the SCN phase [28, 29].

The SCN has historically been considered as the ‘master oscillator’ that forces circadian timing on 
‘slave’ peripheral clocks [2]. However, recent perspectives, like that of Starnes and Jones [30], are more 
nuanced, proposing that interactions between the SCN and peripheral clocks are often bidirectional. 
Moreover, while some peripheral clocks need constant SCN input, others only require periodic cues to align 
their rhythm to the environment.

Two-process model of sleep regulation

The two-process model of sleep regulation [31, 32] is often used to explain the timing of sleep within a 
circadian framework. It describes the interaction between two regulatory processes of sleep: a circadian 
mechanism (process C) and a sleep-dependent homeostatic mechanism (process S). Process S, which 
represents the sleep pressure, accumulates during wakefulness and decreases during sleep. Process S is 
thought to be reflected in the activity of the slow waves in the non-rapid eye movement (NREM) sleep 

https://BioRender.com/klj0tg1
https://BioRender.com/klj0tg1


Explor Endocr Metab Dis. 2025;2:101437 | https://doi.org/10.37349/eemd.2025.101437 Page 5

electroencephalogram (EEG). Process C is responsible for sleep/wake initiation and is controlled by the 
SCN [31]. Sleep onset occurs when the rising process S passes the upper sinusoidal sleep-initiating 
threshold of process C. During sleep, process S decreases until it intersects with the lower wake-inducing 
threshold of process C, and wakefulness is initiated. While processes S and C work independently, sleep is 
optimal when the homeostatic drive for sleep is aligned with the circadian timing of sleep [33, 34].

This entanglement of sleep homeostatic and sleep-regulating circadian processes makes that sleep can 
be changed by factors that influence the clock. Exposure to light during the night can delay or advance the 
phase of the circadian clock depending on the timing of light exposure. Light at the beginning of the 
subjective night will cause a phase delay, while light at the beginning of the subjective day causes a phase 
advance [20]. Consequently, looking at the model, the sleep homeostatic process S might intersect sooner or 
later during the day with the thresholds of process C, thus resulting in advanced or delayed sleep onset, 
respectively.

The flip-flop switch and orexin

The eventual transition from wakefulness to sleep and vice versa depends on a bistable mutually inhibitory 
system. During wakefulness, arousal-promoting regions in the reticular formation and posterior 
hypothalamus, like the Raphe nucleus, Locus Coeruleus, and the lateral hypothalamus (LH), are active [35–
38]. These centres, collectively known as the ascending reticular activation system, inhibit the sleep-
promoting neurons in the ventrolateral preoptic nucleus (VLPO) of the hypothalamus [39]. However, when 
the VLPO is more active, it inhibits the arousal-promoting regions using GABA and rapidly induces sleep 
[40]. This ‘flip-flop switch’, as it was named by Saper et al. [41], efficiently promotes fast switching between 
sleep and wakefulness and prevents intermediary states.

The flip-flop switch is thought to be stabilized by orexin, a neuropeptide produced in the LH. Orexin 
stimulates the arousal-promoting regions, thus reinforcing wakefulness and biasing the switch against 
sleep. This wake-promoting action is counteracted by the VLPO, which, when active, inhibits the orexin 
neurons in the LH [42].

The SCN plays an important role in sleep-wake transitions, but has only a few direct neuronal 
projections to the VLPO or orexin neurons [43–45]. Instead, the SCN influences these areas through an 
indirect, multi-synaptic pathway. The SCN projects to the subparaventricular zone [45, 46], which 
subsequently relays to the dorsomedial nucleus of the hypothalamus (DMH) [47]. The DMH has extensive 
connections to the VLPO and orexin neurons [43, 44] and is essential in relaying SCN information to the 
sleep-wake regulating network [48].

During the day, when SCN neuronal activity is high, the human SCN is thought to indirectly inhibit the 
VLPO and stimulate orexin production [49, 50] (the opposite then is thought to occur in nocturnal rodents). 
Both mechanisms drive the switch toward the waking state. By the end of the day, when SCN activity 
decreases and sleep pressure is highest, the VLPO is activated and sleep is initiated.

Sleep architecture

Sleep consists of two distinct states: rapid eye movement (REM) sleep and NREM sleep. 75% of sleep is 
spent in NREM sleep, during which the parasympathetic system is most active, leading to decreased heart 
and respiration rates [51, 52]. During REM sleep, the activity of the sympathetic nervous system dominates, 
and respiration and heart rate are enhanced [51, 52]. The duration of this ‘dreaming’ state increases 
through the night and occupies approximately 25% of total sleep [53]. Sleep onset typically begins with a 
period of NREM sleep, which ends in wakefulness or REM sleep. Humans usually experience 4 to 5 cycles of 
alternating NREM and REM states during the night [53, 54].

Previously, we have demonstrated that REM sleep significantly increases SCN neuronal activity, and 
that this enhancement decreases at the end of REM sleep. This effect was observed independent of the 
circadian phase, and SCN neuronal activity was shown to correlate with EEG slow wave activity [55]. 
Therefore, the interactions between the SCN and sleep homeostatic mechanisms appear to be bidirectional.
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The role of glucocorticoids in circadian timing
Besides timing sleep/wake cycles, the SCN regulates the hypothalamic-pituitary-adrenal axis (HPA-axis), 
which controls GC production. Although GCs like cortisol are commonly known as stress hormones, they are 
also of vital importance in non-stress-related physiology. For example, GCs maintain normal metabolism 
and have potent anti-inflammatory and immunosuppressive properties [56–59]. Furthermore, their 
rhythmic release can synchronize circadian rhythms of peripheral clocks [60, 61]. In the following part of 
the review, the mechanisms and patterns of GC release will be explored. Then, the influence of the SCN on 
the HPA-axis will be discussed, followed by a description of GC effects on peripheral clocks.

