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Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly emerging as a global health 
crisis, affecting over 30% of the population and demanding urgent attention. This redefined condition, 
previously known as non-alcoholic fatty liver disease (NAFLD), reflects a deeper understanding of the 
intricate interplay between metabolic dysfunction and liver health. At the heart of MASLD lies the troubling 
accumulation of triglycerides (TGs) in hepatocytes, which precipitates insulin resistance and oxidative 
stress, ultimately leading to more severe forms like metabolic dysfunction-associated steatohepatitis 
(MASH). Excitingly, recent research has spotlighted the farnesoid X receptor (FXR) as a groundbreaking 
therapeutic target. FXR not only regulates lipid metabolism but also combats inflammation and insulin 
resistance, making it a potential game-changer in the fight against MASLD. With only one FDA-approved 
drug, resmetirom, currently available, the exploration of FXR agonists opens new avenues for innovative 
treatments that could revolutionize patient care. By harnessing the power of FXR to restore metabolic 
balance and integrating advanced strategies like lipidomics and fatty acid profiling, we stand on the brink of 
transforming how we approach MASLD and its associated complications, paving the way for a healthier 
future. This review delves into the promising role of FXR in combating MASLD and its implications for 
related metabolic disorders, emphasizing the urgency for advanced strategies to detect and manage this 
burgeoning epidemic.
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Introduction
The landscape of liver disease nomenclature has recently undergone a significant transformation, igniting 
curiosity and discussion among healthcare professionals and researchers alike. The shift from non-alcoholic 
fatty liver disease (NAFLD) to metabolic dysfunction-associated steatotic liver disease (MASLD), along with 
the transition from non-alcoholic steatohepatitis (NASH) to metabolic dysfunction-associated 
steatohepatitis (MASH), reflects an evolving scientific understanding that emphasises the metabolic 
dysfunction underlying these conditions. This rebranding highlights that the “M” in MASLD and MASH 
signifies metabolic dysfunction, inherently linking these diseases to prevalent metabolic disorders such as 
obesity and type 2 diabetes, which are critical contributors to liver injury [1, 2]. The reformulation of these 
terms was guided by a comprehensive Delphi consensus process involving multiple stakeholders in 
hepatology, aimed at establishing a more accurate and clinically relevant framework for diagnosis and 
treatment [3, 4]. Currently, the global prevalence of MASLD is estimated at approximately 32%, with 
projections suggesting it could rise to 55.4% by 2040 due to increasing rates of obesity and type 2 diabetes 
[5–7]. In India, the prevalence stands at around 38% among adults, indicating a significant public health 
concern as the nation faces rising obesity rates and associated metabolic disorders [6, 8–10]. Regions such 
as Latin America report even higher prevalence rates, reaching 44.4%, underscoring the urgent need for 
targeted interventions globally [6, 11–13].

Despite advancements in nomenclature and understanding, the pathogenesis of MASLD remains 
incompletely elucidated, with steatosis defined as the presence of triglycerides (TGs) in hepatocytes serving 
as the primary precursor for the disease [14–17]. The development of hepatic steatosis arises from an 
imbalance between lipid intake and lipid removal, which is regulated by four key mechanisms: fatty acid 
uptake, de novo lipogenesis (DNL), fatty acid oxidation, and lipid export. These mechanisms play a crucial 
role in both the physiological and pathological progression of MASLD [11, 18–20].

Targeting farnesoid X receptor (FXR) presents a promising therapeutic strategy for managing MASLD 
because FXR is integral in regulating these four key mechanisms of hepatic lipid metabolism [21]. By 
selectively modulating FXR activity through agonist ligands, it can effectively control lipid acquisition (fatty 
acid acquisition) and lipid removal to mitigate hepatic steatosis and its progression to more severe liver 
conditions [22, 23]. Furthermore, FXR agonists have demonstrated significant histological improvements in 
clinical trials for liver diseases, indicating their potential to enhance treatment outcomes for patients with 
MASLD [24–29]. This approach not only targets the underlying metabolic dysfunction but also opens 
avenues for combination therapies that may improve efficacy while minimising side effects associated with 
current treatments [30].

As research progresses, exploring FXR’s role in MASLD will be crucial for developing innovative 
therapeutic strategies to effectively manage this complex disease and its associated metabolic disorders 
[31]. This review explores the role of FXR in liver physiology and the progression of MASLD. We begin by 
examining FXR’s normal functions and how its dysregulation contributes to disease pathology. We then 
identify specific lipid classes that alter during the shift from health to disease, highlighting their significance 
as diagnostic markers and potential biomarkers. Following this, we discuss treatment strategies using FXR 
agonists and ongoing clinical trials evaluating their effectiveness in managing MASLD. Additionally, we 
emphasize the crucial roles of fatty acids and lipid classes in the pathogenesis of MASLD and present lipid 
analyses conducted with hyphenated techniques to reinforce our findings on relevant biomarkers. To 
ensure clarity and consistency, we will refer to the disease as MASLD and MASH, regardless of whether the 
underlying populations in the referenced studies were originally classified as patients with NAFLD or 
NASH.