Mechanisms and patterns of glucocorticoid release

GCs are produced from cholesterol in the zona fasciculata of the adrenal gland cortex through a series of 
enzymatic conversions [62]. The regulation of GC synthesis and secretion starts in the paraventricular 
nucleus (PVN), which releases corticotropin-releasing hormone (CRH) into the median eminence either in 
response to stress or the circadian clock. In the anterior pituitary, CRH binds to its G-protein coupled 
receptor (GPCR) on corticotropic cells, activating Gαs and raising cAMP concentration, which ultimately 
causes exocytosis of adrenocorticotropic hormone (ACTH) into the bloodstream [63, 64]. When ACTH binds 
to its GPCR in the zona fasciculata of the adrenal cortex, intracellular movement of steroid precursors 
between cytosolic stores and mitochondria is accelerated, and the production of GCs is increased [62]. In 
humans, the most important GC hormone is cortisol, while corticosterone is the main GC in rodents [65].

To prevent excessive GC production and optimize secretion in unstressed situations, 
cortisol/corticosterone exerts negative feedback on the PVN and the anterior pituitary [66]. Research in 
rodents has revealed two types of corticosterone-related negative feedback: a fast nongenomic mechanism 
and a slower genomic mechanism. The nongenomic mechanism involves GC-mediated suppression of CRH 
and ACTH release by the PVN and anterior pituitary, respectively [66]. Studies have demonstrated that 
bilateral adrenalectomy in rats rapidly increases circulating ACTH levels and CRH immunoreactivity in the 
PVN [67, 68]. Levin et al. [69] add to this observation by demonstrating that exogenously administered 
corticosterone acts at the PVN to decrease ACTH levels in adrenalectomized rats. Lesioning the PVN before 
administering corticosterone, in accordance with the proposed mechanism, increases plasma ACTH levels 
[70].

The genomic mechanism suppresses CRH gene expression and pro-opiomelanocortin—the precursor 
to ACTH—transcription in pituitary corticotroph cells [66]. The exact mechanisms behind genomic 
suppression are largely unknown [66], but several rodent studies have shown that GCs inhibit pro-
opiomelanocortin gene expression [71–73].

CRH is secreted in an ultradian rhythm. The amplitude and frequency of these ultradian peaks are 
determined by the phase of the circadian rhythm in GC secretion [74]. GC levels are highest just before an 
animal’s active period, which is early morning for diurnal species and early evening for nocturnal species 
[75–78]. This latter GC peak may permit the body to respond and prepare effectively for physical stressors 
during the active period [79]. On top of the ultradian rhythm, stressors like hypovolemia or fear can cause 
acute (~1 hour) peaks in GC release by enhancing the PVN’s CRH secretion [80].

Interactions between the SCN and HPA-axis
Circadian control of the HPA-axis

The SCN is well-established as the regulator of the circadian rhythm in GC release, as studies have 
consistently demonstrated that lesions to the SCN and exposure to constant light result in the loss of 
circadian GC rhythmicity [81–84]. Despite this knowledge, the precise mechanisms underlying the SCN’s 
involvement in GC production remain unclear [85].

Several studies with different neuronal tracers have established connectivity between the SCN and the 
nuclei of the HPA-axis. All showed that the SCN has projections to the PVN/DMH, although the density of 
these projections remains a topic of debate [45, 46, 86, 87]. Moreover, these PVNCRH neurons show 
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circadian rhythms in clock gene expression and neuronal activity, coordinating peak CRH release around 
waking [88]. Deletion of BMAL1 in PVNCRH neurons results in irregular GC secretion. Besides clock gene 
expression, circadian GC release also depends on SCN input to the PVNCRH neurons with inhibitory 
vasoactive intestinal peptide. GC release rhythms are lost without SCN input [88], thus affirming the tight 
causal link between the SCN and PVN in regulating circadian GC rhythms.

As some projections from the SCN use arginine vasopressin (AVP) as their neurotransmitter [46, 89], 
Kalsbeek et al. [90] set out to investigate the effects of AVP on corticosterone release in rats. Following 
bilateral lesioning of the SCN, leaving the animal arrhythmic, they implanted cannulas aimed at the 
PVN/DMH area. After perfusing different AVP agonists and antagonists into the PVN/DMH area, blood 
samples were taken at different time points. The results indicate that AVP inhibits corticosterone release in 
nocturnal rodents; administration of AVP suppressed corticosterone levels, while AVP antagonists 
stimulated corticosterone release [90]. The experiment was repeated in the diurnal rodent Arvicanthis 
ansorgei, which, in contrast to the nocturnal rat, responded to AVP with an elevation in corticosterone 
levels [91]. These results suggest that the SCN modulates the PVN/DMH induced GC release with AVP 
differentially in diurnal and nocturnal animals, possibly relating to the difference in temporal patterns in 
rhythms of GC levels.

Control over rhythmic GC secretion by the SCN seems to involve additional pathways independent of 
the hypothalamus and ACTH. Studies of ACTH and GC levels have revealed that while GC levels rise 
drastically before the active period, this is accompanied by only a minor and often insignificant rise in ACTH 
levels [92–94]. The existence of an ACTH-independent pathway is supported by findings that 
hypophysectomised rats, implanted with constantly releasing ACTH- and thyroxine pellets to maintain 
basal adrenal function, still display rhythmic corticosterone release [95].

Splanchnic nerve modulation

An alternative pathway suggested for HPA-axis-independent control of GC secretion by the SCN is through 
the splanchnic nerves [85]. As part of the sympathetic autonomic nervous system, the splanchnic nerves 
facilitate communication between the central nervous system and visceral organs, like the adrenal gland 
[96]. The evidence for SCN-controlled GC release through the splanchnic nerve involves two key 
mechanisms: (1) photic input can modulate GC release through the sympathetic innervation of the adrenal 
gland, and (2) this sympathetic innervation can modulate adrenal sensitivity to ACTH [85, 97, 98] 
(Figure 3).

Niijima et al. [97] demonstrated that photic stimuli can alter the activity of the adrenal branch of the 
splanchnic nerve in rats during the active period. Following light exposure, they observed an increased 
discharge rate in the adrenal nerve, which was not present in rats with bilateral SCN lesions. Although their 
very limited sample size of SCN-lesioned animals calls for cautious interpretation, the results suggest that 
the modulation of the splanchnic nerve activity by photic information is mediated by the SCN [97]. Building 
on these results, Ishida et al. [98] later showed that photic stimulation in mice during the active period not 
only elevates the discharge rate in the splanchnic nerve but also rapidly increases corticosterone levels. The 
absence of a corresponding rise in ACTH reinforces the notion that the hypothalamus and pituitary are not 
involved in this pathway. Moreover, as their SCN-lesioned mice and mice without splanchnic nerves did not 
display increased corticosterone levels in response to photic stimuli, Ishida et al. [98] confirm the role of 
the SCN and splanchnic nerve in light-evoked GC rises.

The GC rise following splanchnic nerve stimulation may be attributed to the role of the splanchnic 
nerve in modulating adrenal sensitivity to ACTH, a mechanism that has been demonstrated across various 
animal models [99–101]. The sensitivity of the adrenal gland to ACTH is also modulated by a circadian 
clock. Adrenal sensitivity in rats peaks during their active (dark) phase, while it is low during their inactive 
(light) phase [94, 102]. Lesioning the SCN eliminates these day/night differences in ACTH sensitivity [103]. 
Notably, transection of the splanchnic nerve attenuates corticosterone levels in rodents without affecting 
ACTH levels [101], suggesting that the splanchnic nerve indeed sensitizes the adrenal gland to ACTH.
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Figure 3. Interactions between the SCN and the HPA-axis. Photic input can modulate the sensitivity of the adrenal cortex to 
adrenocorticotropic hormone (ACTH) through the splanchnic nerve. Using arginine vasopressin (AVP) as a neurotransmitter, the 
suprachiasmatic nucleus (SCN) modulates paraventricular nucleus (PVN)/dorsomedial nucleus of the hypothalamus (DMH)-
induced glucocorticoid (GC) release. Circadian timing of GC release also depends on the internal molecular clock of the adrenal 
cortex. Created in BioRender. van der Zwet, L. (2025) https://BioRender.com/ja7kadf

Altering the activity of the splanchnic nerve, along with direct control of the HPA-axis through the 
PVN/DMH, allows the SCN to utilize both neural and hormonal signals to fine-tune adrenal responses 
depending on time of day. However, some doubts remain about the control of the adrenal gland by the SCN. 
For instance, rats with bilateral SCN lesions still show rhythmic corticosterone secretion [104], and time-
restricted feeding produces two GC release peaks, of which only one is SCN-dependent [105]. These results 
indicate that there are extra-SCN processes that can mediate GC secretion.

It is important to recognize that most cells possess intrinsic molecular clocks, including those in the 
adrenal gland [106], and can maintain their own autonomous rhythm. Therefore, the main task of the SCN 
is to synchronize the peripheral rhythms with external stimuli such as light. For example, in the adrenal 
gland, the CLOCK:BMAL1 heterodimer keeps Steroidogenic Acute Regulatory protein—the rate-limiting 
enzyme in GC synthesis—under transcriptional control [106]. The expression of this enzyme is unaffected 
by splanchnic nerve transection [101], demonstrating that the adrenal gland can independently regulate 
circadian GC production through its molecular clock as well.

Glucocorticoid control of molecular clocks

The earlier presented evidence shows that the SCN and the adrenal molecular clock can regulate GC 
secretion. GCs themselves appear to act as a mediator to align the rhythms of peripheral clocks to that of 
the SCN. For instance, when rats are given dexamethasone—a potent GC receptor (GR) agonist—in constant 
darkness, this injection acts as a zeitgeber for the regulation of intraperitoneal temperature [107]. 
Furthermore, GC rhythms play a role in coordinating day-night cycles of bladder capacity [108], heart 
function [109], and metabolism [110].

https://BioRender.com/ja7kadf
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GCs exert their effects through binding to the GR, a nuclear receptor known as NR3C1. When bound, 
the complex migrates from the cytoplasm to the nucleus, where it functions as a stimulatory transcription 
factor by binding to GC response elements (GREs) in the promotor of certain genes. Clock genes Per1 and 
Per2 were found to contain GREs [111], suggesting a direct impact on the phase of the peripheral molecular 
clock by GCs. Therefore, it is not surprising that the genes integral to circadian rhythm regulation are 
particularly sensitive to the loss of GR function, as found in zebrafish models [112].

Interestingly, studies have shown that clock proteins can interact with the GR to alter its function. For 
example, REV-ERBα affects the subcellular localization of the GR [113], and CLOCK-BMAL1 can acetylate 
the GR, thereby inhibiting its activity [114]. CRY1 and 2 also seem to oppose the actions of the GR [115]. 
These mechanisms might help with adjusting the phase of peripheral clocks to that of the external 
environment. For instance, when GC levels are acutely elevated due to stress, they can disrupt the normal 
synchronization of peripheral clocks to the SCN [116]. By inhibiting the GR through e.g., CLOCK-BMAL1, 
unwanted desynchronisation can be mitigated [114].