Association of MASLD with features of the metabolic syndrome
MASLD condition is characterized by fat deposition in the liver, which can lead to inflammation and fibrosis, 
ultimately resulting in more severe liver disease, MASH [32–34]. The relationship between MASLD and 
metabolic syndrome is mutual and bi-directional, highlighting the complexity of these interconnected 
conditions [35, 36].
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Mutual association with metabolic syndrome

MASLD is frequently associated with several components of metabolic syndrome, including obesity, type 2 
diabetes mellitus (T2DM), dyslipidaemia, and hypertension. These conditions collectively contribute to the 
development and progression of MASLD [37–39]. For instance, individuals with obesity often exhibit 
increased hepatic fat accumulation, which can exacerbate insulin resistance and lead to T2DM [40–42]. 
Conversely, the presence of MASLD can worsen metabolic syndrome features; for example, hepatic steatosis 
can lead to increased insulin resistance, further complicating glucose metabolism and lipid profiles [43–45]. 
Research shows that a substantial number of individuals, including those who are lean, are affected by 
MASLD, with about 25% of lean individuals living with HIV also exhibiting the condition, indicating that 
metabolic dysfunction is not exclusively associated with obesity [6, 37, 46]. These statements emphasize 
the importance of recognizing MASLD in diverse populations and its potential to influence metabolic health 
across different demographic groups.

Bi-directional relationship

The relationship between MASLD and metabolic syndrome is bi-directional [47, 48]. while metabolic 
syndrome increases the risk of developing MASLD, existing liver disease can also exacerbate features of 
metabolic syndrome [32, 49, 50]. For example, elevated levels of free fatty acids (FFAs) (for example, oleic 
acid, palmitic acid, stearic acid, and linoleic acid, etc.) in individuals with MASLD can contribute to systemic 
insulin resistance and dyslipidaemia by promoting lipogenesis and inhibiting fatty acid oxidation in 
peripheral tissues [51–53]. Furthermore, the buildup of lipids in the liver can lead to an increased the 
production of pro-inflammatory cytokines [for example, interleukin (IL)-1, IL-6, IL-12, IL-17, etc.], which 
may worsen insulin sensitivity and promote cardiovascular risk factors associated with metabolic 
syndrome [54, 55].

Role of fatty acids

Fatty acid plays a crucial role in intricate relationships. They are central to understanding the 
pathophysiology of MASLD. The disease is characterized by alterations in hepatic and plasma lipid balance, 
which are critical for diagnosing and assessing its severity [56]. Hepatic insulin resistance, a key feature of 
MASLD, correlates with increased levels of diacylglycerol (DAG) and triacylglycerol (TAG), as identified in 
lipidomics studies [57]. Elevated circulating FFAs may significantly contribute to hepatic lipotoxicity, 
leading to liver inflammation and fibrosis [32, 58, 59] particularly associated with saturated fatty acids 
(SFA) such as palmitic acid [60]. In contrast, unsaturated fatty acids (UFA) have been observed to provide 
protective effects against liver damage and can enhance insulin sensitivity [61–64]. The detrimental impact 
of SFA on liver health is evident through their accumulation in hepatocytes, which can induce apoptosis and 
lipotoxicity. Factors influencing fatty acid levels include diet, age, gender and hepatic DNL [65]. Studies 
indicate that excessive fatty acid accumulation can lead to endoplasmic reticulum stress and hepatocyte 
injury [66]. The balance between different types of fatty acids is crucial for both the progression of MASLD 
and the general metabolic health of individuals [64, 67]. Specific lipid profiles have emerged as potential 
biomarkers for MASLD diagnosis; during the condition, there is an increase in SFA like myristic and palmitic 
acids [68], while alterations in TG levels and certain phospholipid species may reflect disease progression 
or treatment response [69–71].

In liver samples from patients with MASLD, there is an observed increase in monounsaturated fatty 
acids (MUFA) alongside elevated DAG and TAG levels [72, 73]. Inversely, polyunsaturated fatty acids 
(PUFAs) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) tend to decrease in MASLD 
conditions [74, 75]. Additionally, activation of FXR has been shown to reduce hepatic lipid levels and 
intestinal lipid absorption, highlighting potential therapeutic pathways for managing MASLD [76]. Overall, 
understanding the intricate relationship between various fatty acids and their metabolic implications is 
essential for addressing MASLD effectively. Fatty acids represent a class of lipid profiles, and various 
alterations in lipid composition associated with different metabolic disorders are detailed in Table 1.
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Table 1. Alteration of lipids in different metabolic disorders

Condition Lipid alterations

Obesity Obesity is often associated with dyslipidaemia, which presents as elevated plasma levels of TGs, VLDL, and 
low HDL values. Every 10 pounds of extra fat increases daily cholesterol production by 10 mg. The lipid 
profile rises in obese individuals [169].