The GR is expressed in many peripheral cells and in the brain, but has not been found in adult SCN 
neurons [61, 117]. This finding suggests that GC levels do not influence the rhythmic activity of SCN 
neurons. However, GRs have been identified in the foetal/neonatal SCN, gradually disappearing as gestation 
progresses [118]. As maternal GCs can pass the placenta [119], they can entrain the foetal SCN to the 
maternal circadian rhythm by acting at the GRs [120].

In contrast to adult SCN neurons, GRs were found in the glial cells associated with the SCN and PVN 
[121, 122]. These glial cells actively control SCN activity by regulating extracellular GABA and glutamate 
concentrations [123]. GCs have been shown to stimulate the expression of glial fibrillary acidic protein 
(GFAP), an integral component of glial filaments, in SCN and PVN-associated glial cells [122]. This 
upregulation suggests a role for GCs in modulating glial plasticity, possibly impacting the SCN network.

Glucocorticoids influence sleep

Stress has profound effects on sleep/wake behaviour, often altering sleep architecture and increasing 
arousal. In animal models, acute stress and hydrocortisone administration have been shown to suppress 
sleep [124]. Moreover, conditions characterized by excessive cortisol production, like Cushing’s syndrome, 
are often associated with sleep disturbances [13]. Chronic corticosterone administration in rodents has 
been shown to disrupt sleep by influencing the brain regions involved in sleep initiation and/or wake 
maintenance; corticosterone activates noradrenergic neurons in the locus coeruleus, one of the arousal-
promoting areas, and inhibits the GABAergic neurons of the VLPO, thereby promoting wakefulness. These 
GC-induced sleep disruptions are mediated through the GR, as a GR antagonist can reverse the sleep 
disturbances [125].

The glymphatic system

The distribution of temporal information from the central clock has been described above using mainly 
neuronal pathways. However, the SCN also produces and releases a number of neuropeptides, which help 
to regulate circadian rhythms in physiology and behaviour [126]. The released signals from the SCN can 
reach peripheral clocks through a specialized vascular circulation pathway to the lamina terminalis, which 
has recently been described to function as a portal vein [127]. Additionally, the CSF may take up and 
distribute signalling molecules from the SCN through a system of perivascular channels known as the 
glymphatic system (Figure 4) [128]. The main function of the glymphatic system was suggested to be the 
clearance of waste from the brain, the failure of which supposedly contributes to neurological diseases like 
AD [129]. The SCN, sleep, and GC signalling all seem to influence the glymphatic system, which immediately 
raises the question about the role of temporal alignment for the proper functioning of the glymphatic 
system. This part will focus on the function of the glymphatic system and the circadian rhythmicity of an 
important component, the ChP. Subsequently, the influence of GCs, circadian rhythms and sleep on the 
glymphatic system will be discussed.
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Figure 4. Glymphatic clearance in the brain. Cerebrospinal fluid (CSF) in perivascular spaces enters the brain parenchyma 
through aquaporin-4 (AQP4) channels located on the endfeet of glial cells. Convective flow through the brain parenchyma 
facilitates the clearance of waste, which is transported to the perivenous space and into the vein toward the lymphatic system. 
Arrows indicate the movement of fluids and solutes. Created in BioRender. van der Zwet, L. (2025) https://BioRender.com/
bhqajuf

To support the weight of the brain and to nourish it with nutrients, growth factors, ions, and peptides, 
the brain is bathed in CSF [130]. CSF is produced by the ChPs, which are tufts of highly vascularized, villous 
structures covered by epithelia that line the brain’s ventricles [131, 132]. The epithelial cells in the ChP are 
connected by tight junctions, thereby creating a blood-CSF barrier and restricting unwanted movement of 
water-soluble molecules from the systemic blood circulation into the CSF [133]. Due to the tight junctions 
and adherence junctions, ChP epithelial cells are polarized and can create osmotic gradients [134]. The 
extensive system of fenestrated capillary loops in the ChP and the osmotic gradient govern the passive 
ultrafiltration of plasma into the interstitial fluid of the ChP [135, 136]. To secrete the produced fluid into 
the ventricles, the ChP epithelium contains aquaporins (AQPs), which are water channels [137]. Ions are 
actively transported into the CSF by ion transporters [138, 139].

However, increasing buoyancy and nourishing the brain are not the only functions of CSF. A study from 
2012 by Iliff et al. [128] demonstrated that CSF from the subarachnoid space can enter the brain 
parenchyma, mix with interstitial fluid, and drain into the peripheral lymphatic system through 
perivascular spaces and meningeal lymphatic vessels [140]. This CSF efflux depends on astrocytic AQP4 and 
is likely modulated by circadian rhythms and sleep/wake cycles [12, 141]. As the system seems to have 
similar functions as the lymphatic system—clearing waste—and depends on glial cells, it was termed the 
glymphatic system [128]. The glymphatic system has been shown to clear tau, α-synuclein, and amyloid-β, 
which are proteins associated with neurodegenerative diseases [128, 142, 143].

A waste-clearing system is most efficient if it has directionality. In the glymphatic system, this direction 
is from the brain parenchyma toward the peripheral lymphatic system. Several different factors contribute 
to the directionality of CSF movement. For instance, the rhythmic expansion and contraction of the cerebral 

https://BioRender.com/bhqajuf
https://BioRender.com/bhqajuf


Explor Endocr Metab Dis. 2025;2:101437 | https://doi.org/10.37349/eemd.2025.101437 Page 11

arteries propels the fluid through the perivascular space [144, 145], while spontaneous changes in the 
muscle tone of vessels (vasomotion) support steady CSF movement [146, 147]. At the same time, 
respiratory cycles create pressure changes that further facilitate CSF flow [148].

The glymphatic system can be compared to a closed hydraulic system, as it relies on fluid pressure and 
directed flow to clear waste efficiently. Just as poking a hole in a hydraulic system would disrupt its 
function and pressure, any disruptions in the glymphatic system can compromise its ability to clear waste. 
Uncareful introduction of tracers or cannulas into the glymphatic system can create leaks that disrupt the 
closed nature of the system and thereby inactivate it [141, 149]. Likewise, perivascular structures collapse 
and fill with other fluids postmortem, rendering most histological samples of this system useless [145]. 
These difficulties in maintaining the glymphatic system’s integrity have caused significant discussion about 
its existence [150]. The most recent research on the glymphatic system therefore increasingly relies on in 
vivo imaging techniques like diffusion tensor imaging and positron emission tomography, as this can 
maintain the system’s integrity and function [151, 152].

Besides the glymphatic system, other pathways have been proposed for clearing brain waste. The 
intramural periarterial drainage theory suggests that perivascular spaces do not exist. Instead, the CSF 
enters the brain via arterial pial-glial basement membranes, mixes with interstitial fluid, and leaves along 
the basement membrane of the smooth muscle cells in the artery [153]. Another theory proposes that 
convective mixing mechanisms drive the efflux of solutes from the brain parenchyma [154]. As the 
glymphatic pathway is the most widely accepted waste-clearing theory, this review will exclusively focus on 
this pathway.

Circadian rhythm in the choroid plexus

The ChP exhibits many functional daily rhythms. CSF production, for instance, was observed in a diffusion 
MRI study to peak during the night in humans [155]. Moreover, the composition of CSF varies across the 
day, with Na+ concentrations in human subjects reaching peak values throughout the day and reaching 
lowest levels during the night [156]. These daily fluctuations can be linked to rhythmic gene expression 
within the ChP. For example, SNAT3 and NCX4, both sodium transporters, show upregulation during the 
light phase [157], aligning with the diurnal changes in CSF composition. Additional genes showing high 
circadian expression are related to the endoplasmic reticulum stress response. Transcriptomic data shows 
that ER stress response markers peak during the late subjective night in the ChP, optimizing the 
preparation for stress due to the rapid processing and accumulation of secreted proteins, such as 
transthyretin [11]. This anticipatory upregulation may prevent ER-stress-related cytotoxicity [158] and 
fine-tune circadian secretion.

Like most cells in the body, the cells in the ChP contain a molecular clock that can coordinate rhythmic 
gene expression [159]. However, unlike most peripheral clocks, the cells in the ChP can maintain rhythmic 
expression of clock genes in vitro without input from the SCN. This autonomous rhythmicity has been 
demonstrated in organotypic explants of the ChP from PER2::LUC mouse models, which showed consistent 
rhythmic expression over several days [10, 160]. The clock gene expression in the ChP is not only 
persistent, but can even show stronger oscillations than the SCN itself [10]. This observation is likely 
explained by the presence of gap junctions between ChP cells, which allow for strong intercellular coupling 
[161]. This notion is supported by the finding that inhibiting the ChP gap junctions prolongs the circadian 
period and reduces the PER2::LUC amplitude [10].

Although the SCN appears to be redundant for the rhythmic expression of ChP clock genes in 
organotypic slices, in vivo studies indicate that the SCN does play a role in sustaining ChP oscillations [11]. 
Sládek et al. [11] examined transcriptome profiles in control and SCN-lesioned mice, revealing significantly 
decreased amplitudes in Clock and other rhythmically expressed ChP genes in the SCN-lesioned group. 
Besides the SCN-to-ChP communication, a coculturing study has found that the ChP also influences the SCN, 
likely through signalling molecules in the CSF [10]. This reciprocal influence might enhance the 
synchronization between the SCN and peripheral clocks.
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The influence of glucocorticoids on the choroid plexus

While the precise mechanism behind the SCN-to-ChP communication remains unknown, evidence suggests 
a role for GCs as a mediator. As described before, GC synchronizes circadian clocks through the GR. When 
GCs are bound to the GR, it will function as a transcription factor for genes with a GRE, like Per1 and Per2 
[111]. Cells of the ChP contain GRs and are therefore susceptible to clock modulation by GCs [6, 162]. This 
modulation has been meticulously investigated by Liška et al. [6] in a series of in vivo and in vitro 
experiments. Indeed, after adrenalectomy, the rhythmic expression of Per1 and Per2 in the ChP of mice is 
abolished and significantly dampened, respectively. However, when these mice were given dexamethasone 
injections, the rhythmicity in clock genes was restored [6]. Dexamethasone was also able to restore 
rhythmic clock gene expression in SCN-lesioned mice [11]. In vitro, dexamethasone either delayed or 
advanced the Per2 rhythm in the ChP depending on the timing of administration [6].

Moreover, the ChP expresses 11β-HSD1, which locally catalyses the conversion from inactive GCs to 
cortisol/corticosterone [163]. 11β-HSD1 has been found to show circadian expression in the rat’s 
hippocampus with peak levels occurring around activity onset [164]. Through 11β-HSD1, the ChP might 
adjust the signals from the HPA-axis to maintain circadian CSF homeostasis. However, as there has been no 
detailed investigation on diurnal oscillations of 11β-HSD1 in the ChP, the functional role of this protein in 
ChP physiology remains speculative.

The peak efficacy of the glymphatic system: sleep or circadian-dependent?

While the glymphatic system is increasingly being accepted as an integral part of central nervous system 
physiology, the diurnal rhythm of its clearance function is still under debate. To date, the majority of 
evidence suggests a higher flow of CSF and clearance during sleep [12, 155, 165, 166]. Since sleep 
regulation and the central circadian clock are closely intertwined, as described above, it remains unclear 
whether this increased clearance is sleep-driven or circadian-driven, and studies are needed to distinguish 
the effect of sleep states from the potentially direct effects of the circadian clock on glymphatic flow.