MASLD Hepatic lipid imbalance results from hepatic absorption of FAs and de novo lipogenesis exceeding fatty acid 
oxidation and lipid export in MASLD. This leads to modifications in the hepatic metabolism of lipids, potentially 
precipitating severe complications such as cirrhosis and HCC. Different MASLD patients had various levels of 
serum lysophosphatidylcholine, sphingomyelin, total cholesterol esters, and TAGs [170].

Type II 
diabetes

Anomalies of plasma lipids and lipoprotein associated with type II diabetes include reduced HDL cholesterol, 
an abundance of small dense LDL particles, and elevated TG levels. Every one of these dyslipidaemia traits 
is linked to an increased risk of CVD [171].

Type II 
diabetes with 
MASLD

There is a bidirectional pathophysiological link between MASLD and type 2 diabetes. On the one hand, the 
latter encourages the development of MASL into MASH, a more advanced form of the disease. HCC and 
cirrhosis are two conditions that are made more likely by NASH and may necessitate liver transplantation 
[172].

MASLD + 
obesity + type 
II diabetes

The risk of developing cirrhosis and MASH is significantly increased when type 2 diabetes, obesity, and 
MASLD are present than when MASLD is present, but chronic hyperglycaemia is not. Whether MASLD is a 
substantial independent predictor of CVD remains debatable [173].

TGs: triglycerides; VLDL: very low-density lipoprotein; HDL: high-density lipoprotein; MASLD: metabolic dysfunction-associated 
steatotic liver disease; FAs: fatty acids; HCC: hepatocellular carcinoma; TAGs: triacylglycerols; LDL: low-density lipoprotein; 
CVD: cardiovascular disease; MASL: metabolic dysfunction-associated steatotic liver; MASH: metabolic dysfunction-associated 
steatohepatitis; NASH: non-alcoholic steatohepatitis

Physiological role of FXR
FXR is a key nuclear receptor that acts as a bile acid sensor, playing a significant role in maintaining 
metabolic homeostasis [77–79]. Predominantly found in the liver and intestine, FXR integrates metabolic 
signals and is activated by bile acids such as, which are crucial for cholesterol and lipid metabolism [77, 80, 
81]. Upon activation, FXR heterodimerizes with retinoid X receptor (RXR) and binds to FXR response 
elements (FXREs) to regulate genes involved in bile acid synthesis and metabolism [82, 83]. It’s essential for 
coordinating metabolic processes and acts as a therapeutic target for metabolic disorders [31, 84–86]. FXR 
is an essential modulator of lipid metabolism [87, 88]. Exerting its effects by modulating the activity of 
several transcription factors, including sterol regulatory element-binding protein-1c (SREBP-1c) and 
carbohydrate response element-binding protein (ChREBP). SREBP-1c is crucial for the regulation of genes 
involved in fatty acid and TG synthesis, and FXR activation leads to the repression of SREBP-1c expression. 
This inhibition is significant as it reduces hepatic TG levels and helps prevent hepatic steatosis, particularly 
in MASLD [89, 90]. Additionally, FXR interacts with ChREBP to fine-tune lipogenesis based on glucose 
availability, ensuring lipid synthesis is aligned with the body’s energy status [91, 92]. The activation of FXR 
decreases the expression of fatty acid synthase (FASN), an enzyme essential for fatty acid biosynthesis, and 
regulates other pathways critical for lipid homeostasis [93, 94]. The small heterodimer partner (SHP) is 
another important component in this regulatory network. Upon activation by bile acids, FXR induces SHP 
expression, which acts as a transcriptional repressor of various target genes involved in lipogenesis and 
bile acid synthesis [95]. This mechanism helps to prevent excessive TG accumulation and maintain normal 
lipid profiles within hepatocytes [96, 97]. Furthermore, the FXR-SHP pathway interacts with other nuclear 
receptors such as peroxisome proliferator-activated receptor alpha (PPARα), enhancing its regulatory 
capacity on lipid metabolism [90, 98]. Comprehensive, through the modulation of SREBP-1c and ChREBP, 
along with the involvement of SHP, FXR plays a pivotal role in coordinating lipid metabolism [99, 100]. Xu 
et al. [101] studied the impact of the activation of the FXR by obeticholic acid (OCA) significantly inhibits 
hepatic cholesterol 7α-hydroxylase (CYP7A1) and sterol 12α-hydroxylase (Cyp8b1), partly through the 
induction of SHP. This inhibition leads to a reduced bile acid pool size and altered bile acid composition, 
which contributes to decreased intestinal cholesterol absorption and enhanced macrophage reverse 
cholesterol transport (RCT). The reduction in hepatic microsomal cholesterol content triggers an elevation 
in the expression and functionality of low-density lipoprotein receptors (LDL-R) within the liver [102]. 
Consequently, this cascade of events leads to a decrease in plasma LDL-cholesterol (LDL-C) levels [103]. In 
addition to inhibiting CYP7A1, enhanced excretion into bile occurs via the cholesterol transporters known 
as adenosine triphosphate-binding cassette transporters (ABCG5/8), which can elevate blood cholesterol 
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levels in knockout (KO) mice [104]. Reduction in intestinal bile acids and promotion of transintestinal 
cholesterol excretion serve as mechanisms to lower cholesterol levels in the intestine [105]. While FXR 
induces an anti-atherogenic effect in mice, the scenario differs in humans. This was possible in mice due to 
the presence of enzymes Cyp2c70 (cytochrome P450 2C70) and Cyp2a12 (cytochrome P450 2A12) [106–
108].