Mimicking sleep: the use of anaesthetics

Before exploring the efficacy of the glymphatic system in different vigilance states, it is important to discuss 
the use of anaesthetics. Most animal experiments investigating the interaction between sleep and the 
glymphatic system rely on anaesthetic drugs to mimic sleep. However, this approach has limitations. First, 
although some anaesthetics induce EEG patterns that resemble those seen in NREM sleep [167], sleep and 
anaesthesia remain two distinct states. For instance, anaesthesia fully inhibits locomotion and autonomic 
reflexes and produces a more extensive disruption of brain connectivity [168]. Second, different anaesthetic 
drugs were demonstrated to alter the glymphatic system in different ways, potentially introducing 
confounding factors to the experiments. Dexmedetomidine, propofol, and pentobarbital were shown to 
increase glymphatic function in rodents [169, 170], while inhaled isoflurane and ketamine inhibit 
glymphatic function [171]. Both increases and decreases in glymphatic influx have been observed when 
ketamine is combined with different doses of xylazine [165, 171]. Thus, the effects of anaesthetic drugs on 
glymphatic function are both drug- and dose-dependent and cannot be directly compared to a natural 
sleeping state. Anaesthetics can, however, be used to investigate circadian effects by applying them at 
different circadian phases.

Evidence in favour of sleep dependency

In 2013, Xie et al. [165] elegantly investigated CSF influx in sleeping and awake mice using in vivo two-
photon imaging. While recording electrocorticography (ECoG) and electromyography to determine the 
mice’s vigilance state, they injected fluorescent tracers into the subarachnoid CSF. Compared to sleeping 
mice, parenchymal and periarterial tracer influx was sharply reduced in awake mice. This suppressed influx 
in awake mice appeared to be linked to decreases in interstitial space volume (ISV), as sleeping mice were 
observed to have an expanded ISV compared to awake mice [165]. The observed changes in ISV might 
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explain the change in CSF influx and the higher efficiency of the glymphatic system during sleep, as 
increased ISV may decrease resistance to CSF movement, thereby increasing CSF influx [165].

The ECoG of sleeping mice exhibits significantly more slow waves than the ECoG of awake mice. A 
subsequent study revealed a positive correlation between the ECoG power density of these slow waves and 
CSF tracer influx in anaesthetized rodents [170]. Notably, the authors used six different anaesthetics, which 
have varying actions in increasing and decreasing glymphatic influx and likewise in modulation ECoG slow-
waves, thereby increasing the reliability of their findings. A study by Fultz et al. [14] has also found coupling 
between neuronal activity, hemodynamic oscillations, and CSF flow. Additionally, a decreased heart rate, 
which is a NREM sleep characteristic, was found to positively correlate with tracer influx [170].

Recently, a study from Miao et al. [172] questioned the general consensus on the effects of sleep on 
brain clearance by stating that brain clearance is reduced during sleep and anaesthesia. Here, the authors 
measured the diffusion coefficient of their neuronal tracer by tracking its movement from the caudate 
putamen to the frontal cortex and validated the result in agarose gels. The authors found no difference in 
diffusion coefficient between waking, sleep, and anaesthesia. Yet, when measuring the clearance of the 
tracer, a significant clearance reduction was observed in sleeping mice compared to awake mice [172].

However, with their experiments, Miao et al. [172] deviate from commonly used methods to assess 
glymphatic function. Tracer studies are often performed by injecting the tracer into a ventricle and 
following its path through the glymphatic system [12, 165, 170]. In contrast, Miao et al. [172] injected their 
tracer directly into the caudate putamen, which they argue better mimics the location of waste molecules in 
physiological conditions. Moreover, they used a smaller tracer (4 kDa), compared to previously used tracers 
(66 kDa) [12, 170], and proteins like the amyloid-β precursor (110–135 kDa) [173]. These methodological 
discrepancies hamper the comparison to earlier work. Therefore, future research should focus on using 
similar methods and similar-sized tracers to elucidate whether there are genuine discrepancies in the 
results obtained or only in the interpretations of the results between the different laboratories.

Evidence in favour of circadian dependency

The evidence that links the efficacy of the glymphatic system to circadian rhythms is mainly focussed on 
AQP4. AQP4 is a bidirectional water channel in the brain that is most abundant in astrocytes [174]. The 
importance of AQP4 was established by Iliff et al. [128], who demonstrated through AQP4 KO mice that 
AQP4 is crucial for coupling CSF influx from para-arterial spaces to clearance of the interstitial fluid. To 
establish efficient coupling, AQP4 needs to be polarized to the endfeet of the astrocytes [12]. Other studies 
confirm that changes in AQP4 expression or polarization disturb the glymphatic system [175, 176]. Indeed, 
both Aqp4 gene expression and polarization show diurnal variation in nocturnal rodents; during their 
resting phase, Aqp4 expression is upregulated compared to the active phase, and AQP4 is localized at the 
endfeet of astrocytes [12]. This temporal polarization is likely dependent on the circadian expression of the 
proteins within the dystrophin-associated complex, a membrane-associated scaffold [12, 177, 178].

Hablitz et al. [12] demonstrated that circadian AQP4 polarization is preserved in constant light 
conditions. In this experiment, mice were kept in constant light for ten days before being anaesthetized 
with consistent doses of ketamine/xylazine during the subjective mid-resting or mid-active period. AQP4 
polarization and glymphatic influx were found to be highest during the mid-resting phase [12], indicating 
that AQP4-mediated glymphatic clearance is circadian-dependent.

Moreover, various other circadian-regulated processes may promote glymphatic efficacy during the 
resting period. For example, CSF production by the ChP is significantly higher during the resting phase 
compared to the active phase [155]. One problem is that the number of studies investigating circadian 
functioning of the glymphatic system is limited and none of them is able to separate circadian changes from 
sleep regulatory influences. Therefore, these studies should be interpreted with caution.
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Separating circadian rhythms and sleep

However, although certain aspects that influence glymphatic efficacy can be attributed to circadian or 
sleep-related processes, it is essential to emphasize that these processes are intimately related. As 
discussed, the circadian rhythm of the SCN mainly influences sleep timing. Sleep deprivation decreases SCN 
neuronal activity [179], alters the circadian expression of clock genes, and decreases their amplitude [180–
182]. Given this interdependence between sleep homeostatic mechanisms and circadian sleep timing, it is 
necessary to apply sleep-wake protocols where sleep timing is separated from the circadian cycle [183–
185] to investigate this further.

Brain homeostasis in health and disease
In previous parts of this review, the individual interactions between the SCN, circadian rhythms, GCs, sleep, 
and the glymphatic system were explored. The following paragraphs will review how these systems work 
in concert to maintain brain homeostasis in humans, and how disruptions may contribute to 
neurodegenerative diseases like AD (Figure 5).

Figure 5. Interactions in health and disease. (A) Interactions in health. The circadian rhythm in the suprachiasmatic nucleus 
(SCN) receives light input and is thereby synchronized (entrained) to the environmental cycle of day and night. The SCN 
coordinates circadian rhythms in peripheral clocks by means of neuronal or hormonal signalling pathways to create a temporal 
order. The sleep system is using the time information issued by the SCN to adjust sleep/wake patterns and it also reports its 
status back to the SCN. The rhythm in glucocorticoid (GC) level is entrained by SCN signals which are mediated through the 
HPA-axis. GC signalling influence the sleep system as well as the rhythmic production of CSF in the choroid plexus (ChP). The 
rhythms in the ChP also dependent on SCN function. Rhythmic GC signalling as well as sleep stages (NREM) contributes to a 
day–night difference in glymphatic flow, which was suggested to lead to a nightly clearance of neurotoxic substances and foster 
brain homeostasis. The rhythmic production of CSF in the ChP may also contribute to the modulation of flow. (B) Interactions in 
disease. In diseases like Alzheimer’s, early symptoms include disturbance in the sleep/wake pattern, which lead to a disruption 
of the rhythms in GCs and glymphatic flow. Circadian disorders caused by irregular activity schedules and light regimes as well 
as by weakened circadian system as found in the elderly, will contribute to this downward spiral, leading to a less efficient 
clearance and accumulation of neurotoxins
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Brain homeostasis in health

One of the primary signalling pathways the SCN uses to synchronize peripheral clocks to the external 
environment is rhythmic GC release [81–83]. In the early morning, the SCN stimulates GC production by the 
HPA-axis through the PVN/DMH, and via sympathetic activation of the splanchnic nerve [88, 97, 98]. 
Notably, the adrenal gland possesses an intrinsic clock, which is aligned by the SCN, but can also 
independently release GCs [106]. This morning increase in GCs activates the arousal-promoting areas and 
inhibits the sleep-promoting areas (VLPO) [124, 125]. Simultaneously, the homeostatic sleep pressure 
reaches its trough and the circadian process promotes wakefulness [31, 32].

During the day, when its activity is highest, the SCN inhibits the VLPO and stimulates orexin 
production, stabilizing wakefulness throughout the day [49, 50]. As the evening approaches, the activity of 
the SCN gradually declines, and the inhibition of the VLPO wanes. In addition, the pineal gland, whose 
circadian rhythm is entrained by the SCN, starts producing melatonin [186, 187]. Melatonin can further 
attenuate SCN firing [188–190], amplifying the decreased inhibition of the VLPO. In addition, sleep 
pressure, which has been accumulating throughout the day, is thought to reach the sleeping threshold of 
process C. This series of events facilitates the transition from wakefulness to sleep.

During sleep, the ChP, entrained by GCs, increases CSF production [155]. The prevailing hypothesis 
indicates that the glymphatic system reaches peak efficacy during sleep, clearing the brain of amyloid-β, 
tau, and α-synuclein [128, 165]. As the night progresses and ends, the sleep pressure gradually declines, 
and GC release and SCN activity rise, allowing the cycle to restart.

Brain homeostasis in Alzheimer’s disease

In AD, those processes are disrupted. AD is a progressive neurodegenerative disorder characterized by 
dementia. The severity of dementia correlates with the amount and distribution of neurofibrillary tangles, 
which likely cause the clinical symptoms of the disease. The tangles are mainly composed of cytoskeleton-
associated tau proteins [191]. The cascade of events that leads to neurofibrillary tangle formation is 
thought to be initiated by atypical amyloid-β secretion [192].

Sleep and circadian dysfunction

In addition to cognitive decline, AD is also associated with sleep and circadian dysfunction [193, 194]. 
Rather than solely presenting as symptoms, accumulating evidence suggests that these disruptions 
contribute to AD pathogenesis [195]. Sleep deprivation increases amyloid-β deposition in both healthy 
humans and AD mouse models [196, 197]. In a mouse model for AD, depositions could be reduced by 
injecting the mice with orexin antagonists, which stimulate sleep [197]. Moreover, in humans, high orexin 
concentrations in CSF have been associated with elevated levels of phosphorylated tau, present in the 
neurofibrillary tangles [198].

As the glymphatic system seems to clear amyloid-β and tau from the interstitial space most efficiently 
during sleep, disruptions of sleep and circadian rhythms may contribute to AD pathogenesis through 
dysfunction of the glymphatic system. Indeed, in AD patients, CSF production is lower than in healthy 
humans [199], the ChP shows altered secretion of neuroprotective peptides related to amyloid-β [200], and 
AQP4 polarization to the perivascular endfeet is lost [201].