FXR-induced lipoprotein metabolism is complex and differs mainly in ligands and species. FXR is 
known to reduce high-density lipoprotein (HDL) cholesterol, resulting in a pro-atherogenic profile. The 
proatherogenic effect is due to the stimulating effects of cholesterol ester transfer protein (CETP), which 
increases LDL and decreases HDL cholesterol [109]. In addition, the transformation of very low-density 
lipoprotein (VLDL) rich in TG is converted to cholesterol-rich LDL particles [110]. The major difference 
between the normal liver and disease progression.

Pathophysiology of FXR in MASLD and its related disorders
The mechanism behind MASLD primarily involves insulin resistance and lipotoxicity. Insulin resistance 
leads to increased FFA release from adipose tissue, which accumulates in the liver, causing hepatic steatosis 
as mentioned in Figure 1 [34, 51]. This accumulation triggers oxidative stress and inflammation, further 
exacerbated by elevated levels of reactive oxygen species (ROS) that activate pro-inflammatory pathways 
[111]. Increased ROS levels stimulate kinases such as c-Jun N-terminal kinase (JNK) and p38 mitogen-
activated protein kinases (MAPK), promoting inflammation and disrupting insulin signalling. This results in 
a vicious cycle where inflammation worsens insulin resistance [112]. Additionally, dietary factors like high 
fructose and saturated fat intake enhance DNL and contribute to the progression from simple steatosis to 
steatohepatitis. The interplay between gut microbiota dysbiosis and metabolic perturbations also fuels 
hepatic inflammation and injury [113]. Understanding these specific mechanisms is crucial for developing 
targeted therapies for MASLD [114], as illustrated by the alterations in disease identifiers depicted in 
Figure 2.

Figure 1. Progression from normal liver to cirrhosis and HCC Induced by high-calorie diet. This visual representation 
underscores the importance of dietary management in preventing liver-related diseases and emphasizes the cascading effects 
of excessive calorie intake on liver function. MAFL: metabolic dysfunction-associated fatty liver; MASH: metabolic dysfunction-
associated steatohepatitis; HCC: hepatocellular carcinoma. Created in BioRender. Pirangi, S. (2025) BioRender.com/z08d915

https://biorender.com/z08d915
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Figure 2. Comparative analysis of liver health: normal vs. MASLD/MASH. This visual emphasizes the critical role of 
lipogenic gene regulation in the transition from healthy liver function to advanced liver disease, underscoring the importance of 
dietary choices in preventing metabolic liver disorders. Due to the regulation of lipogenic genes (SREBP-1c, ChREBP, FASN, 
and SHP) regulated in normal and elevated in MASLD/MASH. MASLD: metabolic dysfunction-associated steatotic liver disease; 
MASH: metabolic dysfunction-associated steatohepatitis; VLDL: very low-density lipoprotein; SREBP-1c: sterol regulatory 
element-binding protein-1c; ChREBP: carbohydrate response element-binding protein; FASN: fatty acid synthase; SHP: small 
heterodimer partner. Created in BioRender. Pirangi, S. (2025) BioRender.com/x79m262

Impaired lipid regulation

MASLD to MASH represents a significant shift in liver pathology, akin to a small canal (MASLD) flowing into 
a vast river (MASH). MASLD is characterized by hepatic steatosis, where fat accumulation exceeds 5% of 
liver weight, often associated with metabolic syndrome features such as obesity, insulin resistance and 
dyslipidaemia. This stage primarily involves fat accumulation without significant inflammation or fibrosis. 
In contrast, MASH is a more advanced condition that includes inflammation (steatohepatitis) and can 
progress to fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC) in Figure 1. MASH is marked by 
hepatocyte ballooning, inflammatory cell infiltration, and varying degrees of fibrosis. Patients with MASLD 
may experience stable disease or progress to MASH over time. Few studies indicate that approximately one-
third of patients with MASLD develop progressive fibrosis, while others may remain stable or even 
experience regression. The risk of severe complications increases significantly with advancing fibrosis 
stages, underscoring the importance of early detection and intervention. Understanding the mechanisms 
driving this progression is crucial for developing effective diagnostic and therapeutic strategies to manage 
these prevalent liver diseases effectively. MASLD is closely linked to lipid metabolism, particularly TG and 
cholesterol metabolism. Increased fatty acid uptake and synthesis, along with decreased lipid degradation, 
significantly contribute to MASLD. Key transport proteins, including fatty acid transport proteins (FATPs), 
cluster of differentiation 36 (CD36), and caveolin-1 (CAV-1), facilitate fatty acid uptake in the liver. FATP2 
and FATP5 are primarily expressed in the liver, with downregulation of FATP2 reducing fatty acid uptake 
and improving hepatic steatosis. CD36 is crucial for fatty acid uptake; inhibiting its palmitoylation can 
alleviate metabolic disorders. CAV-1 also plays a role by promoting autophagy and reducing lipid 
accumulation. Additionally, lipogenic markers like FASN and stearoyl-CoA desaturase (SCD) are 
upregulated in MASLD [115]. Targeting FASN through mechanisms such as sorting nexin 8-mediated 
degradation offers a promising strategy for MASLD prevention. FXR agonists, including nidufexor 
(LMB763), cilofexor, and EDP-305, are currently undergoing clinical trials for the treatment of MASLD. 