Furthermore, a post-mortem study has demonstrated that the volume of the SCN and the number of 
SCN neurons in AD patients are decreased compared to non-AD patients [202]. In humans, the loss of SCN 
neurons is associated with amplitude-dampened and fragmented locomotor activity [203]. In addition, 
different brain regions of AD patients lose cohesion in circadian clock gene expression [204], indicating 
reduced functionality of the SCN. Molecular findings implicate a role of amyloid-β in the desynchronization 
of brain regions, as it facilitates BMAL1 degradation in neurons [205]. BMAL1 has been shown to regulate 
the expression of redox defence genes, so disruption of this clock gene can cause neurodegeneration due to 
oxidative stress [206].
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Perhaps due to SCN deterioration, AD patients show reduced melatonin levels and rhythmicity [202, 
207]. In addition, the SCN of late-stage AD patients expresses fewer melatonin type 1 receptors [207], the 
receptor that suppresses SCN firing activity and thereby allows VLPO activation. The reduced melatonin 
levels, rhythmicity, and ability to give feedback to SCN likely contribute to the sleep disruption observed in 
AD patients. Importantly, melatonin has been shown to reduce the production of amyloid-β [208]. Loss of 
proper melatonin levels and rhythmicity may therefore be detrimental to neuronal health in AD.

Circadian HPA-axis dysfunction

Dysregulation of the HPA-axis also plays an important role in the development of AD. AD patients show 
high basal cortisol levels [209, 210] and higher awakening cortisol levels, which are associated with worse 
memory performance [211]. In a 6-year follow-up study, AD patients with high cortisol levels declined 
faster in global cognition, episodic memory, and executive scores compared to AD patients with low cortisol 
levels [212]. Green et al. [213] have shown that GCs increase amyloid-β formation and neurofibrillary 
tangle formation in AD mouse models. As GCs also alter sleep architecture and increase arousal, the 
resulting loss of sleep might be harmful for the maintenance of amyloid-β and tau clearance by the 
glymphatic system.

Moreover, chronically high GC levels result in a loss of hippocampal volume [214], which is an early 
biomarker of AD progression [215]. In health, the hippocampus inhibits CRH and thus GC release [216, 
217]. Therefore, the withering of the hippocampus results in a vicious cycle of GC release, exacerbating 
HPA-axis dysfunction. The presence of elevated HPA-axis activity in AD patients is corroborated by the 
finding that AD patients show increased adrenal sensitivity to exogenous ACTH [218].

In addition, GCs stimulate the expression of GFAP, a marker for abnormal astrocyte proliferation 
(reactive astrogliosis) [219]. Indeed, abnormally high GFAP levels have been observed in humans with high 
brain amyloid-β load [219, 220]. GFAP expression correlates with amyloid-β plaque density in AD brain 
tissue. As astrocytes can degrade amyloid-β [221], the increased GC levels in AD patients may initially serve 
as a protective mechanism. However, reactive astrogliosis is also closely associated with a decline in 
glutamate transporters in astrocytes [222], leaving the proximal neurons vulnerable to excitotoxicity.

In conclusion, sleep, circadian rhythms, the glymphatic system and GCs seem to be closely related in 
the pathogenesis of AD [129]. Further experiments are needed to gain more mechanistic insight on this as 
the evidence is now mainly correlative. Given the interdependencies of the circadian clock, sleep system, 
HPA signalling and the glymphatic function, the task is challenging but also holds great therapeutic 
potential. Treatment of circadian disorders with chronotherapy could normalize sleep patterns and GC 
signalling and have a positive effect on amyloid clearing by restoring glymphatic flow pattern. This could 
lead to either delayed onset or slower progression of not only AD, but also other neurodegenerative 
diseases like Parkinson’s and Huntington’s [223, 224].

Conclusions
Maintaining correct temporal organization among the discussed circadian systems is probably essential for 
brain homeostasis, with disruptions increasing the risk for neurodegenerative diseases. However, the 
pathways and mechanisms used by the circadian system to maintain a healthy temporal order are still 
poorly understood. This review explored the intricate interplay between the circadian system, GC 
signalling, the glymphatic system, and sleep. While the SCN is traditionally regarded as the controlling 
factor of circadian rhythms across these systems, emerging evidence suggests that the SCN also receives 
feedback from the peripheral clocks it entrains. This evolving perspective positions the SCN central in a 
bidirectionally regulated circadian network, instead of hierarchically above peripheral clocks.

Many open questions remain regarding the interactions between the central clock and peripheral 
clocks. For instance, the ChP has been shown to exhibit circadian patterns in the transport and degradation 
of endogenous signalling molecules in CSF [11]. As many brain structures, including the SCN, are exposed to 
CSF, the ChP may function as a conveyor of circadian signals [10]. For example, there is evidence for 
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rhythmicity of prostaglandin D2 (PGD2) in the CSF, which promotes sleep [11], but the nature of circadian-
rhythm-altering molecules in the CSF has not yet been identified. An important question that remains is the 
relative contribution of sleep and the circadian clock to glymphatic flow, which is important for future 
treatment possibilities. Should the treatment focus be on enhancing sleep quality or on increasing circadian 
amplitude? Finally, establishing standardized and reliable methodology will help uncover the exact 
relationship between sleep, circadian rhythms, and the glymphatic system.

An extensive understanding of the crosstalk between the circadian system, GC signalling, the 
glymphatic system, and sleep is imperative for preventing and treating circadian morbidity. Currently 
approved AD medicine focuses on symptom management and directly reducing amyloid-β plaques [225]. 
However, enhancing the function of the glymphatic system by restoring circadian control and improving 
sleep may offer an alternative approach by indirectly reducing amyloid-β deposition. Future research 
should therefore focus on increasing the robustness of the circadian system, and exploring the function of 
cells that are integral to all discussed systems, like glial cells. These findings may uncover novel therapeutic 
targets for improving brain health and resilience.
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