https://biorender.com/x79m262


Explor Endocr Metab Dis. 2025;2:101425 | https://doi.org/10.37349/eemd.2025.101425 Page 7

These compounds have shown promise in addressing key aspects of the disease. For instance, 1-adamantyl 
carbonyl-4-phenylpiperazine is an FXR agonist whose derivative, compound 10A, has demonstrated greater 
efficacy in ameliorating hyperlipidaemia, hepatic steatosis, and insulin resistance [21, 33, 115, 116].

Insulin resistance

The accumulation of TGs in the liver is closely linked to insulin resistance, a hallmark of metabolic 
syndrome and MASLD [117]. IR is defined as a reduced response to insulin signalling, particularly in 
insulin-sensitive tissues like adipose tissue and the liver. This impairment leads to decreased glucose 
uptake and promotes lipolysis, resulting in elevated FFAs that accumulate in the liver and cause fat 
overload in hepatocytes [118]. The insulin receptor pathway regulates hepatic lipid metabolism through 
the transcription factor SREBP-1c, which upregulates genes involved in fatty acid biosynthesis, such as 
acetyl-CoA carboxylase (ACC) and FAS. MASLD-related hepatic IR, inhibition of the IR pathway leads to 
unregulated DNL, while gluconeogenesis remains unaffected [119].

Inflammation and fibrosis

Chronic inflammation is another critical factor in the progression from simple steatosis to more severe 
forms of liver disease such as MASH and fibrosis [120]. FXR demonstrates anti-inflammatory effects by 
inhibiting the nuclear factor-kappa B (NF-κB) signalling pathways that play a role in inflammatory 
responses [121]. In conditions where FXR signalling is disrupted, there is an increase in pro-inflammatory 
cytokines and chemokines that promote inflammation and activate hepatic stellate cells (HSCs), leading to 
excessive extracellular matrix deposition and fibrosis [122]. The fibroblast growth factor (FGF)-15/19 axis 
is upregulated by FXR in enterocytes, with FGF-19 acting as an enterokinase that travels to the liver via the 
portal circulation. Upon reaching the liver, FGF-19 interacts with the FGF receptor 4 and β-klotho, leading 
to the repression of bile acid synthesis and gluconeogenesis. This regulation may support liver regeneration 
following injury. FXR agonists have demonstrated the ability to reduce fibrosis and steatosis while also 
exhibiting anti-inflammatory effects. In mice fed a methionine-choline-deficient (MCD) diet, the FXR agonist 
WAY-362450 effectively reduced liver inflammation and fibrogenesis without leading to an increase in TG 
levels [123, 124]. In reverse, impaired FXR function can exacerbate inflammatory responses, leading to 
progressive liver damage [122, 123].

Hepatic steatosis

The buildup of fat in the liver due to impaired FXR signalling not only contributes to steatosis but also 
increases the risk of developing HCC [125]. Studies have indicated that mice lacking functional FXR develop 
hepatocellular adenomas and carcinomas spontaneously, suggesting that FXR may act as a tumour 
suppressor in the liver [126]. By regulating lipid metabolism and inflammatory responses, FXR helps 
maintain a balance that prevents tumorigenesis [127, 128].

HCC

Recent studies have indicated that FXR may play a protective role against the development of HCC [84, 
127]. HCC arises from metabolic dysregulation and chronic inflammation, often driven by increased IL-6 
signalling, which plays a leading role in cancer development and progression. FXR has emerged as a 
significant therapeutic target in HCC, with its agonists, such as OCA, demonstrating tumour-suppressive 
effects. OCA inhibits the IL-6/Jak-2/STAT3 signalling pathway, thereby reducing STAT3 activation and 
increasing levels of suppressor of cytokine signalling 3 (SOCS3), a feedback inhibitor of STAT3 [129]. This 
modulation not only mitigates inflammation but also inhibits HCC proliferation, migration, and invasion, 
underscoring the potential of FXR agonists in developing effective treatment strategies for HCC [125]. The 
modulation of lipid metabolism by FXR may help mitigate the risk factors associated with HCC development 
[84].

Extra-hepatic manifestations: impact on chronic kidney disease

Emerging evidence suggests that FXR also plays a role in extra-hepatic manifestations of MASLD, 
particularly chronic kidney disease (CKD) [130]. The interplay between liver dysfunction and kidney health 
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is complex; metabolic abnormalities stemming from hepatic steatosis can adversely affect renal function 
[131]. Elevated levels of circulating FFAs due to hepatic steatosis can lead to renal lipotoxicity, contributing 
to CKD progression [132]. FXR activation has been shown to exert protective effects on renal tissues by 
modulating lipid metabolism and reducing oxidative stress [133]. By regulating lipid uptake and 
metabolism in renal cells, FXR may help prevent renal injury associated with metabolic disorders [132]. 
Furthermore, FXR agonists have demonstrated potential in mitigating inflammatory responses within the 
kidneys, thereby offering a therapeutic avenue for addressing CKD related to MASLD [134].

Therapeutic applications of FXR agonists
FXR has emerged as a potential therapeutic target for the management of metabolic syndrome and liver 
disorders, particularly MASLD. The therapeutic potential of FXR agonists is being explored to mitigate the 
adverse effects associated with MASLD, MASH, and other metabolic disorders, as clearly discussed in 
Figure 3 [135]. The ligands for the FXR receptor can be classified based on their chemical nature: natural 
agonists [chenodeoxy cholic acid (CDCA), cholic acid, ursodeoxycholic acid (UDCA)], semisynthetic bile 
acids (OCA), and synthetic non-steroidal agonists (GW-4064 and WAY 362450) [136]. FXR agonists, such as 
OCA, have proven effective in reducing hepatic steatosis, enhancing insulin sensitivity, and providing anti-
inflammatory effects in clinical trials. FXR agonists, such as OCA, have proven effective in reducing hepatic 
steatosis, enhancing insulin sensitivity, and providing anti-inflammatory effects in clinical trials. These 
agents work by restoring normal FXR signalling pathways that regulate lipid metabolism and inflammation 
[123]. Deoxycholic acid (DCA) and lithocholic acid (LCA) can activate FXR, albeit with lower efficiency. 
UDCA is a partial agonist inhibiting CDCA activity [137, 138]. FXR agonists have been used recently for the 
improvement of ailments like MASH, diabetes mellitus, and primary biliary cholangitis (PBC) [139]. OCA, 
developed by Intercept Pharmaceuticals, is one of the earlier FXR agonists, and its regenerate phase III trial 
demonstrated reproducibility with phase II data. However, the FDA denied approval for its use in MASH 
and has currently banned it from phase III clinical trials due to severe side effects, including pruritus; aside 
from pruritus, OCA was generally well-tolerated [140]. Notably, there was a reduction in HDL cholesterol 
levels. The U.S. FDA approved OCA for second-line treatment of PBC in 2016 [123, 141].

Clinical data of patients and rodent studies using UDCA showed that the benefits were more effective 
than clofibrate ones. Small trials showed elevated levels of enzymes, which generally show an increase 
during liver diseases (alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, 
and alkaline phosphatases). These are reduced in the treatment [142]. However, norUDCA, a shortened 
UDCA derivative, gave promising results in phase II dosing trials in mice models [143]. MET-409, a non-
steroidal FXR agonist currently in phase IIa clinical trial, is different in structure from bile acids and has an 
entirely different chemical nature from other FXR agonists (tropifexor and cilofexor) [144]. The agonist 
showed potent liver fat reduction, but a transient increase in alanine aminotransferase and FGF-19 was 
observed [145]. The regulation of fatty acid influx into the hepatic plasma membrane is governed by 
specialized transporters such as FATP, CD36, and caveolins [146, 147]. Depletion of FATP2, a specific 
isoform of FATP, has been demonstrated to ameliorate hepatic steatosis and diminish the uptake of fatty 
acids, suggesting a potential therapeutic avenue for mitigating excessive lipid accumulation in the liver 
[148]. The transportation of elongated fatty acids is facilitated by CD36, a mechanism regulated by PPAR-
gamma [149]. There exists a clear association between the expression of CD36 and the concentration of TGs 
within hepatic tissue [150]. Investigations carried out in obese murine models propose that administration 
of GW4064 induces a subsequent decline in the expression of CD36 at a molecular scale, thereby reducing 
circulating lipid levels [151]. Caveolin functions in the formation of lipid droplets by associating fatty acids 
with binding proteins (FABP) [152]. Vitamin D receptor-interacting protein 205 (DRIP205), coactivator-
associated arginine methyltransferase-1 (CARM-1), and protein arginine methyltransferase 1 (PRMT-1) are 
some of the secondary coactivators that play a role in FXR-mediated transcription [153]. CARM-1 acts by its 
protein methylase activity, known to interact indirectly with nuclear receptors of the p160 family. Steroid 
receptor coactivator 1 (SRC-1), one of the nuclear receptors of the p160 family, acts on RXR-FXR 
heterodimers. Peroxisome proliferator-activated receptor-gamma coactivator-1 alpha (PGC-1 alpha), a 
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Figure 3. The role of FXR agonists in restoring liver health. This visual emphasizes the critical role of FXR agonists as 
promising therapeutic agents in managing liver diseases, showcasing their ability to restore liver health and improve overall 
metabolic function. OCA: obeticholic acid; MASLD: metabolic dysfunction-associated steatotic liver disease; NASH: non-
alcoholic steatohepatitis. Created in BioRender. Pirangi, S. (2025) BioRender.com/u29l065

well-known coactivator of PPAR-gamma, shows more FXR coactivating properties than SRC-1. FXR 
activates PGC-1 alpha by binding to the NH2 position [154–156].

Clinical trials and US FDA-approved drugs

FXR is crucial in countering these pathological conditions, as it exerts effects on each of them. Here are a 
few clinical trial drugs and ligands targeting FXR, with treatment mentioned in Table 2. Rezdiffra 
(resmetirom), a novel thyroid hormone receptor beta (THRβ) agonist, was first approved for treating adults 
with noncirrhotic, MASH with moderate to advanced liver scarring [157]. Combined with diet and exercise, 
this drug reduces liver fat accumulation by selectively stimulating THRβ in the liver. However, Rezdiffra is 
associated with several side effects like pruritus, diarrhoea, nausea, vomiting, constipation, abdominal pain, 
and dizziness are commonly reported. Additionally, it may cause liver injury (hepatotoxicity) and 
gallbladder-related complications such as gallstones (cholelithiasis) and inflammation of the gallbladder 
(cholecystitis). Therefore, patients undergoing treatment with Rezdiffra should be closely monitored [158]. 
Due to the numerous severe side effects associated with Rezdiffra, there is an urgent need for new 
therapeutic options for MASLD. Given these concerns, FXR agonist drugs emerge as a promising alternative 
to fulfil this requirement, offering a potential pathway for safer and more effective treatment strategies for 
MASLD while minimising adverse effects.

Exploring lipid diversity: a new frontier in understanding MASLD
Lipidomics is an emerging field that provides a comprehensive analysis of lipid compositions in biological 
samples, offering valuable insights into MASLD [159]. Studies of liver biopsies from MASLD patients have 
revealed significant alterations in lipid profiles, particularly in glycerophospholipids and sphingolipids. 
Notably, an increased n-6/n-3 fatty acid ratio and decreased levels of essential long-chain PUFAs, such as 
arachidonic and EPA, have been observed, indicating a shift in lipid metabolism that contributes to disease 
progression [53, 160]. In addition to liver tissue analysis, lipidomic studies of plasma samples have 
identified specific lipid changes that may serve as non-invasive biomarkers for disease progression. For 

https://biorender.com/u29l065
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Table 2. Represents FXR agonist drugs for the MASLD/MASH under clinical trial phase II/III trails

Primary mechanism Agent (trial name) Structure Clinical 
trials

NCT number
(clinicaltrials.gov)

Reference

FXR agonist and a chemokine 
receptor type 2/5 antagonist

LJN452 and CVC 
(cenicriviroc)

 + 

Phase 
2b

NCT03517540 [174, 175]

FXR agonist Cilofexor (GS-9674) Phase 2 NCT02854605 [176]

FXR agonist and statin Obeticholic acid and 
atorvastatin

 + 

Phase 2 NCT02633956 [177]

Non bile acid FXR agonist HPG1860 Phase 
2a

NCT05338034 [178]

FXR agonist CS0159 Phase 2 NCT05591079 [179]

FXR agonist Obeticholic acid Phase 3 NCT03439254 [180]

FXR agonist EYP001a 
(vonafexor)

Phase 2 NCT03812029 [181]

FXR agonist EDP-305 Phase 2 NCT03421431 [182]

Tricyclic FXR agonist HEC96719 Phase 2 NCT05397379 [183]

Non-steroidal FXR agonist PX-104 Phase 2 NCT01999101 [184]

FXR: farnesoid X receptor; MASLD: metabolic dysfunction-associated steatotic liver disease; MASH: metabolic dysfunction-
associated steatohepatitis

example, significant alterations in phosphatidylcholine (PC), phosphatidylethanolamine (PE), and 
sphingomyelin levels have been documented between healthy individuals and those with varying stages of 
MASLD, including MASH as detailed described in Table 3 [161, 162]. These lipid changes highlight the 
critical role of lipid metabolism in the development and progression of MASLD. The accumulation of lipids 
within hepatocytes leads to increased metabolic demands, resulting in the production of ROS and oxidative 
stress [163]. This process is exacerbated by obesity-related expansion of adipose tissue and insulin 
resistance, which promote the release of FFAs and activate inflammatory pathways. Elevated levels of 
ceramides a class of sphingolipids have been linked to lipotoxicity and hepatic inflammation, further 
contributing to the pathogenesis of MASLD [34].
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Table 3. Quantification of fatty acids by using various analytical techniques

Authors 
name

Disease 
condition 
analysed

Metabolites altered Analytical technique Healthy vs. NASH 
patients

Masoodi et 
al. [185]

MASLD and 
MASH

Amino acids, fatty acids, triglycerides, 
phospholipids, and bile acids

Metabolomics and 
lipidomic by MS

Altered amino acid 
metabolism, and lipid 
disturbances

Kartsoli et al. 
[186]

MASLD Liver lipid species Lipidomic approach by 
LC-MS/MS

Impact of liver lipid 
species on MASH 
development and 
progression

Garcia-
Jaramillo et 
al. [187]

MASH Hepatic neutral and membrane lipids Lipidomic analysis by 
UPLC-TOF-MS/MS

Profound alterations in 
lipid composition

Lipidomic profiling by 
UPLC-MS/MS

Wang et al. 
[188]

MASLD and 
MASH

The main types of lipids are glycerides, 
glycerophospholipids, sphingolipids, fatty 
acyl lipids, and sterol lipids. GC-FID

Differential lipid profiles in 
urine samples

Piras et al. 
[189]

MASLD Circulating lipid biomarkers LC-MS Potential biomarkers for 
MASLD

Tan et al. 
[190]

MASLD and 
MASH

Circulating fatty acids, triglycerides, 
phospholipids, and bile acids

Metabolomics and 
lipidomics by imaging 
particle detector

Altered metabolic 
pathways

Kalopitas et 
al. [191]

MASLD and 
MASH

Potential differences in plasma lipids Lipidomic profiling by 
LC-MS and GC-MS

Comparison in MASH, 
MASLD, and heathy

Zhu et al. 
[192]

NAFL and 
NASH

Urinary extracellular vesicles Lipidomic analysis by 
mass-based approach

Lipidomic changes as 
potential markers

Gaggini et al. 
[193]

NAFLD Circulating lipids Metabolomics by mass-
based approach

Links between lipids and 
NAFLD

NASH: non-alcoholic steatohepatitis; MASLD: metabolic dysfunction-associated steatotic liver disease; LC-MS: liquid 
chromatography-mass spectrometry; UPLC-TOF-MS: ultra-performance liquid chromatography time-of-flight mass 
spectrometry; UPLC-MS: ultra-performance liquid chromatography-mass spectrometry; GC-FID: gas chromatography flame 
ionization detector; GC-MS: gas chromatography-mass spectrometry; NAFL: non-alcoholic fatty liver; NAFLD: non-alcoholic 
fatty liver disease

To analyse these complex lipid profiles, researchers utilize hyphenated techniques such as liquid 
chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) as 
represented in Figure 4. These methodologies enable the identification and quantification of thousands of 
lipid species, enhancing our understanding of their roles in liver disease [164–166]. Lipidomic profiling is 
crucial for uncovering the specific lipid alterations associated with MASLD [60, 167]. By identifying 
potential biomarkers for distinguishing between MASLD and MASH, lipidomics offers promising avenues 
for early diagnosis and targeted therapeutic strategies aimed at restoring lipid homeostasis and improving 
patient outcomes [168].

Conclusions
In this review, we have clearly articulated the renaming of NAFLD to MASLD and NASH to MASH. We 
explored the association of MASLD with features of metabolic syndrome, emphasizing the central role of 
fatty acids in disease development and progression. Additionally, we examined the role of FXR in both 
physiological and pathological conditions, detailing how hepatic steatosis can progress to severe outcomes 
like fibrosis and CKD. The therapeutic potential of FXR agonists in treating MASLD and other metabolic 
diseases was discussed, alongside a review of clinical trial drugs targeting the FXR receptor. Furthermore, 
we highlighted the importance of lipidomic studies for quantifying fatty acids responsible for MASLD and 
MASH pathogenesis using advanced analytical techniques.

Despite these insights, significant research gaps remain due to the complex pathology of MASLD. Over 
30% of the global population is affected by MAFLD, highlighting this silent epidemic’s growing prevalence. 
Current diagnostic techniques are limited, necessitating improvements in lipidomics through advanced 
methods like LC-MS/MS and GC-MS/MS to accurately assess disease severity. Optimizing sample 
preparation protocols and minimizing matrix effects are essential steps forward. Currently, only one drug, 
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Figure 4. Quantification of lipid profiles in MASLD-induced rats treated with FXR agonists. This visual emphasizes the 
potential of FXR agonist therapy as a promising intervention for MASLD and illustrates the critical role of lipid profiling in 
monitoring disease progression and therapeutic outcomes. MASLD: metabolic dysfunction-associated steatotic liver disease; 
FXR: farnesoid X receptor; GC-MS: gas chromatography-mass spectrometry; LC-MS: liquid chromatography-mass 
spectrometry. Created in BioRender. Pirangi, S. (2025) BioRender.com/x10t173

resmetirom, has been approved by the FDA for MASLD treatment. While FXR agonists show promise in 
mitigating disease pathology, side effects have hindered others, such as OCA, from progressing to phase III 
trials. There is a pressing need for early-stage identification of MASLD and further advancements in 
lipidomic studies, alongside the development of new therapeutic options to address this widespread health 
issue. By pursuing these avenues, we can enhance our understanding and management of MASLD, 
ultimately improving patient outcomes in this prevalent liver disease.
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